Skip to main content
Top
Published in: Malaria Journal 1/2016

Open Access 01-12-2016 | Research

A novel method for mapping village-scale outdoor resting microhabitats of the primary African malaria vector, Anopheles gambiae

Authors: Julius R. Dewald, Douglas O. Fuller, Günter C. Müller, John C. Beier

Published in: Malaria Journal | Issue 1/2016

Login to get access

Abstract

Background

Knowledge of Anopheles resting habitats is needed to advance outdoor malaria vector control. This study presents a technique to map locations of resting habitats using high-resolution satellite imagery (world view 2) and probabilistic Dempster-Shafer (D-S) modelling, focused on a rural village in southern Mali, West Africa where field sampling was conducted to determine outdoor habitat preferences of Anopheles gambiae, the main vector in the study area.

Methods

A combination of supervised and manual image classification was used to derive an accurate land-cover map from the satellite image that provided classes (i.e., photosynthetically active vegetation, water bodies, wetlands, and buildings) suitable for habitat assessment. Linear fuzzy functions were applied to the different image classes to scale resting habitat covariates into a common data range (0–1) with fuzzy breakpoints parameterized experimentally through comparison with mosquito outdoor resting data. Fuzzy layers were entered into a Dempster-Shafer (D-S) weight-of-evidence model that produced pixel-based probability of resting habitat locations.

Results

The D-S model provided a highly detailed suitability map of resting locations. The results indicated a significant difference (p < 0.001) between D-S values at locations positive for An. gambiae and a set of randomly sampled points. Further, a negative binomial regression indicated that although the D-S estimates did not predict abundance (p > 0.05) subsequent analysis suggested that the D-S modelling approach may provide a reasonable estimate locations of low-to-medium An. gambiae density. These results suggest that that D-S modelling performed well in identifying presence points and specifically resting habitats.

Conclusion

The use of a D-S modelling framework for predicting the outdoor resting habitat locations provided novel information on this little-known aspect of anopheline ecology. The technique used here may be applied more broadly at different geographic scales using Google Earth, Landsat or other remotely-sensed imagery to assess the malaria vector resting habitats where outdoor control measures can reduce the burden of the disease in Africa and elsewhere.
Literature
2.
go back to reference Mendis K, Rietveld A, Warsame M, Bosman A, Greenwood B, Wernsdorfer WH. From malaria control to eradication: the WHO perspective. Trop Med Int Health. 2009;14:802–9.CrossRefPubMed Mendis K, Rietveld A, Warsame M, Bosman A, Greenwood B, Wernsdorfer WH. From malaria control to eradication: the WHO perspective. Trop Med Int Health. 2009;14:802–9.CrossRefPubMed
3.
go back to reference Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev. 2011;24:377–410.CrossRefPubMedPubMedCentral Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev. 2011;24:377–410.CrossRefPubMedPubMedCentral
4.
go back to reference Cotter C, Sturrock HJW, Hsiang MS, Liu J, Phillips AA, Hwang J, et al. The changing epidemiology of malaria elimination: new strategies for new challenges. Lancet. 2013;382:900–11.CrossRefPubMed Cotter C, Sturrock HJW, Hsiang MS, Liu J, Phillips AA, Hwang J, et al. The changing epidemiology of malaria elimination: new strategies for new challenges. Lancet. 2013;382:900–11.CrossRefPubMed
7.
go back to reference Coetzee M, Craig M, le Sueur D. Distribution of African malaria mosquitoes belonging to the Anopheles gambiae complex. Parasitol Today. 2000;16:74–7.CrossRefPubMed Coetzee M, Craig M, le Sueur D. Distribution of African malaria mosquitoes belonging to the Anopheles gambiae complex. Parasitol Today. 2000;16:74–7.CrossRefPubMed
8.
go back to reference Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G. Effects of microclimatic changes due to deforestation on the survivorship and reproductive fitness of Anopheles gambiae in western Kenya highlands. Am J Trop Med Hyg. 2006;74:772–8.PubMed Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G. Effects of microclimatic changes due to deforestation on the survivorship and reproductive fitness of Anopheles gambiae in western Kenya highlands. Am J Trop Med Hyg. 2006;74:772–8.PubMed
9.
go back to reference Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G. Life-table analysis of Anopheles arabiensis in western Kenya highlands: effects of land covers on larval and adult survivorship. Am J Trop Med Hyg. 2007;77:660–6.PubMed Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G. Life-table analysis of Anopheles arabiensis in western Kenya highlands: effects of land covers on larval and adult survivorship. Am J Trop Med Hyg. 2007;77:660–6.PubMed
10.
go back to reference White GB. Anopheles-gambiae complex and disease transmission in Africa. Trans R Soc Trop Med Hyg. 1974;68:278–302.CrossRefPubMed White GB. Anopheles-gambiae complex and disease transmission in Africa. Trans R Soc Trop Med Hyg. 1974;68:278–302.CrossRefPubMed
11.
go back to reference Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Gething PW, et al. The dominant anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2010;3:72.CrossRefPubMedPubMedCentral Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Gething PW, et al. The dominant anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2010;3:72.CrossRefPubMedPubMedCentral
12.
go back to reference Coluzzi M. Heterogeneities of the malaria vectorial system in tropical Africa and their significance in malaria epidemiology and control. Bull World Health Organ. 1984;62:107–13.PubMedPubMedCentral Coluzzi M. Heterogeneities of the malaria vectorial system in tropical Africa and their significance in malaria epidemiology and control. Bull World Health Organ. 1984;62:107–13.PubMedPubMedCentral
13.
go back to reference WHO Study Group. Malaria vector control and personal protection. World Health Organ Tech Rep Se. 2006;936:1–62. WHO Study Group. Malaria vector control and personal protection. World Health Organ Tech Rep Se. 2006;936:1–62.
14.
go back to reference Githeko AK, Service MW, Mbogo CM, Atieli FK, Juma FO, , Origin of blood meals in indoor and outdoor resting malaria vectors in western Kenya. Acta Trop. 1994;58:307–16.CrossRefPubMed Githeko AK, Service MW, Mbogo CM, Atieli FK, Juma FO, , Origin of blood meals in indoor and outdoor resting malaria vectors in western Kenya. Acta Trop. 1994;58:307–16.CrossRefPubMed
15.
go back to reference Diatta M, Spiegel A, Lochouarn L, Fontenille D. Similar feeding preferences of Anopheles gambiae and A. arabiensis in Senegal. Trans R Soc Trop Med Hyg. 1998;92:270–2.CrossRefPubMed Diatta M, Spiegel A, Lochouarn L, Fontenille D. Similar feeding preferences of Anopheles gambiae and A. arabiensis in Senegal. Trans R Soc Trop Med Hyg. 1998;92:270–2.CrossRefPubMed
16.
go back to reference Antonio-Nkondjio C, Awono-Ambene P, Toto JC, Meunier JY, Zebaze- Kemleu S, Nyambam R, et al. High malaria transmission intensity in a village close to Yaounde, the capital city of Cameroon. J Med Entomol. 2002;39:350–5.CrossRefPubMed Antonio-Nkondjio C, Awono-Ambene P, Toto JC, Meunier JY, Zebaze- Kemleu S, Nyambam R, et al. High malaria transmission intensity in a village close to Yaounde, the capital city of Cameroon. J Med Entomol. 2002;39:350–5.CrossRefPubMed
17.
go back to reference Dabire KR, Diabate A, Pare-Toe L, Rouamba J, Ouari A, Fontenille D, et al. Year to year and seasonal variations in vector bionomics and malaria transmission in a humid savannah village in west Burkina Faso. J Vector Ecol. 2008;33:70–5.CrossRefPubMed Dabire KR, Diabate A, Pare-Toe L, Rouamba J, Ouari A, Fontenille D, et al. Year to year and seasonal variations in vector bionomics and malaria transmission in a humid savannah village in west Burkina Faso. J Vector Ecol. 2008;33:70–5.CrossRefPubMed
18.
go back to reference Bockarie MJ, Service MW, Touré YT, Traoré S, Barnish G, Greenwood BM. The ecology and behaviour of the forest form of Anopheles gambiae s.s. Parassitologia. 1993;35:5–8.PubMed Bockarie MJ, Service MW, Touré YT, Traoré S, Barnish G, Greenwood BM. The ecology and behaviour of the forest form of Anopheles gambiae s.s. Parassitologia. 1993;35:5–8.PubMed
19.
go back to reference Githeko AK, Adungo NI, Karanja DM, Hawley WA, Vulule JM, Seroney IK, et al. Some observations on the biting behavior of Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus and their implications for malaria control. Exp Parasitol. 1996;82:306–15.CrossRefPubMed Githeko AK, Adungo NI, Karanja DM, Hawley WA, Vulule JM, Seroney IK, et al. Some observations on the biting behavior of Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus and their implications for malaria control. Exp Parasitol. 1996;82:306–15.CrossRefPubMed
20.
go back to reference Duchemin JB, Tsy JM, Rabarison P, Roux J, Coluzzi M, Costantini C. Zoophily of Anopheles arabiensis and An. gambiae in Madagascar demonstrated by odour-baited entry traps. Med Vet Entomol. 2001;15:50–7.CrossRefPubMed Duchemin JB, Tsy JM, Rabarison P, Roux J, Coluzzi M, Costantini C. Zoophily of Anopheles arabiensis and An. gambiae in Madagascar demonstrated by odour-baited entry traps. Med Vet Entomol. 2001;15:50–7.CrossRefPubMed
21.
go back to reference Cano J, Berzosa PJ, Roche J, Rubio JM, Moyano E, Guerra-Neira A, et al. Malaria vectors in the Bioko Island (Equatorial Guinea): estimation of vector dynamics and transmission intensities. J Med Entomol. 2004;41:158–61.CrossRefPubMed Cano J, Berzosa PJ, Roche J, Rubio JM, Moyano E, Guerra-Neira A, et al. Malaria vectors in the Bioko Island (Equatorial Guinea): estimation of vector dynamics and transmission intensities. J Med Entomol. 2004;41:158–61.CrossRefPubMed
22.
go back to reference Killeen GF, Fillinger U, Knols BGJ. Advantages of larval control for African malaria vectors: low mobility and behavioral responsiveness of immature mosquito stages allow high effective coverage. Malar J. 2002;1:8.CrossRefPubMedPubMedCentral Killeen GF, Fillinger U, Knols BGJ. Advantages of larval control for African malaria vectors: low mobility and behavioral responsiveness of immature mosquito stages allow high effective coverage. Malar J. 2002;1:8.CrossRefPubMedPubMedCentral
23.
go back to reference Gu WD, Novak RJ. Habitat-based modeling of impacts of mosquito larval interventions on entomological inoculation rates, incidence, and prevalence of malaria. Am J Trop Med Hyg. 2005;73:546–52.PubMed Gu WD, Novak RJ. Habitat-based modeling of impacts of mosquito larval interventions on entomological inoculation rates, incidence, and prevalence of malaria. Am J Trop Med Hyg. 2005;73:546–52.PubMed
24.
go back to reference Fillinger U, Ndenga B, Githeko A, Lindsay SW. Integrated malaria vector control with microbial larvicides and insecticide-treated nets in Western Kenya: a controlled trial. Bull World Health Organ. 2009;87:655–65.CrossRefPubMedPubMedCentral Fillinger U, Ndenga B, Githeko A, Lindsay SW. Integrated malaria vector control with microbial larvicides and insecticide-treated nets in Western Kenya: a controlled trial. Bull World Health Organ. 2009;87:655–65.CrossRefPubMedPubMedCentral
25.
go back to reference Müller GC, Junnila A, Schlein Y. Effective control of adult Culex pipiens by spraying an attractive toxic sugar bait solution in the vegetation near larval habitats. J Med Entomol. 2010;47:63–6.CrossRefPubMed Müller GC, Junnila A, Schlein Y. Effective control of adult Culex pipiens by spraying an attractive toxic sugar bait solution in the vegetation near larval habitats. J Med Entomol. 2010;47:63–6.CrossRefPubMed
26.
go back to reference Schlein Y, Mueller GC. An Approach to mosquito control: using the dominant attraction of flowering Tamarix jordanis trees against Culex pipiens. J Med Entomol. 2008;45:384–90.CrossRefPubMed Schlein Y, Mueller GC. An Approach to mosquito control: using the dominant attraction of flowering Tamarix jordanis trees against Culex pipiens. J Med Entomol. 2008;45:384–90.CrossRefPubMed
27.
go back to reference Müller GC, Beier JC, Traore SF, Toure MB, Traore MM, Bah S, et al. Successful field trial of attractive toxic sugar bait (ATSB) plant-spraying methods against malaria vectors in the Anopheles gambiae complex in Mali West Africa. Malar J. 2010;9:210.CrossRefPubMedPubMedCentral Müller GC, Beier JC, Traore SF, Toure MB, Traore MM, Bah S, et al. Successful field trial of attractive toxic sugar bait (ATSB) plant-spraying methods against malaria vectors in the Anopheles gambiae complex in Mali West Africa. Malar J. 2010;9:210.CrossRefPubMedPubMedCentral
28.
go back to reference Burkett-Cadena N, Graham SP, Giovanetto LA. Resting environments of some Costa Rican mosquitoes. J Vector Ecol. 2013;38:12–9.CrossRefPubMed Burkett-Cadena N, Graham SP, Giovanetto LA. Resting environments of some Costa Rican mosquitoes. J Vector Ecol. 2013;38:12–9.CrossRefPubMed
29.
go back to reference Gillies MT. Studies in house leaving and outside resting of Anopheles gambiae Giles and Anopheles funestus Giles in East Africa. The outside resting population. Bull Entomol Res. 1954;45:361–74.CrossRef Gillies MT. Studies in house leaving and outside resting of Anopheles gambiae Giles and Anopheles funestus Giles in East Africa. The outside resting population. Bull Entomol Res. 1954;45:361–74.CrossRef
30.
go back to reference Gillies MT. The density of adult Anopheles in the neighbourhood of an East African village. Am J Trop Med Hyg. 1955;4:1103–13.PubMed Gillies MT. The density of adult Anopheles in the neighbourhood of an East African village. Am J Trop Med Hyg. 1955;4:1103–13.PubMed
31.
go back to reference Afrane YA, Klinkenberg E, Drechsel P, Owusu-Daaku K, Garms R, Kruppa T. Does irrigated urban agriculture influence the transmission of malaria in the city of Kumasi, Ghana? Acta Trop. 2004;89:125–34.CrossRefPubMed Afrane YA, Klinkenberg E, Drechsel P, Owusu-Daaku K, Garms R, Kruppa T. Does irrigated urban agriculture influence the transmission of malaria in the city of Kumasi, Ghana? Acta Trop. 2004;89:125–34.CrossRefPubMed
33.
34.
go back to reference Sumba LA, Okoth K, Deng AL, Githure J, Knols BG, Beier JC, et al. Daily oviposition patterns of the African malaria mosquito Anopheles gambiae Giles (Diptera: Culicidae) on different types of aqueous substrates. J Circadian Rhythms. 2004;2:1–7.CrossRef Sumba LA, Okoth K, Deng AL, Githure J, Knols BG, Beier JC, et al. Daily oviposition patterns of the African malaria mosquito Anopheles gambiae Giles (Diptera: Culicidae) on different types of aqueous substrates. J Circadian Rhythms. 2004;2:1–7.CrossRef
35.
go back to reference Edillo FE, Toure YT, Lanzaro GC, Dolo G, Taylor CE. Spatial and habitat distribution of Anopheles gambiae and Anopheles arabiensis (Diptera : Culicidae) in Banambani village, Mali. J Med Entomol. 2002;39:70–7.CrossRefPubMed Edillo FE, Toure YT, Lanzaro GC, Dolo G, Taylor CE. Spatial and habitat distribution of Anopheles gambiae and Anopheles arabiensis (Diptera : Culicidae) in Banambani village, Mali. J Med Entomol. 2002;39:70–7.CrossRefPubMed
36.
go back to reference Bogh C, Clarke SE, Jawara M, Thomas CJ, Lindsay SW. Localized breeding of the Anopheles gambiae complex (Diptera: Culicidae) along the river Gambia West Africa. Bull Entomol Res. 2003;93:279–87.CrossRefPubMed Bogh C, Clarke SE, Jawara M, Thomas CJ, Lindsay SW. Localized breeding of the Anopheles gambiae complex (Diptera: Culicidae) along the river Gambia West Africa. Bull Entomol Res. 2003;93:279–87.CrossRefPubMed
37.
go back to reference Koenraadt CJM, Githeko AK, Takken W. The effects of rainfall and evapotranspiration on the temporal dynamics of Anopheles gambiae s.s. and Anopheles arabiensis in a Kenyan village. Acta Trop. 2004;90:141–53.CrossRefPubMed Koenraadt CJM, Githeko AK, Takken W. The effects of rainfall and evapotranspiration on the temporal dynamics of Anopheles gambiae s.s. and Anopheles arabiensis in a Kenyan village. Acta Trop. 2004;90:141–53.CrossRefPubMed
38.
go back to reference Minakawa N, Sonye G, Mogi M, Yan G. Habitat characteristics of Anopheles gambiae s.s. larvae in a Kenyan highland. Med Vet Entomol. 2004;18:301–5.CrossRefPubMed Minakawa N, Sonye G, Mogi M, Yan G. Habitat characteristics of Anopheles gambiae s.s. larvae in a Kenyan highland. Med Vet Entomol. 2004;18:301–5.CrossRefPubMed
39.
go back to reference Awolola TS, Oduola AO, Obansa JB, Chukwurar NJ, Unyimadu JP. Anopheles gambiae s.s. breeding in polluted water bodies in urban Lagos, southwestern Nigeria. J Vector Borne Dis. 2007;44:241–4.PubMed Awolola TS, Oduola AO, Obansa JB, Chukwurar NJ, Unyimadu JP. Anopheles gambiae s.s. breeding in polluted water bodies in urban Lagos, southwestern Nigeria. J Vector Borne Dis. 2007;44:241–4.PubMed
40.
go back to reference Trape JF, Lefebvre-Zante E, Legros F, Ndiaye G, Bouganali H, Druilhe P, et al. Vector density gradients and the epidemiology of urban malaria in Dakar, Senegal. Am J Trop Med Hyg. 1992;47:181–9.PubMed Trape JF, Lefebvre-Zante E, Legros F, Ndiaye G, Bouganali H, Druilhe P, et al. Vector density gradients and the epidemiology of urban malaria in Dakar, Senegal. Am J Trop Med Hyg. 1992;47:181–9.PubMed
41.
go back to reference Staedke SG, Nottingham EW, Cox J, Kamya MR, Rosenthal PJ, Dorsey G. Proximity to Mosquito breeding sites as a risk factor for clinical malaria episodes in an urban cohort of Ugandan children. Am J Trop Med Hyg. 2003;69:244–6.PubMed Staedke SG, Nottingham EW, Cox J, Kamya MR, Rosenthal PJ, Dorsey G. Proximity to Mosquito breeding sites as a risk factor for clinical malaria episodes in an urban cohort of Ugandan children. Am J Trop Med Hyg. 2003;69:244–6.PubMed
42.
go back to reference Gouagna LC, Dehecq JS, Girod R, Boyer S, Lempérière G, Fontenille D. Spatial and temporal distribution patterns of Anopheles arabiensis breeding sites in La Reunion Island—multi-year trend analysis of historical records from 1996–2009. Parasit Vectors. 2011;4:121.CrossRefPubMedPubMedCentral Gouagna LC, Dehecq JS, Girod R, Boyer S, Lempérière G, Fontenille D. Spatial and temporal distribution patterns of Anopheles arabiensis breeding sites in La Reunion Island—multi-year trend analysis of historical records from 1996–2009. Parasit Vectors. 2011;4:121.CrossRefPubMedPubMedCentral
43.
go back to reference Zhou S, Zhang S, Wang J, Zheng X, Huang F, Li W, et al. Spatial correlation between malaria cases and water-bodies in Anopheles sinensis dominated areas of Huang-Huai plain, China. Parasit Vectors. 2012;5:106.CrossRefPubMedPubMedCentral Zhou S, Zhang S, Wang J, Zheng X, Huang F, Li W, et al. Spatial correlation between malaria cases and water-bodies in Anopheles sinensis dominated areas of Huang-Huai plain, China. Parasit Vectors. 2012;5:106.CrossRefPubMedPubMedCentral
44.
go back to reference Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2005;190:231–59.CrossRef Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2005;190:231–59.CrossRef
45.
go back to reference Foley DH, Klein TA, Kim HC, Brown T, Wilkerson RC, Rueda LM. Validation of ecological niche models for potential malaria vectors in the Republic of Korea. J Am Mosq Control Assoc. 2010;26:210–3.CrossRefPubMed Foley DH, Klein TA, Kim HC, Brown T, Wilkerson RC, Rueda LM. Validation of ecological niche models for potential malaria vectors in the Republic of Korea. J Am Mosq Control Assoc. 2010;26:210–3.CrossRefPubMed
46.
go back to reference Malpica JA, Alonso MC, Sanz MA. Dempster-Shafer theory in geographic information systems: a survey. Expert Syst Appl. 2007;32:47–55.CrossRef Malpica JA, Alonso MC, Sanz MA. Dempster-Shafer theory in geographic information systems: a survey. Expert Syst Appl. 2007;32:47–55.CrossRef
47.
go back to reference Gordon J, Shortliffe EH. A method for managing evidential reasoning in a hierarchical hypothesis space. Artif Intell. 1985;26:323–57.CrossRef Gordon J, Shortliffe EH. A method for managing evidential reasoning in a hierarchical hypothesis space. Artif Intell. 1985;26:323–57.CrossRef
48.
go back to reference Charlwood JD, Vij R, Billingsley PF. Dry season refugia of malaria-transmitting mosquitoes in a dry savannah zone of East Africa. Am J Trop Med Hyg. 2000;62:726–32.PubMed Charlwood JD, Vij R, Billingsley PF. Dry season refugia of malaria-transmitting mosquitoes in a dry savannah zone of East Africa. Am J Trop Med Hyg. 2000;62:726–32.PubMed
49.
go back to reference Baber I, Keita M, Sogoba N, Konate M, Diallo M, Doumbia S, et al. Population size and migration of Anopheles gambiae in the Bancoumana region of Mali and their significance for efficient vector control. PLoS ONE. 2010;5:e10270.CrossRefPubMedPubMedCentral Baber I, Keita M, Sogoba N, Konate M, Diallo M, Doumbia S, et al. Population size and migration of Anopheles gambiae in the Bancoumana region of Mali and their significance for efficient vector control. PLoS ONE. 2010;5:e10270.CrossRefPubMedPubMedCentral
50.
go back to reference Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.PubMed Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.PubMed
51.
go back to reference Lu D, Weng Q. A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens. 2007;28:823–70.CrossRef Lu D, Weng Q. A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens. 2007;28:823–70.CrossRef
52.
go back to reference Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogramm Remote Sens. 2004;58:239–58.CrossRef Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogramm Remote Sens. 2004;58:239–58.CrossRef
53.
go back to reference Thomas N, Hendrix C, Congalton RG. A comparison of urban mapping methods using high-resolution digital imagery. Photogramm Eng Remote Sens. 2003;69:963–72.CrossRef Thomas N, Hendrix C, Congalton RG. A comparison of urban mapping methods using high-resolution digital imagery. Photogramm Eng Remote Sens. 2003;69:963–72.CrossRef
54.
go back to reference Jiang H, Eastman JR. Application of fuzzy measures in multi-criteria evaluation in GIS. Int J Geogr Inf Sci. 2000;14:173–84.CrossRef Jiang H, Eastman JR. Application of fuzzy measures in multi-criteria evaluation in GIS. Int J Geogr Inf Sci. 2000;14:173–84.CrossRef
55.
go back to reference Coetzee M, Hunt R, Wilkerson R, Torre AD, Coulibaly M, Besansky N. Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa. 2013;3619:246–74.CrossRefPubMed Coetzee M, Hunt R, Wilkerson R, Torre AD, Coulibaly M, Besansky N. Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa. 2013;3619:246–74.CrossRefPubMed
56.
go back to reference VanDerWal J, Shoo LP, Johnson CN, Williams SE. Abundance and the environmental niche: environmental suitability estimated from niche models predicts the upper limit of local abundance. Am Nat. 2009;42:229–40. VanDerWal J, Shoo LP, Johnson CN, Williams SE. Abundance and the environmental niche: environmental suitability estimated from niche models predicts the upper limit of local abundance. Am Nat. 2009;42:229–40.
57.
go back to reference Ricotta EE, Frese SA, Choobwe C, Louis TA, Shiff CJ. Evaluating local vegetation cover as a risk factor for malaria transmission: a new analytical approach using ImageJ. Malar J. 2014;13:94.CrossRefPubMedPubMedCentral Ricotta EE, Frese SA, Choobwe C, Louis TA, Shiff CJ. Evaluating local vegetation cover as a risk factor for malaria transmission: a new analytical approach using ImageJ. Malar J. 2014;13:94.CrossRefPubMedPubMedCentral
58.
go back to reference Bogh C, Lindsay SW, Clarke SE, Dean A, Jawara M, Pinder M, Thomas CJ. High spatial resolution mapping of malaria transmission risk in the Gambia, West Africa, using LANDSAT TM satellite imagery. Am J Trop Med Hyg. 2007;76:875–81.PubMed Bogh C, Lindsay SW, Clarke SE, Dean A, Jawara M, Pinder M, Thomas CJ. High spatial resolution mapping of malaria transmission risk in the Gambia, West Africa, using LANDSAT TM satellite imagery. Am J Trop Med Hyg. 2007;76:875–81.PubMed
59.
go back to reference Clennon JA, Kamanga A, Musapa M, Shiff C, Glass GE. Identifying malaria vector breeding habitats with remote sensing data and terrain-based landscape indices in Zambia. Int J Health Geogr. 2010;5:58.CrossRef Clennon JA, Kamanga A, Musapa M, Shiff C, Glass GE. Identifying malaria vector breeding habitats with remote sensing data and terrain-based landscape indices in Zambia. Int J Health Geogr. 2010;5:58.CrossRef
60.
go back to reference Frazier PS, Page KJ. Water body detection and delineation with Landsat TM data. Photogramm Eng Remote Sens. 2000;66:1461–7. Frazier PS, Page KJ. Water body detection and delineation with Landsat TM data. Photogramm Eng Remote Sens. 2000;66:1461–7.
Metadata
Title
A novel method for mapping village-scale outdoor resting microhabitats of the primary African malaria vector, Anopheles gambiae
Authors
Julius R. Dewald
Douglas O. Fuller
Günter C. Müller
John C. Beier
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2016
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-016-1534-9

Other articles of this Issue 1/2016

Malaria Journal 1/2016 Go to the issue