Skip to main content
Top
Published in: Malaria Journal 1/2016

Open Access 01-12-2016 | Research

Determination of the foraging behaviour and blood meal source of malaria vector mosquitoes in Trincomalee District of Sri Lanka using a multiplex real time polymerase chain reaction assay

Authors: Nayana Gunathilaka, Thanuja Denipitiya, Menaka Hapugoda, Wimaladharma Abeyewickreme, Rajitha Wickremasinghe

Published in: Malaria Journal | Issue 1/2016

Login to get access

Abstract

Background

Studies of host preference patterns in blood-feeding anopheline mosquitoes are crucial to incriminating malaria vectors. However, little information is available on host preferences of Anopheles mosquitoes in Sri Lanka.

Methods

Adult Anopheles mosquitoes were collected from five selected sentinel sites in Trincomalee District during June–September 2011. Each blood-fed mosquito was processed on filter papers. DNA was extracted using the dried blood meal protocol of the QIAmp DNA mini kit. A multiplexed, real-time PCR assay targeting eight animals was developed for two panels to identify the host meal of Anopheles. Human blood index (HBI), forage ratio (FR) and host feeding index (HFI) were calculated.

Results

A total of 280 field-caught, freshly engorged female mosquitoes belonging to 12 anopheline species were analysed. The overall HBI and HFI in the present study were low indicating that humans were not the preferred host for the tested anopheline species. Nevertheless, a small proportion engorged Anopheles aconitus, Anopheles culicifacies, Anopheles barbirostris, Anopheles annularis, Anopheles subpictus, Anopheles peditaeniatus, Anopheles pseudojamesi, and Anopheles barbumbrosus contained human blood.

Conclusion

The presence of human blood in mosquito species indicates the possibility of them transmitting malaria. Further studies on vector competence are needed to determine the role of each of the above anopheline species as efficient vectors of malaria.

Literature
  1. Premaratne R, Ortega L, Janakan N, Mendis KN. Malaria elimination in Sri Lanka: what it would take to reach the goal. South East Asian J Public Health. 2014;3:85–9.
  2. Abeyasinghe RR, Galappaththy GNL, Gueye CS, Kahn JG, Feachem RGA. Malaria control and elimination in Sri Lanka: documenting progress and success factors in a conflict setting. PLoS One. 2012;7:e43162.View ArticlePubMedPubMed Central
  3. Gunathilaka N, Abeyewickreme W, Hapugoda M, Wickremasinhe R. Species composition, breeding habitat diversity and habitat characterization of malaria vector breeding habitats in Trincomalee District of Sri Lanka. Biomed Res Int. 2015;2015:823810. doi:10.​1155/​2015/​823810.View ArticlePubMedPubMed Central
  4. Amarasinghe PH, Amarasinghe FP, Kondadsen F, Fonseka KP, Wirtz RA. Malaria vectors in a traditional dry zone village in Sri Lanka. Amer J Trop Med Hyg. 2001;60:421–9.
  5. Gunathilaka N, Hapugoda M, Abeyewickreme W, Wickremasinghe R. Entomological investigations on malaria vectors in some war-torn areas in the Trincomalee District of Sri Lanka after settlement of 30-year of civil disturbance. Malar Res Treat. 2015;2015:367635. doi:10.​1155/​2015/​367635.PubMedPubMed Central
  6. Subbarao SK. Anopheline species complexes in South-East Asia. New Delhi: WHO Technical Publication; 1998. p. 1–82.
  7. Garrett-Jones C. The human blood index of malaria vectors in relation to epidemiological assessment. Bull World Health Organ. 1964;30:241–61.PubMedPubMed Central
  8. Lindsay SW, Snow RW, Broomfield GL, Janneh MS, Wirtz RA, Greenwood BM. Impact of permethrin-treated bednets on malaria transmission by the Anopheles gambiae complex in The Gambia. Med Vet Entomol. 1989;3:263–71.View ArticlePubMed
  9. Mathenge EM, Gimnig JE, Kolczak M, Ombok M, Irungu LW, Hawley WA. Effect of permethrin-impregnated nets on exiting behavior, blood feeding success, and time of feeding of malaria mosquitoes (Diptera: Culicidae) in western Kenya. J Med Entomol. 2001;38:6–531.
  10. N’Guessan R, Corbel V, Akogbeto M, Rowland M. Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Infect Dis. 2007;13:199–206.View ArticlePubMedPubMed Central
  11. Burkot TR, Goodman WG, Foliart GR. Identification of mosquito blood meals by enzyme-linked immunosorbent assay. Am J Trop Med Hyg. 1981;30:1336–441.PubMed
  12. Gomes LAM, Duarte R, Lima DC, Diniz BS, Serrao ML, Labarthe N. Comparison between precipitin and ELISA tests in the blood meal detection of Aedes aegypti (Linnaeus) and Aedes fluviatilis (Lutz) mosquitoes experimentally fed on feline, canine, and human hosts. Mem Inst Oswaldo Cruz. 2001;96:693–5.View ArticlePubMed
  13. Washino RK, Else JG. Identification of blood meals of hematophagous arthropods by the haemoglobin crystallization method. Am J Trop Med Hyg. 1972;21:120–2.PubMed
  14. Boorman J, Mellor PS, Boreham PFL, Hewett RS. A latex agglutination test for the identification of blood meal of Culicoides (Diptera: Ceratopogonidae). Bull Entomol Res. 1977;67:305–11.View Article
  15. McKinney RM, Spillane JT, Holden P. Mosquito blood meals: identification by fluorescent antibody method. Am J Trop Med Hyg. 1972;21:999–1003.PubMed
  16. Burkot TR. Non-random host selection by anopheline mosquitoes. Parasitol Today. 1988;4:156–62.View ArticlePubMed
  17. Osae M, Vezenegho S, Spillings B, Koekemoer L. Optimization and validation of a multiplex PCR for identification of mammalian blood meals in malaria vector mosquitoes and time-cost comparison between the PCR and ELISA methods. Communi Dis Surveil Bull. 2013;11:31–4.
  18. Gunathilaka N, Fernando T, Hapugoda M, Wickremasinghe R, Wijeyerathne P, Abeyewickreme W. Anopheles culicifacies breeding in polluted water bodies in Trincomalee district of Sri Lanka. Malar J. 2013;12:285.View ArticlePubMedPubMed Central
  19. Gunathilaka N. Distribution of major and potential malaria vectors in Mannr and Trincomalee districts and systematics of anophelines in Sri Lanka. Sri Lanka: Ph.D thesis, University of Kelaniya. 2014.
  20. WHO. Entomological field techniques for malaria control. Part I, Learners guide. Geneva: World Health Organization; 1992.
  21. Amerasinghe FP. A guide to the identification of anopheline mosquitoes (Diptera: Culicidae) of Sri Lanka 1 adult females. Ceylon J Sci. 1990;2:13–29.
  22. Lahiff S, Glennon M, O’Brien L, Lyng J, Smith T, Maher M, Shilton N. Species-specific PCR for the identification of ovine, porcine and chicken species in meat and bone meal (MBM). Mol Cell Probes. 2001;15:27–35.View ArticlePubMed
  23. Parodi B, Aresu O, Bini D, Lorenzini R, Schena F, Visconti P, et al. Species identification and confirmation of human and animal cell lines: a PCR-based. Biotechniques. 2002;32:432–40.PubMed
  24. Chang MC, Teng HJ, Chen CF, Chen YC, Jeng CR. The resting sites and blood-meal sources of Anopheles minimus in Taiwan. Malar J. 2008;7:105.View ArticlePubMedPubMed Central
  25. Boreham PFL, Garrett JC. Prevalence of mixed blood meals and double feeding in a malaria vector (Anopheles sacharovi Favre). Bull World Health Organ. 1973;48:605–14.PubMedPubMed Central
  26. Hess AD, Hayes RO, Tempelis C. Use of forage ratio technique in mosquito host preference studies. Mosquito News. 1968;28:386–7.
  27. Richards SL, Ponnusamy L, Unnasch TR, Hassan HK, Apperson CS. Host- feeding patterns of Aedes albopictus (Diptera: Culicidae) in relation to availability of human and domestic animals in suburban landscapes of central North Carolina. J Med Entomol. 2006;43:543–51.View ArticlePubMedPubMed Central
  28. Kay BH, Boreham PFL, Williams GM. Host preferences and feeding patterns of mosquitoes (Diptera: Culicidae) at Kowanyama, Cape York Peninsula, Northern Queensland. Bull Entomol Res. 1979;69:441–57.View Article
  29. Mouchet J, Manguin S, Sircoulon J, Laventure S, Faye O, Onapa AW, Carnebale P, et al. Evolution of malaria in Africa for the past 40 years: impact of climate and human factors. J Am Mosq Control Assoc. 1998;14:121–30.PubMed
  30. Fujito S, Buei K, Nakajima S, Ito S, Yoshida M, Sonada H, Nakamura H. Effect of the population density of Culex tritaeniorhynchus (Giles) on blood sucking rates in cowsheds and pigpens in relation to its role in the epidemic of Japanese encephalitis. Jpn J Sanit Zool. 1971;22:38–44.
  31. Vatandoost H, Emami SN, Oshaghi MA, Abai MR, Raeisi A, Piazzak N, et al. Ecology of malaria vector Anopheles culicifacies in a malarious area of Sistan va Baluchestan Province, South-East Islamic Republic of Iran. East Mediterr Health J. 2011;17:439–45.PubMed
  32. Amerasinghe PH, Amerasinghe FP. Multiple host feeding in field populations of Anopheles culicifacies and An. subpictus in Sri Lanka. J Med Vet Entomol. 1999;13:124–31.View Article
  33. Bruce-Chwatt LJ. Essential Malariology. 2nd ed. New York: John Wiley and Sons; 1984. p. 450–2.
  34. Burkot TR, Goodman WG, Foliart GR. Identification of mosquito blood- meals by enzyme-linked immunosorbent assay. J Trop Med Hyg. 1981;30:1336–441.
Metadata
Title
Determination of the foraging behaviour and blood meal source of malaria vector mosquitoes in Trincomalee District of Sri Lanka using a multiplex real time polymerase chain reaction assay
Authors
Nayana Gunathilaka
Thanuja Denipitiya
Menaka Hapugoda
Wimaladharma Abeyewickreme
Rajitha Wickremasinghe
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2016
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-016-1279-5

Other articles of this Issue 1/2016

Malaria Journal 1/2016 Go to the issue