Skip to main content
Top
Published in: Malaria Journal 1/2016

Open Access 01-12-2016 | Research

Sickle haemoglobin, haemoglobin C and malaria mortality feedbacks

Authors: Bronner P. Gonçalves, Sunetra Gupta, Bridget S. Penman

Published in: Malaria Journal | Issue 1/2016

Login to get access

Abstract

Background

Sickle haemoglobin (HbS) and haemoglobin C (HbC) are both caused by point mutations in the beta globin gene, and both offer substantial malaria protection. Despite the fact that the blood disorder caused by homozygosity for HbC is much less severe than that caused by homozygosity for HbS (sickle cell anaemia), it is the sickle mutation which has come to dominate many old-world malarious regions, whilst HbC is highly restricted in its geographical distribution. It has been suggested that this discrepancy may be due to sickle cell heterozygotes enjoying a higher level of malaria protection than heterozygotes for HbC. A higher fitness of sickle cell heterozygotes relative to HbC heterozygotes could certainly have allowed the sickle cell allele to spread more rapidly. However, observations that carrying either HbC or HbS enhances an individual’s capacity to transmit malaria parasites to mosquitoes could also shed light on this conundrum.

Methods

A population genetic model was used to investigate the evolutionary consequences of the strength of malaria selection being correlated with either HbS frequency or HbC frequency.

Results

If the selection pressure from malaria is positively correlated with the frequency of either HbS or HbC, it is easier for HbS to succeed in the competitive interaction between the two alleles.

Conclusions

A feedback process whereby the presence of variant haemoglobins increases the level of malaria selection in a population could have contributed to the global success of HbS relative to HbC, despite the former’s higher blood disorder cost.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Taylor SM, Parobek CM, Fairhurst RM. Haemoglobinopathies and the clinical epidemiology of malaria: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12:457–68.PubMedPubMedCentralCrossRef Taylor SM, Parobek CM, Fairhurst RM. Haemoglobinopathies and the clinical epidemiology of malaria: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12:457–68.PubMedPubMedCentralCrossRef
3.
go back to reference Modiano D, Luoni G, Sirima BS, Simpore J, Verra F, Konate A, et al. Haemoglobin C protects against clinical Plasmodium falciparum malaria. Nature. 2001;414(6861):305–8.PubMedCrossRef Modiano D, Luoni G, Sirima BS, Simpore J, Verra F, Konate A, et al. Haemoglobin C protects against clinical Plasmodium falciparum malaria. Nature. 2001;414(6861):305–8.PubMedCrossRef
4.
go back to reference Lopera-Mesa TM, Doumbia S, Konate D, Anderson JM, Doumbouya M, Keita AS, et al. Impact of red blood cell variants on childhood malaria in Mali: a prospective cohort study. Lancet Haematol. 2015;2:e140–9.CrossRef Lopera-Mesa TM, Doumbia S, Konate D, Anderson JM, Doumbouya M, Keita AS, et al. Impact of red blood cell variants on childhood malaria in Mali: a prospective cohort study. Lancet Haematol. 2015;2:e140–9.CrossRef
5.
go back to reference Fairhurst RM, Fujioka H, Hayton K, Collins KF, Wellems TE. Aberrant development of Plasmodium falciparum in hemoglobin CC red cells: implications for the malaria protective effect of the homozygous state. Blood. 2003;101:3309–15.PubMedCrossRef Fairhurst RM, Fujioka H, Hayton K, Collins KF, Wellems TE. Aberrant development of Plasmodium falciparum in hemoglobin CC red cells: implications for the malaria protective effect of the homozygous state. Blood. 2003;101:3309–15.PubMedCrossRef
6.
go back to reference Fairhurst RM, Baruch DI, Brittain NJ, Ostera GR, Wallach JS, Hoang HL, et al. Abnormal display of PfEMP-1 on erythrocytes carrying haemoglobin C may protect against malaria. Nature. 2005;435:1117–21.PubMedCrossRef Fairhurst RM, Baruch DI, Brittain NJ, Ostera GR, Wallach JS, Hoang HL, et al. Abnormal display of PfEMP-1 on erythrocytes carrying haemoglobin C may protect against malaria. Nature. 2005;435:1117–21.PubMedCrossRef
7.
go back to reference Verra F, Simpore J, Warimwe GM, Tetteh KK, Howard T, Osier FH, et al. Haemoglobin C and S role in acquired immunity against Plasmodium falciparum malaria. PLoS One. 2007;2:e978.PubMedPubMedCentralCrossRef Verra F, Simpore J, Warimwe GM, Tetteh KK, Howard T, Osier FH, et al. Haemoglobin C and S role in acquired immunity against Plasmodium falciparum malaria. PLoS One. 2007;2:e978.PubMedPubMedCentralCrossRef
8.
go back to reference Mangano VD, Kabore Y, Bougouma EC, Verra F, Sepulveda N, Bisseye C, et al. Novel insights into the protective role of Hemoglobin S and C against Plasmodium falciparum parasitemia. J Infect Dis. 2015;212:626–34.PubMedPubMedCentralCrossRef Mangano VD, Kabore Y, Bougouma EC, Verra F, Sepulveda N, Bisseye C, et al. Novel insights into the protective role of Hemoglobin S and C against Plasmodium falciparum parasitemia. J Infect Dis. 2015;212:626–34.PubMedPubMedCentralCrossRef
9.
go back to reference Billo MA, Johnson ES, Doumbia SO, Poudiougou B, Sagara I, Diawara SI, et al. Sickle cell trait protects against Plasmodium falciparum infection. Am J Epidemiol. 2012;176:S175–85.PubMedPubMedCentralCrossRef Billo MA, Johnson ES, Doumbia SO, Poudiougou B, Sagara I, Diawara SI, et al. Sickle cell trait protects against Plasmodium falciparum infection. Am J Epidemiol. 2012;176:S175–85.PubMedPubMedCentralCrossRef
10.
go back to reference Cholera R, Brittain NJ, Gillrie MR, Lopera-Mesa TM, Diakite SA, Arie T, et al. Impaired cytoadherence of Plasmodium falciparum-infected erythrocytes containing sickle hemoglobin. Proc Natl Acad Sci USA. 2008;105:991–6.PubMedPubMedCentralCrossRef Cholera R, Brittain NJ, Gillrie MR, Lopera-Mesa TM, Diakite SA, Arie T, et al. Impaired cytoadherence of Plasmodium falciparum-infected erythrocytes containing sickle hemoglobin. Proc Natl Acad Sci USA. 2008;105:991–6.PubMedPubMedCentralCrossRef
11.
go back to reference Williams TN, Mwangi TW, Roberts DJ, Alexander ND, Weatherall DJ, Wambua S, et al. An immune basis for malaria protection by the sickle cell trait. PLoS Med. 2005;2:e128.PubMedPubMedCentralCrossRef Williams TN, Mwangi TW, Roberts DJ, Alexander ND, Weatherall DJ, Wambua S, et al. An immune basis for malaria protection by the sickle cell trait. PLoS Med. 2005;2:e128.PubMedPubMedCentralCrossRef
12.
go back to reference Pasvol G, Weatherall DJ, Wilson RJ. Cellular mechanism for the protective effect of haemoglobin S against P. falciparum malaria. Nature. 1978;274:701–3.PubMedCrossRef Pasvol G, Weatherall DJ, Wilson RJ. Cellular mechanism for the protective effect of haemoglobin S against P. falciparum malaria. Nature. 1978;274:701–3.PubMedCrossRef
13.
go back to reference Shear HL, Roth EF Jr, Fabry ME, Costantini FD, Pachnis A, Hood A, et al. Transgenic mice expressing human sickle hemoglobin are partially resistant to rodent malaria. Blood. 1993;81:222–6.PubMed Shear HL, Roth EF Jr, Fabry ME, Costantini FD, Pachnis A, Hood A, et al. Transgenic mice expressing human sickle hemoglobin are partially resistant to rodent malaria. Blood. 1993;81:222–6.PubMed
14.
go back to reference LaMonte G, Philip N, Reardon J, Lacsina JR, Majoros W, Chapman L, et al. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe. 2012;12:187–99.PubMedPubMedCentralCrossRef LaMonte G, Philip N, Reardon J, Lacsina JR, Majoros W, Chapman L, et al. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe. 2012;12:187–99.PubMedPubMedCentralCrossRef
15.
go back to reference Duflo B, Maiga I, Pichard E, Diallo D, Diallo AN, Coulibaly T, et al. [Hemoglobin C in a hospital milieu in Bamako (Mali)](in French). Bull Soc Pathol Exot. 1985;78:393–400. Duflo B, Maiga I, Pichard E, Diallo D, Diallo AN, Coulibaly T, et al. [Hemoglobin C in a hospital milieu in Bamako (Mali)](in French). Bull Soc Pathol Exot. 1985;78:393–400.
16.
go back to reference Piel FB, Howes RE, Patil AP, Nyangiri OA, Gething PW, Bhatt S, et al. The distribution of haemoglobin C and its prevalence in newborns in Africa. Sci Rep. 2013;3:1671.PubMedPubMedCentralCrossRef Piel FB, Howes RE, Patil AP, Nyangiri OA, Gething PW, Bhatt S, et al. The distribution of haemoglobin C and its prevalence in newborns in Africa. Sci Rep. 2013;3:1671.PubMedPubMedCentralCrossRef
17.
go back to reference Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, Williams TN, et al. Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis. Nat Commun. 2010;1:104.PubMedPubMedCentralCrossRef Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, Williams TN, et al. Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis. Nat Commun. 2010;1:104.PubMedPubMedCentralCrossRef
18.
go back to reference May J, Evans JA, Timmann C, Ehmen C, Busch W, Thye T, et al. Hemoglobin variants and disease manifestations in severe falciparum malaria. JAMA. 2007;297:2220–6.PubMedCrossRef May J, Evans JA, Timmann C, Ehmen C, Busch W, Thye T, et al. Hemoglobin variants and disease manifestations in severe falciparum malaria. JAMA. 2007;297:2220–6.PubMedCrossRef
19.
go back to reference Nagel RL, Fabry ME, Steinberg MH. The paradox of hemoglobin SC disease. Blood Rev. 2003;17:167–78.PubMedCrossRef Nagel RL, Fabry ME, Steinberg MH. The paradox of hemoglobin SC disease. Blood Rev. 2003;17:167–78.PubMedCrossRef
20.
go back to reference Modiano D, Bancone G, Ciminelli BM, Pompei F, Blot I, Simpore J, et al. Haemoglobin S and haemoglobin C: ‘quick but costly’ versus ‘slow but gratis’ genetic adaptations to Plasmodium falciparum malaria. Hum Mol Genet. 2008;17:789–99.PubMedCrossRef Modiano D, Bancone G, Ciminelli BM, Pompei F, Blot I, Simpore J, et al. Haemoglobin S and haemoglobin C: ‘quick but costly’ versus ‘slow but gratis’ genetic adaptations to Plasmodium falciparum malaria. Hum Mol Genet. 2008;17:789–99.PubMedCrossRef
21.
go back to reference Drakeley C, Sutherland C, Bousema JT, Sauerwein RW, Targett GA. The epidemiology of Plasmodium falciparum gametocytes: weapons of mass dispersion. Trends Parasitol. 2006;22:424–30.PubMedCrossRef Drakeley C, Sutherland C, Bousema JT, Sauerwein RW, Targett GA. The epidemiology of Plasmodium falciparum gametocytes: weapons of mass dispersion. Trends Parasitol. 2006;22:424–30.PubMedCrossRef
23.
go back to reference Gouagna LC, Bancone G, Yao F, Yameogo B, Dabire KR, Costantini C, et al. Genetic variation in human HBB is associated with Plasmodium falciparum transmission. Nat Genet. 2010;42:328–31.PubMedCrossRef Gouagna LC, Bancone G, Yao F, Yameogo B, Dabire KR, Costantini C, et al. Genetic variation in human HBB is associated with Plasmodium falciparum transmission. Nat Genet. 2010;42:328–31.PubMedCrossRef
24.
go back to reference Ringelhann B, Hathorn MK, Jilly P, Grant F, Parniczky G. A new look at the protection of hemoglobin AS and AC genotypes against Plasmodium falciparum infection: a census tract approach. Am J Hum Genet. 1976;28:270–9.PubMedPubMedCentral Ringelhann B, Hathorn MK, Jilly P, Grant F, Parniczky G. A new look at the protection of hemoglobin AS and AC genotypes against Plasmodium falciparum infection: a census tract approach. Am J Hum Genet. 1976;28:270–9.PubMedPubMedCentral
25.
go back to reference Robert V, Tchuinkam T, Mulder B, Bodo JM, Verhave JP, Carnevale P, et al. Effect of the sickle cell trait status of gametocyte carriers of Plasmodium falciparum on infectivity to anophelines. Am J Trop Med Hyg. 1996;54:111–3.PubMed Robert V, Tchuinkam T, Mulder B, Bodo JM, Verhave JP, Carnevale P, et al. Effect of the sickle cell trait status of gametocyte carriers of Plasmodium falciparum on infectivity to anophelines. Am J Trop Med Hyg. 1996;54:111–3.PubMed
26.
go back to reference Feng Z, Smith DL, McKenzie FE, Levin SA. Coupling ecology and evolution: malaria and the S-gene across time scales. Math Biosci. 2004;189:1–19.PubMedCrossRef Feng Z, Smith DL, McKenzie FE, Levin SA. Coupling ecology and evolution: malaria and the S-gene across time scales. Math Biosci. 2004;189:1–19.PubMedCrossRef
27.
go back to reference Cavalli-Sforza LL, Bodmer WF. The genetics of human populations. San Francisco: WH Freeman; 1971. Cavalli-Sforza LL, Bodmer WF. The genetics of human populations. San Francisco: WH Freeman; 1971.
28.
go back to reference Snow RW, Omumbo JA, Lowe B, Molyneux CS, Obiero JO, Palmer A, et al. Relation between severe malaria morbidity in children and level of Plasmodium falciparum transmission in Africa. Lancet. 1997;349:1650–4.PubMedCrossRef Snow RW, Omumbo JA, Lowe B, Molyneux CS, Obiero JO, Palmer A, et al. Relation between severe malaria morbidity in children and level of Plasmodium falciparum transmission in Africa. Lancet. 1997;349:1650–4.PubMedCrossRef
29.
31.
go back to reference Lawaly YR, Sakuntabhai A, Marrama L, Konate L, Phimpraphi W, Sokhna C, et al. Heritability of the human infectious reservoir of malaria parasites. PLoS One. 2010;5:e11358.PubMedPubMedCentralCrossRef Lawaly YR, Sakuntabhai A, Marrama L, Konate L, Phimpraphi W, Sokhna C, et al. Heritability of the human infectious reservoir of malaria parasites. PLoS One. 2010;5:e11358.PubMedPubMedCentralCrossRef
32.
go back to reference Paul RE, Brey PT. Malaria parasites and red blood cells: from anaemia to transmission. Mol Cells. 2003;15:139–49.PubMed Paul RE, Brey PT. Malaria parasites and red blood cells: from anaemia to transmission. Mol Cells. 2003;15:139–49.PubMed
33.
go back to reference Reece SE, Duncan AB, West SA, Read AF. Host cell preference and variable transmission strategies in malaria parasites. Proc Biol Sci. 2005;272:511–7.PubMedPubMedCentralCrossRef Reece SE, Duncan AB, West SA, Read AF. Host cell preference and variable transmission strategies in malaria parasites. Proc Biol Sci. 2005;272:511–7.PubMedPubMedCentralCrossRef
35.
go back to reference Trager W, Gill GS, Lawrence C, Nagel RL. Plasmodium falciparum: enhanced gametocyte formation in vitro in reticulocyte-rich blood. Exp Parasitol. 1999;91:115–8.PubMedCrossRef Trager W, Gill GS, Lawrence C, Nagel RL. Plasmodium falciparum: enhanced gametocyte formation in vitro in reticulocyte-rich blood. Exp Parasitol. 1999;91:115–8.PubMedCrossRef
36.
go back to reference Mackinnon MJ, Read AF. Genetic relationships between parasite virulence and transmission in the rodent malaria Plasmodium chabaudi. Evolution. 1999;53:689–703.CrossRef Mackinnon MJ, Read AF. Genetic relationships between parasite virulence and transmission in the rodent malaria Plasmodium chabaudi. Evolution. 1999;53:689–703.CrossRef
37.
go back to reference Gupta S, Hill AV. Dynamic interactions in malaria: host heterogeneity meets parasite polymorphism. Proc Biol Sci. 1995;261:271–7.PubMedCrossRef Gupta S, Hill AV. Dynamic interactions in malaria: host heterogeneity meets parasite polymorphism. Proc Biol Sci. 1995;261:271–7.PubMedCrossRef
Metadata
Title
Sickle haemoglobin, haemoglobin C and malaria mortality feedbacks
Authors
Bronner P. Gonçalves
Sunetra Gupta
Bridget S. Penman
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2016
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-1077-5

Other articles of this Issue 1/2016

Malaria Journal 1/2016 Go to the issue