Skip to main content
Top
Published in: Malaria Journal 1/2016

Open Access 01-12-2016 | Methodology

A method to preserve low parasitaemia Plasmodium-infected avian blood for host and vector infectivity assays

Authors: Jenny S. Carlson, Federico Giannitti, Gediminas Valkiūnas, Lisa A. Tell, Joy Snipes, Stan Wright, Anthony J. Cornel

Published in: Malaria Journal | Issue 1/2016

Login to get access

Abstract

Background

Avian malaria vector competence studies are needed to understand more succinctly complex avian parasite-vector-relations. The lack of vector competence trials may be attributed to the difficulty of obtaining gametocytes for the majority of Plasmodium species and lineages. To conduct avian malaria infectivity assays for those Plasmodium spp. and lineages that are refractory to in vitro cultivation, it is necessary to obtain and preserve for short periods sufficient viable merozoites to infect naïve donor birds to be used as gametocyte donors to infect mosquitoes. Currently, there is only one described method for long-term storage of Plasmodium spp.—infected wild avian blood and it is reliable at a parasitaemia of at least 1 %. However, most naturally infected wild-caught birds have a parasitaemia of much less that 1 %. To address this problem, a method for short-term storage of infected wild avian blood with low parasitaemia (even ≤0.0005 %) has been explored and validated.

Methods

To obtain viable infective merozoites, blood was collected from wild birds using a syringe containing the anticoagulant and the red blood cell preservative citrate phosphate dextrose adenine solution (CPDA). Each blood sample was stored at 4 °C for up to 48 h providing sufficient time to determine the species and parasitaemia of Plasmodium spp. in the blood by morphological examination before injecting into donor canaries. Plasmodium spp.—infected blood was inoculated intravenously into canaries and once infection was established, Culex stigmatosoma, Cx. pipiens and Cx. quinquefasciatus mosquitoes were then allowed to feed on the infected canaries to validate the efficacy of this method for mosquito vector competence assays.

Results

Storage of Plasmodium spp.—infected donor blood at 4 °C yielded viable parasites for 48 h. All five experimentally-infected canaries developed clinical signs and were infectious. Pathologic examination of three canaries that later died revealed splenic lesions typical of avian malaria infection. Mosquito infectivity assays demonstrated that Cx. stigmatosoma and Cx. pipiens were competent vectors for Plasmodium cathemerium.

Conclusions

A simple method of collecting and preserving avian whole blood with malaria parasites of low parasitaemia (≤0.0005 %) was developed that remained viable for further experimental bird and mosquito infectivity assays. This method allows researchers interested in conducting infectivity assays on target Plasmodium spp. to collect these parasites directly from nature with minimal impact on wild birds.
Literature
1.
go back to reference Valkiūnas G. Avian malaria parasites and other haemosporidia. 1st ed. Boca Raton: CRC Press; 2005. Valkiūnas G. Avian malaria parasites and other haemosporidia. 1st ed. Boca Raton: CRC Press; 2005.
2.
go back to reference Valkiūnas G, Palinauskas V, Ilgūnas M, Bukauskaite D, Dimitrov D, Bernotienė R, et al. Molecular characterization of five widespread avian haemosporidian parasites (Haemosporida), with perspectives on the PCR-based detection of haemosporidians in wildlife. Parasitol Res. 2014;113:2251–63. doi:10.1007/s00436-014-3880-2.CrossRefPubMed Valkiūnas G, Palinauskas V, Ilgūnas M, Bukauskaite D, Dimitrov D, Bernotienė R, et al. Molecular characterization of five widespread avian haemosporidian parasites (Haemosporida), with perspectives on the PCR-based detection of haemosporidians in wildlife. Parasitol Res. 2014;113:2251–63. doi:10.​1007/​s00436-014-3880-2.CrossRefPubMed
3.
go back to reference Tonkin I, Hawking F. Growth of protozoa in tissue culture; Plasmodium lophurae, exoerythrocytic forms, in vivo and in vitro. Trans R Soc Trop Med Hyg. 1947;41:407–14.CrossRefPubMed Tonkin I, Hawking F. Growth of protozoa in tissue culture; Plasmodium lophurae, exoerythrocytic forms, in vivo and in vitro. Trans R Soc Trop Med Hyg. 1947;41:407–14.CrossRefPubMed
6.
go back to reference Nydegger L, Manwell RD. Cultivation requirements of the avian malaria parasite Plasmodium hexamerium. J Parasitol. 1962;48:142–7.CrossRefPubMed Nydegger L, Manwell RD. Cultivation requirements of the avian malaria parasite Plasmodium hexamerium. J Parasitol. 1962;48:142–7.CrossRefPubMed
7.
go back to reference Hawking F. Growth of protozoa in tissue culture; Plasmodium gallinaceum, exoerythrocytic forms. Trans R Soc Trop Med Hyg. 1945;39:245–63.CrossRefPubMed Hawking F. Growth of protozoa in tissue culture; Plasmodium gallinaceum, exoerythrocytic forms. Trans R Soc Trop Med Hyg. 1945;39:245–63.CrossRefPubMed
8.
go back to reference Zuckerman A. Infections with Plasmodium gallinaceum in chick embryos induced by exoerythrocytic and blood stages. J Infect Dis. 1946;79:1–11.CrossRefPubMed Zuckerman A. Infections with Plasmodium gallinaceum in chick embryos induced by exoerythrocytic and blood stages. J Infect Dis. 1946;79:1–11.CrossRefPubMed
9.
go back to reference Meyer H, de Oliveira MX. Estudo morfogico da forma exoeritrocitkria do Plasmodium gallinaceum em culturas de tecido. Rev Brasil Biol. 1947;7:327–33. Meyer H, de Oliveira MX. Estudo morfogico da forma exoeritrocitkria do Plasmodium gallinaceum em culturas de tecido. Rev Brasil Biol. 1947;7:327–33.
10.
go back to reference Dubin IN. The cultivation of the exoerythrocytic forms of Plasmodium gallinaceum in tissue culture. J Infect Dis. 1952;91:33–49.CrossRefPubMed Dubin IN. The cultivation of the exoerythrocytic forms of Plasmodium gallinaceum in tissue culture. J Infect Dis. 1952;91:33–49.CrossRefPubMed
11.
go back to reference Hawking F. Growth of protozoa in tissue culture; Plasmodium relictum, exoerythrocytic forms. Trans R Soc Trop Med Hyg. 1946;40:183–8.CrossRefPubMed Hawking F. Growth of protozoa in tissue culture; Plasmodium relictum, exoerythrocytic forms. Trans R Soc Trop Med Hyg. 1946;40:183–8.CrossRefPubMed
12.
go back to reference Ball GH, Chao J. The cultivation of Plasmodium relictum in mosquito cell lines. J Parasitol. 1971;57:391–5.CrossRefPubMed Ball GH, Chao J. The cultivation of Plasmodium relictum in mosquito cell lines. J Parasitol. 1971;57:391–5.CrossRefPubMed
13.
go back to reference Weiss ML, Manwell RD. In vitro cultivation of Plasmodium elongatum in duck tissues. J Protozool. 1960;7:342–6.CrossRef Weiss ML, Manwell RD. In vitro cultivation of Plasmodium elongatum in duck tissues. J Protozool. 1960;7:342–6.CrossRef
14.
go back to reference Spandorf AA, Manwell RD. In vitro growth of Plasmodium circumflexum and P. vaughani. Exp Parasitol. 1960;10:287–92.CrossRef Spandorf AA, Manwell RD. In vitro growth of Plasmodium circumflexum and P. vaughani. Exp Parasitol. 1960;10:287–92.CrossRef
15.
go back to reference Macdonald G. The epidemiology and control of malaria. London: Oxford University Press; 1957. Macdonald G. The epidemiology and control of malaria. London: Oxford University Press; 1957.
16.
go back to reference Garrett-Jones C, Shidrawi GR. Malaria vectorial capacity of a population of Anopheles gambiae. Bull World Health Organ. 1964;40:531–45. Garrett-Jones C, Shidrawi GR. Malaria vectorial capacity of a population of Anopheles gambiae. Bull World Health Organ. 1964;40:531–45.
17.
go back to reference Carlson JS, Walther E, Fryxell RT, Staley S, Tell LA, Sehgal RNM, et al. Identifying avian malaria vectors: sampling methods influence outcomes. Parasit Vectors. 2015;8:365CrossRefPubMedPubMedCentral Carlson JS, Walther E, Fryxell RT, Staley S, Tell LA, Sehgal RNM, et al. Identifying avian malaria vectors: sampling methods influence outcomes. Parasit Vectors. 2015;8:365CrossRefPubMedPubMedCentral
18.
go back to reference Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S. Plasmodium relictum (lineage P-SGS1): effects on experimentally infected passerine birds. Exp Parasitol. 2008;120:372–80.CrossRefPubMed Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S. Plasmodium relictum (lineage P-SGS1): effects on experimentally infected passerine birds. Exp Parasitol. 2008;120:372–80.CrossRefPubMed
19.
go back to reference Valkiūnas G, Iezhova TA, Križanauskienė A, Palinauskas V, Sehgal RNM, Bensch S. A comparative analysis of microscopy and PCR-based detection methods for blood parasites. J Parasitol. 2008;94:1395–401.CrossRefPubMed Valkiūnas G, Iezhova TA, Križanauskienė A, Palinauskas V, Sehgal RNM, Bensch S. A comparative analysis of microscopy and PCR-based detection methods for blood parasites. J Parasitol. 2008;94:1395–401.CrossRefPubMed
21.
go back to reference Garnham PCC. Malaria parasites and other Haemosporidia. Oxford: Blackwell; 1966. Garnham PCC. Malaria parasites and other Haemosporidia. Oxford: Blackwell; 1966.
22.
go back to reference Palinauskas V, Žiegyté R, Ilgunas M, Iezhova TA, Bernotiene R, Bolshakov C, et al. Description of the first cryptic avian malaria parasite, Plasmodium homocircumflexum n. sp., with experimental data on its virulence and development in avian hosts and mosquitoes. Int J Parasitol. 2014;45:51–62. doi:10.1016/j.ijpara.2014.08.012.CrossRefPubMed Palinauskas V, Žiegyté R, Ilgunas M, Iezhova TA, Bernotiene R, Bolshakov C, et al. Description of the first cryptic avian malaria parasite, Plasmodium homocircumflexum n. sp., with experimental data on its virulence and development in avian hosts and mosquitoes. Int J Parasitol. 2014;45:51–62. doi:10.​1016/​j.​ijpara.​2014.​08.​012.CrossRefPubMed
23.
go back to reference Vaught JB. Blood collection, shipment, processing, and storage. Cancer Epidemiol Biomarkers Prev. 2006;15:1582–4.CrossRefPubMed Vaught JB. Blood collection, shipment, processing, and storage. Cancer Epidemiol Biomarkers Prev. 2006;15:1582–4.CrossRefPubMed
24.
go back to reference Seidl S, Gosda W, Reppucci AJ. The in vitro and in vivo evaluation of whole blood and red cell concentrates drawn on CPDA-1 and stored in a non-DEHP plasticized PVC container. Vox Sang. 1991;61:8–13.CrossRefPubMed Seidl S, Gosda W, Reppucci AJ. The in vitro and in vivo evaluation of whole blood and red cell concentrates drawn on CPDA-1 and stored in a non-DEHP plasticized PVC container. Vox Sang. 1991;61:8–13.CrossRefPubMed
25.
go back to reference Shimmel LA, White J, Snell K. The what, why, when and how of avian blood transfusions: a discussion of protocols and literature review. J Wildlife Rehab. 1996;19:7–14. Shimmel LA, White J, Snell K. The what, why, when and how of avian blood transfusions: a discussion of protocols and literature review. J Wildlife Rehab. 1996;19:7–14.
26.
go back to reference Bell DJ, Freeman DM. Physiology and biochemistry of the domestic fowl. London: Academic Press; 1971. Bell DJ, Freeman DM. Physiology and biochemistry of the domestic fowl. London: Academic Press; 1971.
27.
go back to reference Jain NC. Schalm’s veterinary hematology. 4th ed. Philadelphia: Lea and Febiger; 1986. Jain NC. Schalm’s veterinary hematology. 4th ed. Philadelphia: Lea and Febiger; 1986.
28.
29.
go back to reference Martinho F. Indications and techniques for blood transfusion in birds. J Exot Pet Med. 2009;18:112–6.CrossRef Martinho F. Indications and techniques for blood transfusion in birds. J Exot Pet Med. 2009;18:112–6.CrossRef
30.
go back to reference Waldenström J, Bensch S, Hasselquist D, Ostman O. A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol. 2004;90:191–4.CrossRefPubMed Waldenström J, Bensch S, Hasselquist D, Ostman O. A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol. 2004;90:191–4.CrossRefPubMed
31.
go back to reference Walther E, Carlson JS, Cornel AJ, Sehgal NM. First molecular study of prevalence and diversity of avian haemosporidia in a Central California songbird community. J Ornithol. 2015;113:1–16. Walther E, Carlson JS, Cornel AJ, Sehgal NM. First molecular study of prevalence and diversity of avian haemosporidia in a Central California songbird community. J Ornithol. 2015;113:1–16.
32.
go back to reference Wiersch SC, Maier WA, Kampen H. Plasmodium (Haemamoeba) cathemerium gene sequences for phylogenetic analysis of malaria parasites. Parasitol Res. 2005;96:90–4.CrossRefPubMed Wiersch SC, Maier WA, Kampen H. Plasmodium (Haemamoeba) cathemerium gene sequences for phylogenetic analysis of malaria parasites. Parasitol Res. 2005;96:90–4.CrossRefPubMed
33.
go back to reference Nylander JAA, Ronquist JP, Huelsenbeck JP, Nieves-Aldrey JL. Bayesian phylogenetic analysis of combined data. Syst Biol. 2004;53:47–67.CrossRefPubMed Nylander JAA, Ronquist JP, Huelsenbeck JP, Nieves-Aldrey JL. Bayesian phylogenetic analysis of combined data. Syst Biol. 2004;53:47–67.CrossRefPubMed
34.
go back to reference Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–614.CrossRefPubMed Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–614.CrossRefPubMed
35.
go back to reference Cummings RC. Design and use of a modified Reiter gravid mosquito trap for mosquito-borne encephalitis surveillance in Los Angeles County, California. Proc California Mosq Vector Control Assoc. 1992;60:170–6. Cummings RC. Design and use of a modified Reiter gravid mosquito trap for mosquito-borne encephalitis surveillance in Los Angeles County, California. Proc California Mosq Vector Control Assoc. 1992;60:170–6.
36.
go back to reference Darsie RF, Ward RA. Identification and geographical distribution of the mosquitoes of North America, North of Mexico Gainesville. Gainesville: University of Florida Press; 2004. Darsie RF, Ward RA. Identification and geographical distribution of the mosquitoes of North America, North of Mexico Gainesville. Gainesville: University of Florida Press; 2004.
37.
go back to reference Bohart RM, Washino RK. Mosquitoes of California. 3rd ed. Berkeley: Univ. Calif. Div. Agric. Sci. Publ.; 1978. Bohart RM, Washino RK. Mosquitoes of California. 3rd ed. Berkeley: Univ. Calif. Div. Agric. Sci. Publ.; 1978.
38.
go back to reference Kazlauskienė R, Bernotiene R, Palinauskas V, Iezhova TA, Valkiūnas G. Plasmodium relictum (lineages pSGS1 adn pGRW11): complete synchronous sporogony in mosquitoes Culex pipiens pipiens. Exp Parasitol. 2013;133:454–61.CrossRefPubMed Kazlauskienė R, Bernotiene R, Palinauskas V, Iezhova TA, Valkiūnas G. Plasmodium relictum (lineages pSGS1 adn pGRW11): complete synchronous sporogony in mosquitoes Culex pipiens pipiens. Exp Parasitol. 2013;133:454–61.CrossRefPubMed
39.
go back to reference Smith JL, Fonseca DM. Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: culicidae). Am J Trop Med Hyg. 2004;70:339–45.PubMed Smith JL, Fonseca DM. Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: culicidae). Am J Trop Med Hyg. 2004;70:339–45.PubMed
40.
go back to reference Rimoldi G, Speer B, Wellehan JF Jr, Bradway DS, Wright L, Reavill D, et al. An outbreak of Sarcocystis calchasi encephalitis in multiple psittacine species within an enclosed zoological aviary. J Vet Diagn Invest. 2013;25:775–81.CrossRefPubMed Rimoldi G, Speer B, Wellehan JF Jr, Bradway DS, Wright L, Reavill D, et al. An outbreak of Sarcocystis calchasi encephalitis in multiple psittacine species within an enclosed zoological aviary. J Vet Diagn Invest. 2013;25:775–81.CrossRefPubMed
41.
go back to reference Kothera L, Nelms BM, Reisen WK, Savage HM. Population genetic and admixture analyses of Culex pipiens complex (Diptera: culicidae) populations in California, United States. Am J Trop Med Hyg. 2013;89:1154–67.CrossRefPubMedPubMedCentral Kothera L, Nelms BM, Reisen WK, Savage HM. Population genetic and admixture analyses of Culex pipiens complex (Diptera: culicidae) populations in California, United States. Am J Trop Med Hyg. 2013;89:1154–67.CrossRefPubMedPubMedCentral
42.
go back to reference Fix AS, Waterhouse C, Greiner EC, Stoskopf MK. Plasmodium relictum as a cause of avian malaria in wild-caught Magellanic penguins (Spheniscus magellanicus). J Wildlife Dis. 1988;24:610–9.CrossRef Fix AS, Waterhouse C, Greiner EC, Stoskopf MK. Plasmodium relictum as a cause of avian malaria in wild-caught Magellanic penguins (Spheniscus magellanicus). J Wildlife Dis. 1988;24:610–9.CrossRef
43.
go back to reference Vanstreels RET, Kolesnikovas CKM, Sandri S, Silveira P, Belo NO, Ferreira FC Jr, et al. Outbreak of avian malaria associated to multiple species of Plasmodium in magellanic penguins undergoing rehabilitation in Southern Brazil. PLoS ONE. 2014;9:e94994.CrossRefPubMedPubMedCentral Vanstreels RET, Kolesnikovas CKM, Sandri S, Silveira P, Belo NO, Ferreira FC Jr, et al. Outbreak of avian malaria associated to multiple species of Plasmodium in magellanic penguins undergoing rehabilitation in Southern Brazil. PLoS ONE. 2014;9:e94994.CrossRefPubMedPubMedCentral
Metadata
Title
A method to preserve low parasitaemia Plasmodium-infected avian blood for host and vector infectivity assays
Authors
Jenny S. Carlson
Federico Giannitti
Gediminas Valkiūnas
Lisa A. Tell
Joy Snipes
Stan Wright
Anthony J. Cornel
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2016
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-016-1198-5

Other articles of this Issue 1/2016

Malaria Journal 1/2016 Go to the issue