Skip to main content
Top
Published in: Malaria Journal 1/2016

Open Access 01-12-2016 | Review

Recent advances in the biology and drug targeting of malaria parasite aminoacyl-tRNA synthetases

Author: Sameena Khan

Published in: Malaria Journal | Issue 1/2016

Login to get access

Abstract

Escalating drug resistance in malaria parasites and lack of vaccine entails the discovery of novel drug targets and inhibitor molecules. The multi-component protein translation machinery is a rich source of such drug targets. Malaria parasites contain three translational compartments: the cytoplasm, apicoplast and mitochondrion, of which the latter two are of the prokaryotic type. Recent explorations by many groups into the malaria parasite protein translation enzymes, aminoacyl-tRNA synthetases (aaRSs), have yielded many promising inhibitors. The understanding of the biology of this unique set of 36 enzymes has become much clearer in recent times. Current review discusses the advances made in understanding of crucial aaRSs from Plasmodium and also the specific inhibitors found against malaria aaRSs.
Literature
1.
go back to reference WHO. World malaria report 2015. Geneva: World Health Organization; 2015. WHO. World malaria report 2015. Geneva: World Health Organization; 2015.
2.
go back to reference Doerig C, Baker D, Billker O, Blackman M, Chitnis C, Dhar Kumar S, et al. Signalling in malaria parasites. The MALSIG consortium. Parasite. 2009;16:169–82.CrossRefPubMed Doerig C, Baker D, Billker O, Blackman M, Chitnis C, Dhar Kumar S, et al. Signalling in malaria parasites. The MALSIG consortium. Parasite. 2009;16:169–82.CrossRefPubMed
4.
go back to reference Francia ME, Striepen B. Cell division in apicomplexan parasites. Nat Rev Microbiol. 2014;12:125–36.CrossRefPubMed Francia ME, Striepen B. Cell division in apicomplexan parasites. Nat Rev Microbiol. 2014;12:125–36.CrossRefPubMed
5.
go back to reference Jackson KE, Habib S, Frugier M, Hoen R, Khan S, Pham JS, et al. Protein translation in Plasmodium parasites. Trends Parasitol. 2011;27:467–76.CrossRefPubMed Jackson KE, Habib S, Frugier M, Hoen R, Khan S, Pham JS, et al. Protein translation in Plasmodium parasites. Trends Parasitol. 2011;27:467–76.CrossRefPubMed
6.
go back to reference Pham JS, Dawson KL, Jackson KE, Lim EE, Pasaje CFA, Turner KE, et al. Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites. Int J Parasitol Drugs Drug Resist. 2014;4:1–13.CrossRefPubMedPubMedCentral Pham JS, Dawson KL, Jackson KE, Lim EE, Pasaje CFA, Turner KE, et al. Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites. Int J Parasitol Drugs Drug Resist. 2014;4:1–13.CrossRefPubMedPubMedCentral
9.
go back to reference Schimmel P. Development of tRNA synthetases and connection to genetic code and disease. Prot Sci. 2008;17:1643–52.CrossRef Schimmel P. Development of tRNA synthetases and connection to genetic code and disease. Prot Sci. 2008;17:1643–52.CrossRef
11.
12.
13.
go back to reference Reynolds NM, Lazazzera BA, Ibba M. Cellular mechanisms that control mistranslation. Nat Rev Microbiol. 2010;8:849–56.CrossRefPubMed Reynolds NM, Lazazzera BA, Ibba M. Cellular mechanisms that control mistranslation. Nat Rev Microbiol. 2010;8:849–56.CrossRefPubMed
14.
go back to reference Ling J, Reynolds N, Ibba M. Aminoacyl-tRNA synthesis and translational quality control. Annu Rev Microbiol. 2009;63:61–78.CrossRefPubMed Ling J, Reynolds N, Ibba M. Aminoacyl-tRNA synthesis and translational quality control. Annu Rev Microbiol. 2009;63:61–78.CrossRefPubMed
15.
go back to reference Yogavel M, Khan S, Bhatt TK, Sharma A. Structure of d-tyrosyl-tRNATyr deacylase using home-source Cu Kα and moderate-quality iodide-SAD data: structural polymorphism and HEPES-bound enzyme states. Acta Crystallogr D Biol Crystallogr. 2010;66:584–92.CrossRefPubMed Yogavel M, Khan S, Bhatt TK, Sharma A. Structure of d-tyrosyl-tRNATyr deacylase using home-source Cu Kα and moderate-quality iodide-SAD data: structural polymorphism and HEPES-bound enzyme states. Acta Crystallogr D Biol Crystallogr. 2010;66:584–92.CrossRefPubMed
16.
go back to reference Bhatt TK, Yogavel M, Wydau S, Berwal R, Sharma A. Ligand-bound structures provide atomic snapshots for the catalytic mechanism of D-amino acid deacylase. J Biol Chem. 2010;285:5917–30.CrossRefPubMedPubMedCentral Bhatt TK, Yogavel M, Wydau S, Berwal R, Sharma A. Ligand-bound structures provide atomic snapshots for the catalytic mechanism of D-amino acid deacylase. J Biol Chem. 2010;285:5917–30.CrossRefPubMedPubMedCentral
17.
go back to reference Bhatt TK, Kapil C, Khan S, Jairajpuri MA, Sharma V, Santoni D, et al. A genomic glimpse of aminoacyl-tRNA synthetases in malaria parasite Plasmodium falciparum. BMC Genom. 2009;10:644.CrossRef Bhatt TK, Kapil C, Khan S, Jairajpuri MA, Sharma V, Santoni D, et al. A genomic glimpse of aminoacyl-tRNA synthetases in malaria parasite Plasmodium falciparum. BMC Genom. 2009;10:644.CrossRef
18.
go back to reference Khan S, Sharma A, Jamwal A, Sharma V, Pole AK, Thakur KK, et al. Uneven spread of cis-and trans-editing aminoacyl-tRNA synthetase domains within translational compartments of P. falciparum. Sci Rep. 2012;1:188. Khan S, Sharma A, Jamwal A, Sharma V, Pole AK, Thakur KK, et al. Uneven spread of cis-and trans-editing aminoacyl-tRNA synthetase domains within translational compartments of P. falciparum. Sci Rep. 2012;1:188.
19.
go back to reference Jackson KE, Pham JS, Kwek M, De Silva NS, Allen SM, Goodman CD, et al. Dual targeting of aminoacyl-tRNA synthetases to the apicoplast and cytosol in Plasmodium falciparum. Int J Parasitol. 2012;42:177–86.CrossRefPubMed Jackson KE, Pham JS, Kwek M, De Silva NS, Allen SM, Goodman CD, et al. Dual targeting of aminoacyl-tRNA synthetases to the apicoplast and cytosol in Plasmodium falciparum. Int J Parasitol. 2012;42:177–86.CrossRefPubMed
20.
go back to reference Pham JS, Sakaguchi R, Yeoh LM, De Silva NS, McFadden GI, Hou Y-M, et al. A dual-targeted aminoacyl-tRNA synthetase in Plasmodium falciparum charges cytosolic and apicoplast tRNACys. Biochem J. 2014;458:513–23.CrossRefPubMed Pham JS, Sakaguchi R, Yeoh LM, De Silva NS, McFadden GI, Hou Y-M, et al. A dual-targeted aminoacyl-tRNA synthetase in Plasmodium falciparum charges cytosolic and apicoplast tRNACys. Biochem J. 2014;458:513–23.CrossRefPubMed
21.
go back to reference Istvan ES, Dharia NV, Bopp SE, Gluzman I, Winzeler EA, Goldberg DE. Validation of isoleucine utilization targets in Plasmodium falciparum. Proc Natl Acad Sci USA. 2011;108:1627–32.CrossRefPubMedPubMedCentral Istvan ES, Dharia NV, Bopp SE, Gluzman I, Winzeler EA, Goldberg DE. Validation of isoleucine utilization targets in Plasmodium falciparum. Proc Natl Acad Sci USA. 2011;108:1627–32.CrossRefPubMedPubMedCentral
22.
go back to reference Jain V, Kikuchi H, Oshima Y, Sharma A, Yogavel M. Structural and functional analysis of the anti-malarial drug target prolyl-tRNA synthetase. J Struct Funct Genomics. 2014;15:181–90.CrossRefPubMed Jain V, Kikuchi H, Oshima Y, Sharma A, Yogavel M. Structural and functional analysis of the anti-malarial drug target prolyl-tRNA synthetase. J Struct Funct Genomics. 2014;15:181–90.CrossRefPubMed
23.
go back to reference Bhatt TK, Khan S, Dwivedi VP, Banday MM, Sharma A, Chandele A, et al. Malaria parasite tyrosyl-tRNA synthetase secretion triggers pro-inflammatory responses. Nat Commun. 2011;2:530.CrossRefPubMed Bhatt TK, Khan S, Dwivedi VP, Banday MM, Sharma A, Chandele A, et al. Malaria parasite tyrosyl-tRNA synthetase secretion triggers pro-inflammatory responses. Nat Commun. 2011;2:530.CrossRefPubMed
24.
go back to reference Hussain T, Yogavel M, Sharma A. Inhibition of protein synthesis and malaria parasite development by drug targeting of methionyl-tRNA synthetases. Antimicrob Agents Chemother. 2015;59:1856–67.CrossRefPubMedPubMedCentral Hussain T, Yogavel M, Sharma A. Inhibition of protein synthesis and malaria parasite development by drug targeting of methionyl-tRNA synthetases. Antimicrob Agents Chemother. 2015;59:1856–67.CrossRefPubMedPubMedCentral
25.
go back to reference Khan S, Garg A, Camacho N, Van Rooyen J, Kumar Pole A, Belrhali H, et al. Structural analysis of malaria-parasite lysyl-tRNA synthetase provides a platform for drug development. Acta Crystallogr D Biol Crystallogr. 2013;69:785–95.CrossRefPubMed Khan S, Garg A, Camacho N, Van Rooyen J, Kumar Pole A, Belrhali H, et al. Structural analysis of malaria-parasite lysyl-tRNA synthetase provides a platform for drug development. Acta Crystallogr D Biol Crystallogr. 2013;69:785–95.CrossRefPubMed
26.
go back to reference Khan S, Garg A, Sharma A, Camacho N, Picchioni D, Saint-Léger A, et al. An appended domain results in an unusual architecture for malaria parasite tryptophanyl-tRNA synthetase. PLoS One. 2013;8:e66224.CrossRefPubMedPubMedCentral Khan S, Garg A, Sharma A, Camacho N, Picchioni D, Saint-Léger A, et al. An appended domain results in an unusual architecture for malaria parasite tryptophanyl-tRNA synthetase. PLoS One. 2013;8:e66224.CrossRefPubMedPubMedCentral
27.
go back to reference Mailu BM, Ramasamay G, Mudeppa DG, Li L, Lindner SE, Peterson MJ, et al. A nondiscriminating glutamyl-tRNA synthetase in the Plasmodium apicoplast the first enzyme in an indirect aminoacylation pathway. J Biol Chem. 2013;288:32539–52.CrossRefPubMedPubMedCentral Mailu BM, Ramasamay G, Mudeppa DG, Li L, Lindner SE, Peterson MJ, et al. A nondiscriminating glutamyl-tRNA synthetase in the Plasmodium apicoplast the first enzyme in an indirect aminoacylation pathway. J Biol Chem. 2013;288:32539–52.CrossRefPubMedPubMedCentral
28.
go back to reference Mailu BM, Li L, Arthur J, Nelson TM, Ramasamy G, Fritz-Wolf K, et al. Plasmodium apicoplast Gln-tRNAGln biosynthesis utilizes a unique GatAB amidotransferase essential for erythrocytic stage parasites. J Biol Chem. 2015;290:29629–41.CrossRefPubMed Mailu BM, Li L, Arthur J, Nelson TM, Ramasamy G, Fritz-Wolf K, et al. Plasmodium apicoplast Gln-tRNAGln biosynthesis utilizes a unique GatAB amidotransferase essential for erythrocytic stage parasites. J Biol Chem. 2015;290:29629–41.CrossRefPubMed
29.
go back to reference Sharma A, Sharma A. Plasmodium falciparum mitochondria import tRNAs along with an active phenylalanyl-tRNA synthetase. Biochem J. 2015;465:459–69.CrossRefPubMed Sharma A, Sharma A. Plasmodium falciparum mitochondria import tRNAs along with an active phenylalanyl-tRNA synthetase. Biochem J. 2015;465:459–69.CrossRefPubMed
30.
go back to reference Vaidya AB, Mather MW. Mitochondrial evolution and functions in malaria parasites. Annu Rev Microbiol. 2009;63:249–67.CrossRefPubMed Vaidya AB, Mather MW. Mitochondrial evolution and functions in malaria parasites. Annu Rev Microbiol. 2009;63:249–67.CrossRefPubMed
31.
go back to reference Pino P, Aeby E, Foth BJ, Sheiner L, Soldati T, Schneider A, et al. Mitochondrial translation in absence of local tRNA aminoacylation and methionyl tRNAMet formylation in Apicomplexa. Mol Microbiol. 2010;76:706–18.CrossRefPubMed Pino P, Aeby E, Foth BJ, Sheiner L, Soldati T, Schneider A, et al. Mitochondrial translation in absence of local tRNA aminoacylation and methionyl tRNAMet formylation in Apicomplexa. Mol Microbiol. 2010;76:706–18.CrossRefPubMed
32.
go back to reference Van Rooyen JM, Murat J-B, Hammoudi P-M, Kieffer-Jaquinod S, Coute Y, Sharma A, et al. Assembly of the novel five-component apicomplexan multi-aminoacyl-tRNA synthetase complex is driven by the hybrid scaffold protein Tg-p43. PLoS One. 2014;9:e89487.CrossRefPubMedPubMedCentral Van Rooyen JM, Murat J-B, Hammoudi P-M, Kieffer-Jaquinod S, Coute Y, Sharma A, et al. Assembly of the novel five-component apicomplexan multi-aminoacyl-tRNA synthetase complex is driven by the hybrid scaffold protein Tg-p43. PLoS One. 2014;9:e89487.CrossRefPubMedPubMedCentral
33.
go back to reference Bour T, Akaddar A, Lorber B, Blais S, Balg C, Candolfi E, et al. Plasmodial aspartyl-tRNA synthetases and peculiarities in Plasmodium falciparum. J Biol Chem. 2009;284:18893–903.CrossRefPubMedPubMedCentral Bour T, Akaddar A, Lorber B, Blais S, Balg C, Candolfi E, et al. Plasmodial aspartyl-tRNA synthetases and peculiarities in Plasmodium falciparum. J Biol Chem. 2009;284:18893–903.CrossRefPubMedPubMedCentral
34.
go back to reference Wakasugi K, Schimmel P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science. 1999;288:147–51.CrossRef Wakasugi K, Schimmel P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science. 1999;288:147–51.CrossRef
35.
go back to reference Lee Y-N, Nechushtan H, Figov N, Razin E. The function of lysyl-tRNA synthetase and Ap4A as signaling regulators of MITF activity in FcϵRI-activated mast cells. Immunity. 2004;20:145–51.CrossRefPubMed Lee Y-N, Nechushtan H, Figov N, Razin E. The function of lysyl-tRNA synthetase and Ap4A as signaling regulators of MITF activity in FcϵRI-activated mast cells. Immunity. 2004;20:145–51.CrossRefPubMed
36.
37.
go back to reference Hurdle JG, O’Neill AJ, Chopra I. Prospects for aminoacyl-tRNA synthetase inhibitors as new antimicrobial agents. Antimicrob Agents Chemother. 2005;49:4821–33.CrossRefPubMedPubMedCentral Hurdle JG, O’Neill AJ, Chopra I. Prospects for aminoacyl-tRNA synthetase inhibitors as new antimicrobial agents. Antimicrob Agents Chemother. 2005;49:4821–33.CrossRefPubMedPubMedCentral
39.
go back to reference Baragaña B, Hallyburton I, Lee MC, Norcross NR, Grimaldi R, Otto TD, et al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature. 2015;522:315–20.CrossRefPubMedPubMedCentral Baragaña B, Hallyburton I, Lee MC, Norcross NR, Grimaldi R, Otto TD, et al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature. 2015;522:315–20.CrossRefPubMedPubMedCentral
40.
go back to reference Khan S, Sharma A, Belrhali H, Yogavel M, Sharma A. Structural basis of malaria parasite lysyl-tRNA synthetase inhibition by cladosporin. J Struct Funct Genomics. 2014;15:63–71.CrossRefPubMed Khan S, Sharma A, Belrhali H, Yogavel M, Sharma A. Structural basis of malaria parasite lysyl-tRNA synthetase inhibition by cladosporin. J Struct Funct Genomics. 2014;15:63–71.CrossRefPubMed
41.
go back to reference Hoepfner D, McNamara CW, Lim CS, Studer C, Riedl R, Aust T, et al. Selective and specific inhibition of the Plasmodium falciparum lysyl-tRNA synthetase by the fungal secondary metabolite cladosporin. Cell Host Microbe. 2012;11:654–63.CrossRefPubMedPubMedCentral Hoepfner D, McNamara CW, Lim CS, Studer C, Riedl R, Aust T, et al. Selective and specific inhibition of the Plasmodium falciparum lysyl-tRNA synthetase by the fungal secondary metabolite cladosporin. Cell Host Microbe. 2012;11:654–63.CrossRefPubMedPubMedCentral
42.
go back to reference Novoa EM, Camacho N, Tor A, Wilkinson B, Moss S, Marín-García P, et al. Analogs of natural aminoacyl-tRNA synthetase inhibitors clear malaria in vivo. Proc Natl Acad Sci USA. 2014;111:E5508–17.CrossRefPubMedPubMedCentral Novoa EM, Camacho N, Tor A, Wilkinson B, Moss S, Marín-García P, et al. Analogs of natural aminoacyl-tRNA synthetase inhibitors clear malaria in vivo. Proc Natl Acad Sci USA. 2014;111:E5508–17.CrossRefPubMedPubMedCentral
43.
go back to reference Jain V, Yogavel M, Oshima Y, Kikuchi H, Touquet B, Hakimi M-A, et al. Structure of prolyl-tRNA synthetase-halofuginone complex provides basis for development of drugs against malaria and toxoplasmosis. Structure. 2015;23:819–29.CrossRefPubMed Jain V, Yogavel M, Oshima Y, Kikuchi H, Touquet B, Hakimi M-A, et al. Structure of prolyl-tRNA synthetase-halofuginone complex provides basis for development of drugs against malaria and toxoplasmosis. Structure. 2015;23:819–29.CrossRefPubMed
44.
go back to reference Herman JD, Pepper LR, Cortese JF, Estiu G, Galinsky K, Zuzarte-Luis V, et al. The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs. Sci Transl Med. 2015;7:288ra277. Herman JD, Pepper LR, Cortese JF, Estiu G, Galinsky K, Zuzarte-Luis V, et al. The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs. Sci Transl Med. 2015;7:288ra277.
45.
go back to reference Gamo F-J, Sanz LM, Vidal J, de Cozar C, Alvarez E, Lavandera J-L, et al. Thousands of chemical starting points for antimalarial lead identification. Nature. 2010;465:305–10.CrossRefPubMed Gamo F-J, Sanz LM, Vidal J, de Cozar C, Alvarez E, Lavandera J-L, et al. Thousands of chemical starting points for antimalarial lead identification. Nature. 2010;465:305–10.CrossRefPubMed
46.
go back to reference Hoen R, Novoa EM, López A, Camacho N, Cubells L, Vieira P, et al. Selective inhibition of an apicoplastic aminoacyl-tRNA synthetase from Plasmodium falciparum. Chem Bio Chem. 2013;14:499–509.CrossRefPubMed Hoen R, Novoa EM, López A, Camacho N, Cubells L, Vieira P, et al. Selective inhibition of an apicoplastic aminoacyl-tRNA synthetase from Plasmodium falciparum. Chem Bio Chem. 2013;14:499–509.CrossRefPubMed
47.
go back to reference Azcarate I, Marín-García P, Camacho N, Pérez-Benavente S, Puyet A, Diez A, et al. Insights into the preclinical treatment of blood-stage malaria by the antibiotic borrelidin. Br J Pharmacol. 2013;169:645–58.CrossRefPubMedPubMedCentral Azcarate I, Marín-García P, Camacho N, Pérez-Benavente S, Puyet A, Diez A, et al. Insights into the preclinical treatment of blood-stage malaria by the antibiotic borrelidin. Br J Pharmacol. 2013;169:645–58.CrossRefPubMedPubMedCentral
48.
go back to reference Sugawara A, Tanaka T, Hirose T, Ishiyama A, Iwatsuki M, Takahashi Y, et al. Borrelidin analogues with antimalarial activity: design, synthesis and biological evaluation against Plasmodium falciparum parasites. Bioorg Med Chem. 2013;23:2302–5.CrossRef Sugawara A, Tanaka T, Hirose T, Ishiyama A, Iwatsuki M, Takahashi Y, et al. Borrelidin analogues with antimalarial activity: design, synthesis and biological evaluation against Plasmodium falciparum parasites. Bioorg Med Chem. 2013;23:2302–5.CrossRef
49.
go back to reference Ishiyama A, Iwatsuki M, Namatame M, Nishihara-Tsukashima A, Sunazuka T, Takahashi Y, et al. Borrelidin, a potent antimalarial: stage-specific inhibition profile of synchronized cultures of Plasmodium falciparum. J Antibiot. 2011;64:381–4.CrossRefPubMed Ishiyama A, Iwatsuki M, Namatame M, Nishihara-Tsukashima A, Sunazuka T, Takahashi Y, et al. Borrelidin, a potent antimalarial: stage-specific inhibition profile of synchronized cultures of Plasmodium falciparum. J Antibiot. 2011;64:381–4.CrossRefPubMed
50.
51.
go back to reference Fang P, Han H, Wang J, Chen K, Chen X, Guo M. Structural basis for specific inhibition of tRNA synthetase by an ATP competitive inhibitor. Chem Biol. 2015;22:734–44.CrossRefPubMed Fang P, Han H, Wang J, Chen K, Chen X, Guo M. Structural basis for specific inhibition of tRNA synthetase by an ATP competitive inhibitor. Chem Biol. 2015;22:734–44.CrossRefPubMed
52.
go back to reference Keller TL, Zocco D, Sundrud MS, Hendrick M, Edenius M, Yum J, et al. Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase. Nat Chem Biol. 2012;8:311–7.CrossRefPubMedPubMedCentral Keller TL, Zocco D, Sundrud MS, Hendrick M, Edenius M, Yum J, et al. Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase. Nat Chem Biol. 2012;8:311–7.CrossRefPubMedPubMedCentral
53.
54.
go back to reference Herman JD, Rice DP, Ribacke U, Silterra J, Deik AA, Moss EL, et al. A genomic and evolutionary approach reveals non-genetic drug resistance in malaria. Genome Biol. 2014;15:511.CrossRefPubMedPubMedCentral Herman JD, Rice DP, Ribacke U, Silterra J, Deik AA, Moss EL, et al. A genomic and evolutionary approach reveals non-genetic drug resistance in malaria. Genome Biol. 2014;15:511.CrossRefPubMedPubMedCentral
55.
56.
go back to reference Koh CY, Kim JE, Napoli AJ, Verlinde CL, Fan E, Buckner FS, et al. Crystal structures of Plasmodium falciparum cytosolic tryptophanyl-tRNA synthetase and its potential as a target for structure-guided drug design. Mol Biochem Parasitol. 2013;189:26–32.CrossRefPubMedPubMedCentral Koh CY, Kim JE, Napoli AJ, Verlinde CL, Fan E, Buckner FS, et al. Crystal structures of Plasmodium falciparum cytosolic tryptophanyl-tRNA synthetase and its potential as a target for structure-guided drug design. Mol Biochem Parasitol. 2013;189:26–32.CrossRefPubMedPubMedCentral
Metadata
Title
Recent advances in the biology and drug targeting of malaria parasite aminoacyl-tRNA synthetases
Author
Sameena Khan
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2016
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-016-1247-0

Other articles of this Issue 1/2016

Malaria Journal 1/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.