Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

Antiplasmodial activity, in vivo pharmacokinetics and anti-malarial efficacy evaluation of hydroxypyridinone hybrids in a mouse model

Authors: Ntokozo S. Dambuza, Peter Smith, Alicia Evans, Jennifer Norman, Dale Taylor, Andrew Andayi, Timothy Egan, Kelly Chibale, Lubbe Wiesner

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

During the erythrocytic stage in humans, malaria parasites digest haemoglobin of the host cell, and the toxic haem moiety crystallizes into haemozoin. Chloroquine acts by forming toxic complexes with haem molecules and interfering with their crystallization. In chloroquine-resistant strains, the drug is excluded from the site of action, which causes the parasites to accumulate less chloroquine in their acid food vacuoles than chloroquine-sensitive parasites. 3-Hydroxylpyridin-4-ones are known to chelate iron; hydroxypyridone-chloroquine (HPO-CQ) hybrids were synthesized in order to determine whether they can inhibit parasites proliferation in the parasitic digestive vacuole by withholding iron from plasmodial parasite metabolic pathway.

Methods

Two HPO-CQ hybrids were tested against Plasmodium falciparum chloroquine-sensitive (D10 and 3D7) and -resistant strains (Dd2 and K1). The pharmacokinetic properties of active compounds were determined using a mouse model and blood samples were collected at different time intervals and analysed using LC–MS/MS. For in vivo efficacy the mice were infected with Plasmodium berghei in a 4-day Peters’ test. The parasitaemia was determined from day 3 and the course of the infection was followed by microscopic examination of stained blood films every 2–3 days until a rise in parasitaemia was observed in all test subjects.

Results

IC50 values of the two compounds for sensitive and resistant strains were 0.064 and 0.047 µM (compound 1), 0.041 and 0.122 µM (compound 2) and 0.505 and 0.463 µM (compound 1), 0.089 and 0.076 µM (compound 2), respectively. Pharmacokinetic evaluation of these compounds showed low oral bioavailability and this affected in vivo efficacy when compounds were dosed orally. However, when dosed intravenously compound 1 showed a clearance rate of 28 ml/min/kg, an apparent volume of distribution of 20 l/kg and a half-life of 4.3 h. A reduction in parasitaemia was observed when compound 1 was dosed intravenously for four consecutive days in P. berghei-infected mice. However, a rise in parasitaemia levels was observed on day 6 and on day 9 for chloroquine-treated mice.

Conclusion

The hybrid compounds that were tested were able to reduce parasitaemia levels in P. berghei-infected mice when dosed intravenously, but parasites recrudesced 24 h after the administration of the least dose. Despite low oral bioavailability, the IV data obtained suggests that further structural modifications may lead to the identification of more HPO-CQ hybrids with improved pharmacokinetic properties and in vivo efficacy.
Literature
1.
go back to reference Prakash A, Sharma SK, Mohapatra PK, Bhattacharjee K, Gogoi K, Gogoi P, et al. In vitro and in vivo antiplasmodial activity of the root extracts of Brucea mollis Wall. ex Kurz. Parasitol Res. 2013;112:637–42.CrossRefPubMed Prakash A, Sharma SK, Mohapatra PK, Bhattacharjee K, Gogoi K, Gogoi P, et al. In vitro and in vivo antiplasmodial activity of the root extracts of Brucea mollis Wall. ex Kurz. Parasitol Res. 2013;112:637–42.CrossRefPubMed
3.
5.
go back to reference Fitch CD. Involvement of heme in the antimalarial action of chloroquine. Trans Am Clin Climatol Assoc. 1998;109:97–105.PubMedCentralPubMed Fitch CD. Involvement of heme in the antimalarial action of chloroquine. Trans Am Clin Climatol Assoc. 1998;109:97–105.PubMedCentralPubMed
6.
go back to reference Fitch CD. Ferriprotoporphyrin IX, phospholipids, and the antimalarial actions of quinoline drugs. Life Sci. 2004;74:1957–72.CrossRefPubMed Fitch CD. Ferriprotoporphyrin IX, phospholipids, and the antimalarial actions of quinoline drugs. Life Sci. 2004;74:1957–72.CrossRefPubMed
7.
go back to reference Orjih AU. On the mechanism of hemozoin production in malaria parasites: activated erythrocyte membranes promote β-hematin synthesis. Exp Biol Med. 2001;226:746–52. Orjih AU. On the mechanism of hemozoin production in malaria parasites: activated erythrocyte membranes promote β-hematin synthesis. Exp Biol Med. 2001;226:746–52.
8.
go back to reference Combrinck JM, Mabotha TE, Ncokazi KK, Ambele MA, Taylor D, Smith P, et al. Insights into the role of heme in the mechanism of action of antimalarials. ACS Chem Biol. 2012;8:133–7.PubMedCentralCrossRefPubMed Combrinck JM, Mabotha TE, Ncokazi KK, Ambele MA, Taylor D, Smith P, et al. Insights into the role of heme in the mechanism of action of antimalarials. ACS Chem Biol. 2012;8:133–7.PubMedCentralCrossRefPubMed
9.
go back to reference Egan TJ, Ross DC, Adams PA. Quinoline anti-malarial drugs inhibit spontaneous formation of β-haematin (malaria pigment). FEBS Lett. 1994;352:54–7.CrossRefPubMed Egan TJ, Ross DC, Adams PA. Quinoline anti-malarial drugs inhibit spontaneous formation of β-haematin (malaria pigment). FEBS Lett. 1994;352:54–7.CrossRefPubMed
10.
go back to reference Loria P, Miller S, Foley M, Tilley L. Inhibition of the peroxidative degradation of haem as the basis of action of chloroquine and other quinoline antimalarials. Biochem J. 1999;339:363–70.PubMedCentralCrossRefPubMed Loria P, Miller S, Foley M, Tilley L. Inhibition of the peroxidative degradation of haem as the basis of action of chloroquine and other quinoline antimalarials. Biochem J. 1999;339:363–70.PubMedCentralCrossRefPubMed
11.
go back to reference Ferrer P, Tripathi AK, Clark MA, Hand CC, Rienhoff HY, Sullivan DJ. Antimalarial iron chelator, FBS0701, shows asexual and gametocyte Plasmodium falciparum activity and single oral dose cure in a murine malaria model. PLoS One. 2012;7:e37171.PubMedCentralCrossRefPubMed Ferrer P, Tripathi AK, Clark MA, Hand CC, Rienhoff HY, Sullivan DJ. Antimalarial iron chelator, FBS0701, shows asexual and gametocyte Plasmodium falciparum activity and single oral dose cure in a murine malaria model. PLoS One. 2012;7:e37171.PubMedCentralCrossRefPubMed
12.
go back to reference Lytton SD, Mester B, Libman J, Shanzer A, Cabantchik Z. Mode of action of iron (III) chelators as antimalarials: II. Evidence for differential effects on parasite iron-dependent nucleic acid synthesis. Blood. 1994;84:910–5.PubMed Lytton SD, Mester B, Libman J, Shanzer A, Cabantchik Z. Mode of action of iron (III) chelators as antimalarials: II. Evidence for differential effects on parasite iron-dependent nucleic acid synthesis. Blood. 1994;84:910–5.PubMed
13.
go back to reference Andayi WA, Egan TJ, Gut J, Rosenthal PJ, Chibale K. Synthesis, antiplasmodial activity and β-hematin inhibition of hydroxypyridone-chloroquine hybrids. ACS Med Chem Lett. 2013;4:642–6.PubMedCentralCrossRefPubMed Andayi WA, Egan TJ, Gut J, Rosenthal PJ, Chibale K. Synthesis, antiplasmodial activity and β-hematin inhibition of hydroxypyridone-chloroquine hybrids. ACS Med Chem Lett. 2013;4:642–6.PubMedCentralCrossRefPubMed
14.
go back to reference Hershko C, Theanacho E, Spira D, Peter H, Dobbin P, Hider R. The effect of N-alkyl modification on the antimalarial activity of 3-hydroxypyridin-4-one oral iron chelators. Blood. 1991;77:637–43.PubMed Hershko C, Theanacho E, Spira D, Peter H, Dobbin P, Hider R. The effect of N-alkyl modification on the antimalarial activity of 3-hydroxypyridin-4-one oral iron chelators. Blood. 1991;77:637–43.PubMed
15.
16.
go back to reference Makler MT, Ries JM, Williams JA, Bancroft JE, Piper RC, Gibbins BL, et al. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am J Trop Med Hyg. 1993;48:739–41.PubMed Makler MT, Ries JM, Williams JA, Bancroft JE, Piper RC, Gibbins BL, et al. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am J Trop Med Hyg. 1993;48:739–41.PubMed
17.
go back to reference Makler MT, Piper RC, Milhous WK. Lactate dehydrogenase and the diagnosis of malaria. Parasitol Today. 1998;14:376–7.CrossRefPubMed Makler MT, Piper RC, Milhous WK. Lactate dehydrogenase and the diagnosis of malaria. Parasitol Today. 1998;14:376–7.CrossRefPubMed
18.
go back to reference Austin JC, du Toit D, Fraser N, Lloyd P, Mansfield D, Macleod A, et al. 2004. Guidelines on ethics for medical research: use of animals in research and training. South African Medical Research Council. Austin JC, du Toit D, Fraser N, Lloyd P, Mansfield D, Macleod A, et al. 2004. Guidelines on ethics for medical research: use of animals in research and training. South African Medical Research Council.
19.
go back to reference Peters W. The chemotherapy of rodent malaria, XXII. The value of drug-resistant strains of P. berghei in screening for blood schizontocidal activity. Ann Trop Med Parasitol. 1975;69:155–71.PubMed Peters W. The chemotherapy of rodent malaria, XXII. The value of drug-resistant strains of P. berghei in screening for blood schizontocidal activity. Ann Trop Med Parasitol. 1975;69:155–71.PubMed
20.
go back to reference Jun Tang C, Redmond W. Comparison of serial and parallel blood sampling techniques in mouse pharmacokinetics study. 2nd Asian Pacific ISSX Meeting; 2008. Jun Tang C, Redmond W. Comparison of serial and parallel blood sampling techniques in mouse pharmacokinetics study. 2nd Asian Pacific ISSX Meeting; 2008.
22.
go back to reference Ekoue-Kovi K, Yearick K, Iwaniuk DP, Natarajan JK, Alumasa J, de Dios A, et al. Synthesis and antimalarial activity of new 4-amino-7-chloroquinolyl amides, sulfonamides, ureas and thioureas. Bioorg Med Chem Lett. 2009;17:270–83.CrossRef Ekoue-Kovi K, Yearick K, Iwaniuk DP, Natarajan JK, Alumasa J, de Dios A, et al. Synthesis and antimalarial activity of new 4-amino-7-chloroquinolyl amides, sulfonamides, ureas and thioureas. Bioorg Med Chem Lett. 2009;17:270–83.CrossRef
23.
go back to reference Kaushik NK, Sharma J, Sahal D. Anti-plasmodial action of de novo-designed, cationic, lysine-branched, amphipathic, helical peptides. Malar J. 2012;11:256.PubMedCentralCrossRefPubMed Kaushik NK, Sharma J, Sahal D. Anti-plasmodial action of de novo-designed, cationic, lysine-branched, amphipathic, helical peptides. Malar J. 2012;11:256.PubMedCentralCrossRefPubMed
24.
go back to reference Patel K, Batty KT, Moore BR, Gibbons PL, Bulitta JB, Kirkpatrick CM. Mechanism-based model of parasite growth and dihydroartemisinin pharmacodynamics in murine malaria. Antimicrob Agents Chemother. 2013;57:508–16.PubMedCentralCrossRefPubMed Patel K, Batty KT, Moore BR, Gibbons PL, Bulitta JB, Kirkpatrick CM. Mechanism-based model of parasite growth and dihydroartemisinin pharmacodynamics in murine malaria. Antimicrob Agents Chemother. 2013;57:508–16.PubMedCentralCrossRefPubMed
25.
go back to reference Salako LA. Pharmacokinetics of antimalarial drugs; their therapeutic and toxicological implications. Ann Ist Super Sanità. 1985;21:15–25. Salako LA. Pharmacokinetics of antimalarial drugs; their therapeutic and toxicological implications. Ann Ist Super Sanità. 1985;21:15–25.
Metadata
Title
Antiplasmodial activity, in vivo pharmacokinetics and anti-malarial efficacy evaluation of hydroxypyridinone hybrids in a mouse model
Authors
Ntokozo S. Dambuza
Peter Smith
Alicia Evans
Jennifer Norman
Dale Taylor
Andrew Andayi
Timothy Egan
Kelly Chibale
Lubbe Wiesner
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-1032-5

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue