Skip to main content
Top
Published in: Malaria Journal 1/2016

Open Access 01-12-2016 | Research

Phagocytosis-inducing antibodies to Plasmodium falciparum upon immunization with a recombinant PfEMP1 NTS-DBL1α domain

Authors: Maria del Pilar Quintana, Davide Angeletti, Kirsten Moll, Qijun Chen, Mats Wahlgren

Published in: Malaria Journal | Issue 1/2016

Login to get access

Abstract

Background

Individuals living in endemic areas gradually acquire natural immunity to clinical malaria, largely dependent on antibodies against parasite antigens. There are many studies indicating that the variant antigen PfEMP1 at the surface of the parasitized red blood cell (pRBC) is one of the major targets of the immune response. It is believed that antibodies against PfEMP1 confer protection by blocking sequestration (rosetting and cytoadherence), inducing antibody-dependent cellular-inhibitory effect and opsonizing pRBCs for phagocytosis.

Methods

A recombinant NTS-DBL1α domain from a rosette-mediating PfEMP1 was expressed in Escherichia coli. The resulting protein was purified and used for immunization to generate polyclonal (goat) and monoclonal (mouse) antibodies. The antibodies’ ability to opsonize and induce phagocytosis in vitro was tested and contrasted with the presence of opsonizing antibodies naturally acquired during Plasmodium falciparum infection.

Results

All antibodies recognized the recombinant antigen and the surface of live pRBCs, however, their capacity to opsonize the pRBCs for phagocytosis varied. The monoclonal antibodies isotyped as IgG2b did not induce phagocytosis, while those isotyped as IgG2a were in general very effective, inducing phagocytosis with similar levels as those naturally acquired during P. falciparum infection. These monoclonal antibodies displayed different patterns, some of them showing a concentration-dependent activity while others showed a prozone-like effect. The goat polyclonal antibodies were not able to induce phagocytosis.

Conclusion

Immunization with an NTS-DBL1-α domain of PfEMP1 generates antibodies that not only have a biological role in rosette disruption but also effectively induce opsonization for phagocytosis of pRBCs with similar activity to naturally acquired antibodies from immune individuals living in a malaria endemic area. Some of the antibodies with high opsonizing activity were not able to disrupt rosettes, indicating that epitopes of the NTS-DBL1-α other than those involved in rosetting are exposed on the pRBC surface and are able to induce functional antibodies. The ability to induce phagocytosis largely depended on the antibody isotype and on the ability to recognize the surface of the pRBC regardless of the rosette-disrupting capacity.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. World malaria report 2015. Geneva: World Health Organization; 2015. WHO. World malaria report 2015. Geneva: World Health Organization; 2015.
2.
go back to reference Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-Taylor DE, Peterson DS, et al. Switches in expression of Plasmodium falciparum VW genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell. 1995;82:101–10.CrossRefPubMedPubMedCentral Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-Taylor DE, Peterson DS, et al. Switches in expression of Plasmodium falciparum VW genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell. 1995;82:101–10.CrossRefPubMedPubMedCentral
3.
go back to reference Su XZ, Heatwole VM, Wertheimer SP, Guinet F, Herrfeldt JA, Peterson DS, et al. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell. 1995;82:89–100.CrossRefPubMed Su XZ, Heatwole VM, Wertheimer SP, Guinet F, Herrfeldt JA, Peterson DS, et al. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell. 1995;82:89–100.CrossRefPubMed
4.
go back to reference Baruch DI, Pasloske BL, Singh HB, Bi X, Ma XC, Feldman M, et al. Cloning the P. falciparum gene encoding PfEMPl, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell. 1995;82:77–87.CrossRefPubMed Baruch DI, Pasloske BL, Singh HB, Bi X, Ma XC, Feldman M, et al. Cloning the P. falciparum gene encoding PfEMPl, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell. 1995;82:77–87.CrossRefPubMed
5.
go back to reference Smith JD, Subramanian G, Gamain B, Baruch DI, Miller LH. Classification of adhesive domains in the Plasmodium falciparum erythrocyte membrane protein 1 family. Mol Biochem Parasitol. 2000;110:293–310.CrossRefPubMed Smith JD, Subramanian G, Gamain B, Baruch DI, Miller LH. Classification of adhesive domains in the Plasmodium falciparum erythrocyte membrane protein 1 family. Mol Biochem Parasitol. 2000;110:293–310.CrossRefPubMed
7.
go back to reference Turner GDH, Morrison H, Jones M, Davis TME, Looareesuwan S, Buley ID, et al. An immunohistochemical study of the pathology of fatal malaria evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am J Pathol. 1994;145:1057–69.PubMedPubMedCentral Turner GDH, Morrison H, Jones M, Davis TME, Looareesuwan S, Buley ID, et al. An immunohistochemical study of the pathology of fatal malaria evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am J Pathol. 1994;145:1057–69.PubMedPubMedCentral
8.
go back to reference Silamut K, Phu NH, Whitty C, Turner GD, Louwrier K, Mai NT, et al. A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. Am J Pathol. 1999;155:395–410.CrossRefPubMedPubMedCentral Silamut K, Phu NH, Whitty C, Turner GD, Louwrier K, Mai NT, et al. A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. Am J Pathol. 1999;155:395–410.CrossRefPubMedPubMedCentral
9.
10.
go back to reference Kraemer SM, Kyes SA, Aggarwal G, Springer AL, Nelson SO, Christodoulou Z, et al. Patterns of gene recombination shape var gene repertoires in Plasmodium falciparum: comparisons of geographically diverse isolates. BMC Genom. 2007;8:45.CrossRef Kraemer SM, Kyes SA, Aggarwal G, Springer AL, Nelson SO, Christodoulou Z, et al. Patterns of gene recombination shape var gene repertoires in Plasmodium falciparum: comparisons of geographically diverse isolates. BMC Genom. 2007;8:45.CrossRef
11.
go back to reference Rowe JA, Moulds JM, Newbold CI, Miller LH. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature. 1997;388:292–5.CrossRefPubMed Rowe JA, Moulds JM, Newbold CI, Miller LH. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature. 1997;388:292–5.CrossRefPubMed
12.
go back to reference Chen Q, Barragan A, Fernandez V, Sundström A, Schlichtherle M, Sahlén A, et al. Identification of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) as the rosetting ligand of the malaria parasite P. falciparum. J Exp Med. 1998;187:15–23.CrossRefPubMedPubMedCentral Chen Q, Barragan A, Fernandez V, Sundström A, Schlichtherle M, Sahlén A, et al. Identification of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) as the rosetting ligand of the malaria parasite P. falciparum. J Exp Med. 1998;187:15–23.CrossRefPubMedPubMedCentral
13.
go back to reference Chen Q, Heddini A, Barragan A, Fernandez V, Pearce SFA, Wahlgren M. The semiconserved head structure of Plasmodium falciparum erythrocyte membrane protein 1 mediates binding to multiple independent host receptors. J Exp Med. 2000;192:1–9.CrossRefPubMedPubMedCentral Chen Q, Heddini A, Barragan A, Fernandez V, Pearce SFA, Wahlgren M. The semiconserved head structure of Plasmodium falciparum erythrocyte membrane protein 1 mediates binding to multiple independent host receptors. J Exp Med. 2000;192:1–9.CrossRefPubMedPubMedCentral
14.
go back to reference Trape J-F, Rogier C, Konate L, Diagne N, Bouganali H, Canque B, et al. The Dielmo project: a longitudinal study of natural malaria infection and the mechanics of protective immunity in a community living in a holoendemic area of Senegal. Am J Trop Med Hyg. 1994;51:123–37.PubMed Trape J-F, Rogier C, Konate L, Diagne N, Bouganali H, Canque B, et al. The Dielmo project: a longitudinal study of natural malaria infection and the mechanics of protective immunity in a community living in a holoendemic area of Senegal. Am J Trop Med Hyg. 1994;51:123–37.PubMed
15.
go back to reference Cohen S, McGregor IA, Carrington S. Gamma-globulin and acquired immunity to human malaria. Nature. 1961;92:733–7.CrossRef Cohen S, McGregor IA, Carrington S. Gamma-globulin and acquired immunity to human malaria. Nature. 1961;92:733–7.CrossRef
16.
go back to reference Marsh K, Otoo L, Hayes RJ, Carson DC, Greenwood BM. Antibodies to blood stage antigens of Plasmodium falciparum in rural Gambians and their relation to protection against infection. Trans R Soc Trop Med Hyg. 1989;83:293–303.CrossRefPubMed Marsh K, Otoo L, Hayes RJ, Carson DC, Greenwood BM. Antibodies to blood stage antigens of Plasmodium falciparum in rural Gambians and their relation to protection against infection. Trans R Soc Trop Med Hyg. 1989;83:293–303.CrossRefPubMed
17.
go back to reference Bull PC, Lowe BS, Kortok M, Molyneux CS, Newbold CI, Marsh K. Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nat Med. 1998;4:358–60.CrossRefPubMedPubMedCentral Bull PC, Lowe BS, Kortok M, Molyneux CS, Newbold CI, Marsh K. Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nat Med. 1998;4:358–60.CrossRefPubMedPubMedCentral
18.
go back to reference Ofori MF, Dodoo D, Staalsoe T, Kurtzhals JAL, Koram K, Theander TG, et al. Malaria-induced acquisition of antibodies to Plasmodium falciparum variant surface antigens. Infect Immun. 2002;70:2982–8.CrossRefPubMedPubMedCentral Ofori MF, Dodoo D, Staalsoe T, Kurtzhals JAL, Koram K, Theander TG, et al. Malaria-induced acquisition of antibodies to Plasmodium falciparum variant surface antigens. Infect Immun. 2002;70:2982–8.CrossRefPubMedPubMedCentral
19.
go back to reference Kinyanjui SM, Bull P, Newbold CI, Marsh K. Kinetics of antibody responses to Plasmodium falciparum-infected erythrocyte variant surface antigens. J Infect Dis. 2003;187:667–74.CrossRefPubMed Kinyanjui SM, Bull P, Newbold CI, Marsh K. Kinetics of antibody responses to Plasmodium falciparum-infected erythrocyte variant surface antigens. J Infect Dis. 2003;187:667–74.CrossRefPubMed
20.
go back to reference Chan J-A, Howell KB, Reiling L, Ataide R, Mackintosh CL, Fowkes FJI, et al. Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria immunity. J Clin Invest. 2012;122:3227–38.CrossRefPubMedPubMedCentral Chan J-A, Howell KB, Reiling L, Ataide R, Mackintosh CL, Fowkes FJI, et al. Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria immunity. J Clin Invest. 2012;122:3227–38.CrossRefPubMedPubMedCentral
21.
go back to reference Baruch DI, Gamain B, Barnwell JW, Sullivan JS, Stowers A, Galland GG, et al. Immunization of Aotus monkeys with a functional domain of the Plasmodium falciparum variant antigen induces protection against a lethal parasite line. Proc Natl Acad Sci USA. 2002;99:3860–5.CrossRefPubMedPubMedCentral Baruch DI, Gamain B, Barnwell JW, Sullivan JS, Stowers A, Galland GG, et al. Immunization of Aotus monkeys with a functional domain of the Plasmodium falciparum variant antigen induces protection against a lethal parasite line. Proc Natl Acad Sci USA. 2002;99:3860–5.CrossRefPubMedPubMedCentral
24.
go back to reference Angeletti D, Albrecht L, Wahlgren M, Moll K. Analysis of antibody induction upon immunization with distinct NTS-DBL1α-domains of PfEMP1 from rosetting Plasmodium falciparum parasites. Malar J. 2013;12:32.CrossRefPubMedPubMedCentral Angeletti D, Albrecht L, Wahlgren M, Moll K. Analysis of antibody induction upon immunization with distinct NTS-DBL1α-domains of PfEMP1 from rosetting Plasmodium falciparum parasites. Malar J. 2013;12:32.CrossRefPubMedPubMedCentral
25.
go back to reference Angeletti D, Albrecht L, Blomqvist K, Quintana MDP, Akhter T, Bächle SM, et al. Plasmodium falciparum Rosetting epitopes converge in the SD3-loop of PfEMP1-DBL1α. PLoS ONE. 2012. doi:10.1371/journal.pone.0050758. Angeletti D, Albrecht L, Blomqvist K, Quintana MDP, Akhter T, Bächle SM, et al. Plasmodium falciparum Rosetting epitopes converge in the SD3-loop of PfEMP1-DBL1α. PLoS ONE. 2012. doi:10.​1371/​journal.​pone.​0050758.
27.
go back to reference Albrecht L, Moll K, Blomqvist K, Normark J, Chen Q, Wahlgren M. var gene transcription and PfEMP1 expression in the rosetting and cytoadhesive Plasmodium falciparum clone FCR3S1.2. Malar J. 2011;10:17.CrossRefPubMedPubMedCentral Albrecht L, Moll K, Blomqvist K, Normark J, Chen Q, Wahlgren M. var gene transcription and PfEMP1 expression in the rosetting and cytoadhesive Plasmodium falciparum clone FCR3S1.2. Malar J. 2011;10:17.CrossRefPubMedPubMedCentral
28.
go back to reference Blomqvist K, Albrecht L, Quintana MDP, Angeletti D, Joannin N, Chêne A, et al. A sequence in subdomain 2 of DBL1α of Plasmodium falciparum erythrocyte membrane protein 1 induces strain transcending antibodies. PLoS ONE. 2013;8:e52679.CrossRefPubMedPubMedCentral Blomqvist K, Albrecht L, Quintana MDP, Angeletti D, Joannin N, Chêne A, et al. A sequence in subdomain 2 of DBL1α of Plasmodium falciparum erythrocyte membrane protein 1 induces strain transcending antibodies. PLoS ONE. 2013;8:e52679.CrossRefPubMedPubMedCentral
29.
go back to reference Treutiger C-J, Hedlund I, Helmby H, Carlson J, Jepson A, Twumasi P, et al. Rosette formation in Plasmodium falciparum isolates and anti-rosette activity of sera from Gambians with cerebral or uncomplicated malaria. Am J Trop Med Hyg. 1992;46:503–10.PubMed Treutiger C-J, Hedlund I, Helmby H, Carlson J, Jepson A, Twumasi P, et al. Rosette formation in Plasmodium falciparum isolates and anti-rosette activity of sera from Gambians with cerebral or uncomplicated malaria. Am J Trop Med Hyg. 1992;46:503–10.PubMed
30.
go back to reference Fleit HB, Kobasiuk CD. The human monocyte-like cell line THP-1 expresses FcyRl and FcyRIl. J Leukoc Biol. 1991;49:556–65.PubMed Fleit HB, Kobasiuk CD. The human monocyte-like cell line THP-1 expresses FcyRl and FcyRIl. J Leukoc Biol. 1991;49:556–65.PubMed
31.
go back to reference Auwerx J, Staels B, Van Vaeck F, Ceuppens JL. Changes in IgG Fc receptor expression induced by phorbol 12-myristate 13-acetate treatment of THP-1 monocytic leukemia cells. Leuk Res. 1992;16:317–27.CrossRefPubMed Auwerx J, Staels B, Van Vaeck F, Ceuppens JL. Changes in IgG Fc receptor expression induced by phorbol 12-myristate 13-acetate treatment of THP-1 monocytic leukemia cells. Leuk Res. 1992;16:317–27.CrossRefPubMed
32.
go back to reference Daigneault M, Preston JA, Marriott HM, Whyte MKB, Dockrell DH. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS ONE. 2010;5:e8668.CrossRefPubMedPubMedCentral Daigneault M, Preston JA, Marriott HM, Whyte MKB, Dockrell DH. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS ONE. 2010;5:e8668.CrossRefPubMedPubMedCentral
33.
go back to reference Unkeless JC, Scigliano E, Freedman VH. Structure and function of human and murine receptors for IgG. Annu Rev Immunol. 1988;6:251–81.CrossRefPubMed Unkeless JC, Scigliano E, Freedman VH. Structure and function of human and murine receptors for IgG. Annu Rev Immunol. 1988;6:251–81.CrossRefPubMed
35.
go back to reference Alexander EL, Sanders SK. F(ab’)2 reagents are not required ig goat, rather than rabbit, antibodies are used to detect human surface immunoglobulin. J Immunol. 1977;119:1084–8.PubMed Alexander EL, Sanders SK. F(ab’)2 reagents are not required ig goat, rather than rabbit, antibodies are used to detect human surface immunoglobulin. J Immunol. 1977;119:1084–8.PubMed
36.
go back to reference Celada A, Cruchaud A, Perrin LH. Opsonic activity of human immune serum on in vitro phagocytosis of Plasmodium falciparum infected red blood cells by monocytes. Clin Exp Immunol. 1982;47:635–44.PubMedPubMedCentral Celada A, Cruchaud A, Perrin LH. Opsonic activity of human immune serum on in vitro phagocytosis of Plasmodium falciparum infected red blood cells by monocytes. Clin Exp Immunol. 1982;47:635–44.PubMedPubMedCentral
37.
go back to reference Groux H, Gysin J. Opsonization as an effector mechanism in human protection against asexual blood stages of Plasmodium falciparum: functional role of IgG subclasses. Res Immunol. 1990;141:529–42.CrossRefPubMed Groux H, Gysin J. Opsonization as an effector mechanism in human protection against asexual blood stages of Plasmodium falciparum: functional role of IgG subclasses. Res Immunol. 1990;141:529–42.CrossRefPubMed
38.
go back to reference Abdel-Latif MS, Khattab A, Kremsner PG, Klinkert M-Q, Lindenthal C. Recognition of variant Rifin antigens by human antibodies induced during natural Plasmodium falciparum infections. Infect Immun. 2002;70:7013–21.CrossRefPubMedPubMedCentral Abdel-Latif MS, Khattab A, Kremsner PG, Klinkert M-Q, Lindenthal C. Recognition of variant Rifin antigens by human antibodies induced during natural Plasmodium falciparum infections. Infect Immun. 2002;70:7013–21.CrossRefPubMedPubMedCentral
39.
go back to reference Abdel-Latif MS, Cabrera G, Köhler C, Kremsner PG, Luty AJF. Antibodies to Rifin: a component of naturally acquired responses to Plasmodium falciparum variant surface antigens on infected erythrocytes. Am J Trop Med Hyg. 2004;71:179–86.PubMed Abdel-Latif MS, Cabrera G, Köhler C, Kremsner PG, Luty AJF. Antibodies to Rifin: a component of naturally acquired responses to Plasmodium falciparum variant surface antigens on infected erythrocytes. Am J Trop Med Hyg. 2004;71:179–86.PubMed
40.
go back to reference Kaewthamasorn M, Yahata K, Alexandre JSF, Xangsayarath P, Nakazawa S, Torii M, et al. Stable allele frequency distribution of the polymorphic region of SURFIN(4.2) in Plasmodium falciparum isolates from Thailand. Parasitol Int. 2012;61:317–23.CrossRefPubMed Kaewthamasorn M, Yahata K, Alexandre JSF, Xangsayarath P, Nakazawa S, Torii M, et al. Stable allele frequency distribution of the polymorphic region of SURFIN(4.2) in Plasmodium falciparum isolates from Thailand. Parasitol Int. 2012;61:317–23.CrossRefPubMed
41.
go back to reference Osier FH, Feng G, Boyle MJ, Langer C, Zhou J, Richards JS, et al. Opsonic phagocytosis of Plasmodium falciparum merozoites: mechanism in human immunity and a correlate of protection against malaria. BMC Med. 2014;12:108.CrossRefPubMedPubMedCentral Osier FH, Feng G, Boyle MJ, Langer C, Zhou J, Richards JS, et al. Opsonic phagocytosis of Plasmodium falciparum merozoites: mechanism in human immunity and a correlate of protection against malaria. BMC Med. 2014;12:108.CrossRefPubMedPubMedCentral
Metadata
Title
Phagocytosis-inducing antibodies to Plasmodium falciparum upon immunization with a recombinant PfEMP1 NTS-DBL1α domain
Authors
Maria del Pilar Quintana
Davide Angeletti
Kirsten Moll
Qijun Chen
Mats Wahlgren
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2016
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-016-1459-3

Other articles of this Issue 1/2016

Malaria Journal 1/2016 Go to the issue