Skip to main content
Top
Published in: Malaria Journal 1/2016

Open Access 01-12-2016 | Research

Characterization of fine specificity of the immune response to a Plasmodium falciparum rhoptry neck protein, PfAARP

Authors: Aakanksha Kalra, Paushali Mukherjee, Virander S. Chauhan

Published in: Malaria Journal | Issue 1/2016

Login to get access

Abstract

Background

Immunological characterization of potential blood-stage malaria antigens would be a valuable strategy in the development of an effective vaccine. Identifying B and CD4+ T cell epitopes will be important in understanding the nature of immune response. A previous study has shown that Plasmodium falciparum apical asparagine-rich protein (PfAARP) stimulates immune response and induces potent invasion-inhibitory antibodies. Antibodies to PfAARP provide synergistic effects in inhibition of parasite invasion when used in combination with antibodies to other antigens. In the present study, an attempt was made to identify B cell and CD4+ T cell epitopes of PfAARP.

Methods

Balb/c mice were immunized with recombinant PfAARP and both cellular and humoral responses were analysed at various time points. Computerized databases [immune epitope database (IEDB) and B cell epitope prediction (BCEPred)] were used to predict epitope sequences within PfAARP and predicted peptides were synthesized. In addition, nine 18 amino acid, long-overlapping peptides spanning the entire length of PfAARP were synthesized. Using these peptides, B cell and CD4+ T cell responses in PfAARP immunized mice were measured by ELISA and ELISPOT assays.

Results

Here, it is demonstrated that immunization of mice with PfAARP induced long-lasting, high-titre antibodies (4 months post immunization). Also, the recombinant protein was effective in inducing a pronounced Th1 type of immune response quantified by IFN-γ ELISA and ELISPOT. It was found that the predicted peptides did not represent the immunogenic regions of PfAARP. However, of the nine overlapping peptides, three peptides (peptides 3, 5 and 7) were strongly recognized by PfAARP-immunized sera and represented B cell epitopes. Also, peptide 3 elicited IFN- γ response, suggesting it to be a T-cell epitope.

Conclusions

Induction of long-lasting humoral and cellular response on PfAARP immunization in mice underscores its possible use as a blood-stage malaria vaccine candidate. Mapping of immunogenic regions may help in designing fusion chimera containing immunologically relevant regions of other vaccine target antigens and/or for multi-component vaccine candidates.
Literature
1.
go back to reference Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev. 2016;40:343–72.CrossRefPubMedPubMedCentral Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev. 2016;40:343–72.CrossRefPubMedPubMedCentral
2.
go back to reference Hoffman SL, Vekemans J, Richie TL, Duffy PE. The march toward malaria vaccines. Am J Prev Med. 2015;49:S319–33.CrossRefPubMed Hoffman SL, Vekemans J, Richie TL, Duffy PE. The march toward malaria vaccines. Am J Prev Med. 2015;49:S319–33.CrossRefPubMed
3.
4.
go back to reference Goodman AL, Draper SJ. Blood-stage malaria vaccines—recent progress and future challenges. Ann Trop Med Parasitol. 2010;104:189–211.CrossRefPubMed Goodman AL, Draper SJ. Blood-stage malaria vaccines—recent progress and future challenges. Ann Trop Med Parasitol. 2010;104:189–211.CrossRefPubMed
5.
go back to reference Birkett AJ, Moorthy VS, Loucq C, Chitnis CE, Kaslow DC. Malaria vaccine R&D in the decade of vaccines: breakthroughs, challenges and opportunities. Vaccine. 2013;31:233–43.CrossRef Birkett AJ, Moorthy VS, Loucq C, Chitnis CE, Kaslow DC. Malaria vaccine R&D in the decade of vaccines: breakthroughs, challenges and opportunities. Vaccine. 2013;31:233–43.CrossRef
6.
go back to reference Ogutu BR, Apollo OJ, McKinney D, Okoth W, Siangla J, Dubovsky F, et al. Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya. PLoS ONE. 2009;4(3):4708.CrossRef Ogutu BR, Apollo OJ, McKinney D, Okoth W, Siangla J, Dubovsky F, et al. Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya. PLoS ONE. 2009;4(3):4708.CrossRef
7.
go back to reference Beeson JG, Osier FH, Engwerda CR. Recent insights into humoral and cellular immune responses against malaria. Trends Parasitol. 2008;24:578–84.CrossRefPubMed Beeson JG, Osier FH, Engwerda CR. Recent insights into humoral and cellular immune responses against malaria. Trends Parasitol. 2008;24:578–84.CrossRefPubMed
8.
go back to reference Baird JK. Host age as a determinant of naturally acquired immunity to Plasmodium falciparum. Parasitol Today. 1995;11:105–11.CrossRefPubMed Baird JK. Host age as a determinant of naturally acquired immunity to Plasmodium falciparum. Parasitol Today. 1995;11:105–11.CrossRefPubMed
9.
go back to reference Malaguarnera L, Musumeci S. The immune response to Plasmodium falciparum malaria. Lancet Infect Dis. 2002;2:472–8.CrossRefPubMed Malaguarnera L, Musumeci S. The immune response to Plasmodium falciparum malaria. Lancet Infect Dis. 2002;2:472–8.CrossRefPubMed
10.
go back to reference Stanisic DI, Good MF. Examining cellular immune responses to inform development of a blood-stage malaria vaccine. Parasitology. 2016;143:208–23.CrossRefPubMed Stanisic DI, Good MF. Examining cellular immune responses to inform development of a blood-stage malaria vaccine. Parasitology. 2016;143:208–23.CrossRefPubMed
11.
go back to reference McCall MBB, Sauerwein RW. Interferon-γ–central mediator of protective immune responses against the pre-erythrocytic and blood stage of malaria. J Leukoc Biol. 2010;88:1131–43.CrossRefPubMed McCall MBB, Sauerwein RW. Interferon-γ–central mediator of protective immune responses against the pre-erythrocytic and blood stage of malaria. J Leukoc Biol. 2010;88:1131–43.CrossRefPubMed
13.
go back to reference da Silva HB, de Salles EM, Panatieri RH, Boscardin SB, Rodríguez-Málaga M, Álvarez JM, et al. IFN-γ—induced priming maintains long-term strain-transcending immunity against blood-stage Plasmodium chabaudi malaria. J Immunol. 2013;191:5160–9.CrossRefPubMed da Silva HB, de Salles EM, Panatieri RH, Boscardin SB, Rodríguez-Málaga M, Álvarez JM, et al. IFN-γ—induced priming maintains long-term strain-transcending immunity against blood-stage Plasmodium chabaudi malaria. J Immunol. 2013;191:5160–9.CrossRefPubMed
14.
go back to reference McCall MB, Hopman J, Daou M, Maiga B, Dara V, Ploemen I, et al. Early interferon-gamma response against Plasmodium falciparum correlates with interethnic differences in susceptibility to parasitemia between sympatric Fulani and Dogon in Mali. J Infect Dis. 2010;201:142–52.CrossRefPubMed McCall MB, Hopman J, Daou M, Maiga B, Dara V, Ploemen I, et al. Early interferon-gamma response against Plasmodium falciparum correlates with interethnic differences in susceptibility to parasitemia between sympatric Fulani and Dogon in Mali. J Infect Dis. 2010;201:142–52.CrossRefPubMed
15.
go back to reference Bueno LL, Lobo FP, Morais CG, Mourao LC, De Avila RA, Soares IS, et al. Identification of a highly antigenic linear B cell epitope within Plasmodium vivax apical membrane antigen 1 (AMA-1). PLoS ONE. 2011;6:e21289.CrossRefPubMedPubMedCentral Bueno LL, Lobo FP, Morais CG, Mourao LC, De Avila RA, Soares IS, et al. Identification of a highly antigenic linear B cell epitope within Plasmodium vivax apical membrane antigen 1 (AMA-1). PLoS ONE. 2011;6:e21289.CrossRefPubMedPubMedCentral
16.
go back to reference Cech PG, Aebi T, Abdallah MS, Mpina M, Machunda EB, Westerfeld N, et al. Virosome-formulated Plasmodium falciparum AMA-1 and CSP derived peptides as malaria vaccine: randomized phase 1b trial in semi-immune adults and children. PLoS ONE. 2011;6:e22273.CrossRefPubMedPubMedCentral Cech PG, Aebi T, Abdallah MS, Mpina M, Machunda EB, Westerfeld N, et al. Virosome-formulated Plasmodium falciparum AMA-1 and CSP derived peptides as malaria vaccine: randomized phase 1b trial in semi-immune adults and children. PLoS ONE. 2011;6:e22273.CrossRefPubMedPubMedCentral
17.
go back to reference Ord RL, Caldeira JC, Rodriguez M, Noe A, Chackerian B, Peabody DS, et al. A malaria vaccine candidate based on an epitope of the Plasmodium falciparum RH5 protein. Malar J. 2014;13:326.CrossRefPubMedPubMedCentral Ord RL, Caldeira JC, Rodriguez M, Noe A, Chackerian B, Peabody DS, et al. A malaria vaccine candidate based on an epitope of the Plasmodium falciparum RH5 protein. Malar J. 2014;13:326.CrossRefPubMedPubMedCentral
18.
go back to reference Armistead JS, Morlais I, Mathias DK, Jardim JG, Joy J, Fridman A, et al. Antibodies to a single, conserved epitope in Anopheles APN1 inhibit universal transmission of Plasmodium falciparum and Plasmodium vivax malaria. Infect Immun. 2014;82:818–29.CrossRefPubMedPubMedCentral Armistead JS, Morlais I, Mathias DK, Jardim JG, Joy J, Fridman A, et al. Antibodies to a single, conserved epitope in Anopheles APN1 inhibit universal transmission of Plasmodium falciparum and Plasmodium vivax malaria. Infect Immun. 2014;82:818–29.CrossRefPubMedPubMedCentral
19.
go back to reference Wickramarachchi T, Devi YS, Mohmmed A, Chauhan VS. Identification and characterization of a novel Plasmodium falciparum merozoite apical protein involved in erythrocyte binding and invasion. PLoS ONE. 2008;3:e1732.CrossRefPubMedPubMedCentral Wickramarachchi T, Devi YS, Mohmmed A, Chauhan VS. Identification and characterization of a novel Plasmodium falciparum merozoite apical protein involved in erythrocyte binding and invasion. PLoS ONE. 2008;3:e1732.CrossRefPubMedPubMedCentral
23.
go back to reference Merrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc. 1963;85:2149–54.CrossRef Merrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc. 1963;85:2149–54.CrossRef
24.
go back to reference Favaloro JM, Coppel RL, Corcoran LM, Foote SJ, Brown GV, Anders RF, Kemp DJ. Structure of the RESA gene of Plasmodium falciparum. Nucl Acids Res. 1986;14:8265–77.CrossRefPubMedPubMedCentral Favaloro JM, Coppel RL, Corcoran LM, Foote SJ, Brown GV, Anders RF, Kemp DJ. Structure of the RESA gene of Plasmodium falciparum. Nucl Acids Res. 1986;14:8265–77.CrossRefPubMedPubMedCentral
25.
go back to reference Ossorio PN, Schwartzman JD, Boothroyd JC. A Toxoplasma gondii rhoptry protein associated with host cell penetration has unusual charge asymmetry. Mol Biochem Parasitol. 1992;50:1–15.CrossRefPubMed Ossorio PN, Schwartzman JD, Boothroyd JC. A Toxoplasma gondii rhoptry protein associated with host cell penetration has unusual charge asymmetry. Mol Biochem Parasitol. 1992;50:1–15.CrossRefPubMed
26.
go back to reference Dudley A, McKinstry W, Thomas D, Best J, Jenkins A. Removal of endotoxin by reverse phase HPLC abolishes anti-endothelial cell activity of bacterially expressed plasminogen kringle 5. Biotechniques. 2003;35:724–32.PubMed Dudley A, McKinstry W, Thomas D, Best J, Jenkins A. Removal of endotoxin by reverse phase HPLC abolishes anti-endothelial cell activity of bacterially expressed plasminogen kringle 5. Biotechniques. 2003;35:724–32.PubMed
27.
go back to reference Stanisic DI, Barry AE, Good MF. Escaping the immune system: how the malaria parasite makes vaccine development a challenge. Trends Parasitol. 2013;29:612–22.CrossRefPubMed Stanisic DI, Barry AE, Good MF. Escaping the immune system: how the malaria parasite makes vaccine development a challenge. Trends Parasitol. 2013;29:612–22.CrossRefPubMed
28.
go back to reference Xiao Y, Hendriks J, Langerak P, Jacobs H, Borst J. CD27 is acquired by primed B cells at the centroblast stage and promotes germinal center formation. J Immunol. 2004;172:7432–41.CrossRefPubMed Xiao Y, Hendriks J, Langerak P, Jacobs H, Borst J. CD27 is acquired by primed B cells at the centroblast stage and promotes germinal center formation. J Immunol. 2004;172:7432–41.CrossRefPubMed
29.
go back to reference Walker KM, Okitsu S, Porter DW, Duncan C, Amacker M, Pluschke G, et al. Antibody and T-cell responses associated with experimental human malaria infection or vaccination show limited relationships. Immunology. 2015;145:71–81.CrossRefPubMedPubMedCentral Walker KM, Okitsu S, Porter DW, Duncan C, Amacker M, Pluschke G, et al. Antibody and T-cell responses associated with experimental human malaria infection or vaccination show limited relationships. Immunology. 2015;145:71–81.CrossRefPubMedPubMedCentral
30.
go back to reference Alaro JR, Angov E, Lopez AM, Zhou H, Long CA, Burns JM. Evaluation of the immunogenicity and vaccine potential of recombinant Plasmodium falciparum merozoite surface protein 8. Infect Immun. 2012;80:2473–84.CrossRefPubMedPubMedCentral Alaro JR, Angov E, Lopez AM, Zhou H, Long CA, Burns JM. Evaluation of the immunogenicity and vaccine potential of recombinant Plasmodium falciparum merozoite surface protein 8. Infect Immun. 2012;80:2473–84.CrossRefPubMedPubMedCentral
31.
go back to reference Bergmann-Leitner ES, Chaudhury S, Steers NJ, Sabato M, Delvecchio V, Wallqvist AS, et al. Computational and experimental validation of B and T-cell epitopes of the in vivo immune response to a novel malarial antigen. PLoS ONE. 2013;8:e71610.CrossRefPubMedPubMedCentral Bergmann-Leitner ES, Chaudhury S, Steers NJ, Sabato M, Delvecchio V, Wallqvist AS, et al. Computational and experimental validation of B and T-cell epitopes of the in vivo immune response to a novel malarial antigen. PLoS ONE. 2013;8:e71610.CrossRefPubMedPubMedCentral
32.
go back to reference Longley RJ, Halbroth BR, Ewer KJ, Hill AVS, Spencer AJ. Identification of immunodominant responses to the Plasmodium falciparum antigens PfUIS3, PfLSA1 and PfLSAP2 in multiple strains of mice. PLoS ONE. 2015;10:e0144515.CrossRefPubMedPubMedCentral Longley RJ, Halbroth BR, Ewer KJ, Hill AVS, Spencer AJ. Identification of immunodominant responses to the Plasmodium falciparum antigens PfUIS3, PfLSA1 and PfLSAP2 in multiple strains of mice. PLoS ONE. 2015;10:e0144515.CrossRefPubMedPubMedCentral
33.
go back to reference Bhatti AR, Micusan VV. Production and characterization of anti-peptide monoclonal antibodies with specificity for Staphylococcal enterotoxins A and B. J Microbiol Methods. 1999;35:143–9.CrossRefPubMed Bhatti AR, Micusan VV. Production and characterization of anti-peptide monoclonal antibodies with specificity for Staphylococcal enterotoxins A and B. J Microbiol Methods. 1999;35:143–9.CrossRefPubMed
34.
go back to reference Irving MB, Pan O, Scott JK. Random-peptide libraries and antigen-fragment libraries for epitope mapping and the development of vaccines and diagnostics. Curr Opin Chem Biol. 2001;5:314–24.CrossRefPubMed Irving MB, Pan O, Scott JK. Random-peptide libraries and antigen-fragment libraries for epitope mapping and the development of vaccines and diagnostics. Curr Opin Chem Biol. 2001;5:314–24.CrossRefPubMed
35.
go back to reference Rux J. Type-specific epitope locations revealed by X-ray crystallographic study of Adenovirus type 5 hexon. Mol Ther. 2000;1:18–30.CrossRefPubMed Rux J. Type-specific epitope locations revealed by X-ray crystallographic study of Adenovirus type 5 hexon. Mol Ther. 2000;1:18–30.CrossRefPubMed
36.
go back to reference Mayer M, Meyer B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc. 2001;123:6108–17.CrossRefPubMed Mayer M, Meyer B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc. 2001;123:6108–17.CrossRefPubMed
37.
go back to reference Ghasparian A, Moehle K, Linden A, Robinson JA. Crystal structure of an NPNA-repeat motif from the circumsporozoite protein of the malaria parasite Plasmodium falciparum. Chem Commun (Camb). 2006;3:174–6.CrossRef Ghasparian A, Moehle K, Linden A, Robinson JA. Crystal structure of an NPNA-repeat motif from the circumsporozoite protein of the malaria parasite Plasmodium falciparum. Chem Commun (Camb). 2006;3:174–6.CrossRef
38.
go back to reference Sharma P, Kumar A, Singh B, Bharadwaj A, Sailaja VN, Adak T, et al. Characterization of protective epitopes in a highly conserved Plasmodium falciparum antigenic protein containing repeats of acidic and basic residues. Infect Immun. 1998;66:2895–904.PubMedPubMedCentral Sharma P, Kumar A, Singh B, Bharadwaj A, Sailaja VN, Adak T, et al. Characterization of protective epitopes in a highly conserved Plasmodium falciparum antigenic protein containing repeats of acidic and basic residues. Infect Immun. 1998;66:2895–904.PubMedPubMedCentral
39.
go back to reference Yagi M, Bang G, Tougan T, Palacpac NMQ, Arisue N, Aoshi T, et al. Protective epitopes of the Plasmodium falciparum SERA5 malaria vaccine reside in intrinsically unstructured N-terminal repetitive sequences. PLoS ONE. 2014;9:e98460.CrossRefPubMedPubMedCentral Yagi M, Bang G, Tougan T, Palacpac NMQ, Arisue N, Aoshi T, et al. Protective epitopes of the Plasmodium falciparum SERA5 malaria vaccine reside in intrinsically unstructured N-terminal repetitive sequences. PLoS ONE. 2014;9:e98460.CrossRefPubMedPubMedCentral
40.
go back to reference Mueller MS, Renard A, Boato F, Vogel D, Naegeli M, Zurbriggen R, et al. Induction of parasite growth-inhibitory antibodies by a virosomal formulation of a peptidomimetic of loop I from domain III of Plasmodium falciparum apical membrane antigen 1. Infect Immun. 2003;71:4749–58.CrossRefPubMedPubMedCentral Mueller MS, Renard A, Boato F, Vogel D, Naegeli M, Zurbriggen R, et al. Induction of parasite growth-inhibitory antibodies by a virosomal formulation of a peptidomimetic of loop I from domain III of Plasmodium falciparum apical membrane antigen 1. Infect Immun. 2003;71:4749–58.CrossRefPubMedPubMedCentral
41.
go back to reference Balam S, Olugbile S, Servis C, Diakité M, D’Alessandro A, Frank G, et al. Plasmodium falciparum merozoite surface protein 2: epitope mapping and fine specificity of human antibody response against non-polymorphic domains. Malar J. 2014;13:510.CrossRefPubMedPubMedCentral Balam S, Olugbile S, Servis C, Diakité M, D’Alessandro A, Frank G, et al. Plasmodium falciparum merozoite surface protein 2: epitope mapping and fine specificity of human antibody response against non-polymorphic domains. Malar J. 2014;13:510.CrossRefPubMedPubMedCentral
Metadata
Title
Characterization of fine specificity of the immune response to a Plasmodium falciparum rhoptry neck protein, PfAARP
Authors
Aakanksha Kalra
Paushali Mukherjee
Virander S. Chauhan
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2016
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-016-1510-4

Other articles of this Issue 1/2016

Malaria Journal 1/2016 Go to the issue