Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Review

Sugar activation and glycosylation in Plasmodium

Authors: Marta Cova, João A. Rodrigues, Terry K. Smith, Luis Izquierdo

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Glycoconjugates are important mediators of host-pathogen interactions and are usually very abundant in the surface of many protozoan parasites. However, in the particular case of Plasmodium species, previous works show that glycosylphosphatidylinositol anchor modifications, and to an unknown extent, a severely truncated N-glycosylation are the only glycosylation processes taking place in the parasite. Nevertheless, a detailed analysis of the parasite genome and the recent identification of the sugar nucleotide precursors biosynthesized by Plasmodium falciparum support a picture in which several overlooked, albeit not very prominent glycosylations may be occurring during the parasite life cycle. In this work, the authors review recent developments in the characterization of the biosynthesis of glycosylation precursors in the parasite, focusing on the outline of the possible fates of these precursors.
Literature
1.
go back to reference Guha-Niyogi A, Sullivan DR, Turco SJ. Glycoconjugate structures of parasitic protozoa. Glycobiology. 2001;11:45R–59R.CrossRefPubMed Guha-Niyogi A, Sullivan DR, Turco SJ. Glycoconjugate structures of parasitic protozoa. Glycobiology. 2001;11:45R–59R.CrossRefPubMed
2.
go back to reference Gowda DC, Gupta P, Davidson EA. Glycosylphosphatidylinositol anchors represent the major carbohydrate modification in proteins of intraerythrocytic stage Plasmodium falciparum. J Biol Chem. 1997;272:6428–39.CrossRefPubMed Gowda DC, Gupta P, Davidson EA. Glycosylphosphatidylinositol anchors represent the major carbohydrate modification in proteins of intraerythrocytic stage Plasmodium falciparum. J Biol Chem. 1997;272:6428–39.CrossRefPubMed
3.
go back to reference Naik RS, Branch OH, Woods AS, Vijaykumar M, Perkins DJ, Nahlen BL, et al. Glycosylphosphatidylinositol anchors of Plasmodium falciparum: molecular characterization and naturally elicited antibody response that may provide immunity to malaria pathogenesis. J Exp Med. 2000;192:1563–76.PubMedCentralCrossRefPubMed Naik RS, Branch OH, Woods AS, Vijaykumar M, Perkins DJ, Nahlen BL, et al. Glycosylphosphatidylinositol anchors of Plasmodium falciparum: molecular characterization and naturally elicited antibody response that may provide immunity to malaria pathogenesis. J Exp Med. 2000;192:1563–76.PubMedCentralCrossRefPubMed
4.
go back to reference Ferguson MA. The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci. 1999;112(Pt 1):2799–809.PubMed Ferguson MA. The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci. 1999;112(Pt 1):2799–809.PubMed
5.
go back to reference Smith TK, Gerold P, Crossman A, Paterson MJ, Borissow CN, Brimacombe JS, et al. Substrate specificity of the Plasmodium falciparum glycosylphosphatidylinositol biosynthetic pathway and inhibition by species-specific suicide substrates. Biochemistry. 2002;41:12395–406.CrossRefPubMed Smith TK, Gerold P, Crossman A, Paterson MJ, Borissow CN, Brimacombe JS, et al. Substrate specificity of the Plasmodium falciparum glycosylphosphatidylinositol biosynthetic pathway and inhibition by species-specific suicide substrates. Biochemistry. 2002;41:12395–406.CrossRefPubMed
6.
go back to reference Bushkin GG, Ratner DM, Cui J, Banerjee S, Duraisingh MT, Jennings CV, et al. Suggestive evidence for Darwinian selection against asparagine-linked glycans of Plasmodium falciparum and Toxoplasma gondii. Eukaryot Cell. 2010;9:228–41.PubMedCentralCrossRefPubMed Bushkin GG, Ratner DM, Cui J, Banerjee S, Duraisingh MT, Jennings CV, et al. Suggestive evidence for Darwinian selection against asparagine-linked glycans of Plasmodium falciparum and Toxoplasma gondii. Eukaryot Cell. 2010;9:228–41.PubMedCentralCrossRefPubMed
7.
go back to reference Samuelson J, Banerjee S, Magnelli P, Cui J, Kelleher DJ, Gilmore R, et al. The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases. Proc Natl Acad Sci USA. 2005;102:1548–53.PubMedCentralCrossRefPubMed Samuelson J, Banerjee S, Magnelli P, Cui J, Kelleher DJ, Gilmore R, et al. The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases. Proc Natl Acad Sci USA. 2005;102:1548–53.PubMedCentralCrossRefPubMed
8.
go back to reference de Macedo CS, Schwarz RT, Todeschini AR, Previato JO, Mendonça-Previato L. Overlooked post-translational modifications of proteins in Plasmodium falciparum: N- and O-glycosylation—a review. Mem Inst Oswaldo Cruz. 2010;105:949–56.CrossRefPubMed de Macedo CS, Schwarz RT, Todeschini AR, Previato JO, Mendonça-Previato L. Overlooked post-translational modifications of proteins in Plasmodium falciparum: N- and O-glycosylation—a review. Mem Inst Oswaldo Cruz. 2010;105:949–56.CrossRefPubMed
9.
go back to reference Von Itzstein M, Plebanski M, Cooke BM, Coppel RL. Hot, sweet and sticky: the glycobiology of Plasmodium falciparum. Trends Parasitol. 2008;24:210–8.CrossRef Von Itzstein M, Plebanski M, Cooke BM, Coppel RL. Hot, sweet and sticky: the glycobiology of Plasmodium falciparum. Trends Parasitol. 2008;24:210–8.CrossRef
11.
go back to reference Kirk K, Horner HA, Kirk J. Glucose uptake in Plasmodium falciparum-infected erythrocytes is an equilibrative not an active process. Mol Biochem Parasitol. 1996;82:195–205.CrossRefPubMed Kirk K, Horner HA, Kirk J. Glucose uptake in Plasmodium falciparum-infected erythrocytes is an equilibrative not an active process. Mol Biochem Parasitol. 1996;82:195–205.CrossRefPubMed
12.
go back to reference Slavic K, Straschil U, Reininger L, Doerig C, Morin C, Tewari R, et al. Life cycle studies of the hexose transporter of Plasmodium species and genetic validation of their essentiality. Mol Microbiol. 2010;75:1402–13.PubMedCentralCrossRefPubMed Slavic K, Straschil U, Reininger L, Doerig C, Morin C, Tewari R, et al. Life cycle studies of the hexose transporter of Plasmodium species and genetic validation of their essentiality. Mol Microbiol. 2010;75:1402–13.PubMedCentralCrossRefPubMed
13.
go back to reference Ginsburg H. Progress in in silico functional genomics: the malaria metabolic pathways database. Trends Parasitol. 2006;22:238–40.CrossRefPubMed Ginsburg H. Progress in in silico functional genomics: the malaria metabolic pathways database. Trends Parasitol. 2006;22:238–40.CrossRefPubMed
14.
go back to reference Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, et al. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res. 2009;37(Database issue):D539–43. Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, et al. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res. 2009;37(Database issue):D539–43.
15.
go back to reference Sanz S, Bandini G, Ospina D, Bernabeu M, Mariño K, Fernández-Becerra C, et al. Biosynthesis of GDP-fucose and other sugar nucleotides in the blood stages of Plasmodium falciparum. J Biol Chem. 2013;288:16506–17.PubMedCentralCrossRefPubMed Sanz S, Bandini G, Ospina D, Bernabeu M, Mariño K, Fernández-Becerra C, et al. Biosynthesis of GDP-fucose and other sugar nucleotides in the blood stages of Plasmodium falciparum. J Biol Chem. 2013;288:16506–17.PubMedCentralCrossRefPubMed
16.
go back to reference Dieckmann-Schuppert A, Bender S, Odenthal-Schnittler M, Bause E, Schwarz RT. Apparent lack of N-glycosylation in the asexual intraerythrocytic stage of Plasmodium falciparum. Eur J Biochem. 1992;205:815–25.CrossRefPubMed Dieckmann-Schuppert A, Bender S, Odenthal-Schnittler M, Bause E, Schwarz RT. Apparent lack of N-glycosylation in the asexual intraerythrocytic stage of Plasmodium falciparum. Eur J Biochem. 1992;205:815–25.CrossRefPubMed
17.
go back to reference Doud MB, Koksal AC, Mi L-Z, Song G, Lu C, Springer TA. Unexpected fold in the circumsporozoite protein target of malaria vaccines. Proc Natl Acad Sci USA. 2012;109:7817–22.PubMedCentralCrossRefPubMed Doud MB, Koksal AC, Mi L-Z, Song G, Lu C, Springer TA. Unexpected fold in the circumsporozoite protein target of malaria vaccines. Proc Natl Acad Sci USA. 2012;109:7817–22.PubMedCentralCrossRefPubMed
18.
go back to reference Song G, Koksal AC, Lu C, Springer TA. Shape change in the receptor for gliding motility in Plasmodium sporozoites. Proc Natl Acad Sci USA. 2012;109:21420–5.PubMedCentralCrossRefPubMed Song G, Koksal AC, Lu C, Springer TA. Shape change in the receptor for gliding motility in Plasmodium sporozoites. Proc Natl Acad Sci USA. 2012;109:21420–5.PubMedCentralCrossRefPubMed
19.
go back to reference Yilmaz B, Portugal S, Tran TM, Gozzelino R, Ramos S, Gomes J, et al. Gut microbiota elicits a protective immune response against malaria transmission. Cell. 2014;159:1277–89.PubMedCentralCrossRefPubMed Yilmaz B, Portugal S, Tran TM, Gozzelino R, Ramos S, Gomes J, et al. Gut microbiota elicits a protective immune response against malaria transmission. Cell. 2014;159:1277–89.PubMedCentralCrossRefPubMed
20.
go back to reference Gerold P, Dieckmann-Schuppert A, Schwarz RT. Glycosylphosphatidylinositols synthesized by asexual erythrocytic stages of the malarial parasite, Plasmodium falciparum. Candidates for plasmodial glycosylphosphatidylinositol membrane anchor precursors and pathogenicity factors. J Biol Chem. 1994;269:2597–606.PubMed Gerold P, Dieckmann-Schuppert A, Schwarz RT. Glycosylphosphatidylinositols synthesized by asexual erythrocytic stages of the malarial parasite, Plasmodium falciparum. Candidates for plasmodial glycosylphosphatidylinositol membrane anchor precursors and pathogenicity factors. J Biol Chem. 1994;269:2597–606.PubMed
21.
go back to reference Schmidt A, Schwarz RT, Gerold P. Plasmodium falciparum: asexual erythrocytic stages synthesize two structurally distinct free and protein-bound glycosylphosphatidylinositols in a maturation-dependent manner. Exp Parasitol. 1998;88:95–102.CrossRefPubMed Schmidt A, Schwarz RT, Gerold P. Plasmodium falciparum: asexual erythrocytic stages synthesize two structurally distinct free and protein-bound glycosylphosphatidylinositols in a maturation-dependent manner. Exp Parasitol. 1998;88:95–102.CrossRefPubMed
22.
go back to reference Schofield L, Hewitt MC, Evans K, Siomos M-A, Seeberger PH. Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria. Nature. 2002;418:785–9.CrossRefPubMed Schofield L, Hewitt MC, Evans K, Siomos M-A, Seeberger PH. Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria. Nature. 2002;418:785–9.CrossRefPubMed
23.
go back to reference Schofield L, Novakovic S, Gerold P, Schwarz RT, McConville MJ, Tachado SD. Glycosylphosphatidylinositol toxin of Plasmodium up-regulates intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin expression in vascular endothelial cells and increases leukocyte and parasite cytoadherence via tyrosine kinase-dependent signal transduction. J Immunol. 1996;156:1886–96.PubMed Schofield L, Novakovic S, Gerold P, Schwarz RT, McConville MJ, Tachado SD. Glycosylphosphatidylinositol toxin of Plasmodium up-regulates intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin expression in vascular endothelial cells and increases leukocyte and parasite cytoadherence via tyrosine kinase-dependent signal transduction. J Immunol. 1996;156:1886–96.PubMed
24.
go back to reference Tachado SD, Gerold P, McConville MJ, Baldwin T, Quilici D, Schwarz RT, et al. Glycosylphosphatidylinositol toxin of Plasmodium induces nitric oxide synthase expression in macrophages and vascular endothelial cells by a protein tyrosine kinase-dependent and protein kinase C-dependent signaling pathway. J Immunol. 1996;156:1897–907.PubMed Tachado SD, Gerold P, McConville MJ, Baldwin T, Quilici D, Schwarz RT, et al. Glycosylphosphatidylinositol toxin of Plasmodium induces nitric oxide synthase expression in macrophages and vascular endothelial cells by a protein tyrosine kinase-dependent and protein kinase C-dependent signaling pathway. J Immunol. 1996;156:1897–907.PubMed
25.
go back to reference McConville MJ, Ferguson MA. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J. 1993;294:305–24.PubMedCentralCrossRefPubMed McConville MJ, Ferguson MA. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J. 1993;294:305–24.PubMedCentralCrossRefPubMed
26.
go back to reference Shams-Eldin H, de Macedo CS, Niehus S, Dorn C, Kimmel J, Azzouz N, et al. Plasmodium falciparum dolichol phosphate mannose synthase represents a novel clade. Biochem Biophys Res Commun. 2008;370:388–93.CrossRefPubMed Shams-Eldin H, de Macedo CS, Niehus S, Dorn C, Kimmel J, Azzouz N, et al. Plasmodium falciparum dolichol phosphate mannose synthase represents a novel clade. Biochem Biophys Res Commun. 2008;370:388–93.CrossRefPubMed
27.
go back to reference Delorenzi M, Sexton A, Shams-Eldin H, Schwarz RT, Speed T, Schofield L. Genes for glycosylphosphatidylinositol toxin biosynthesis in Plasmodium falciparum. Infect Immun. 2002;70:4510–22.PubMedCentralCrossRefPubMed Delorenzi M, Sexton A, Shams-Eldin H, Schwarz RT, Speed T, Schofield L. Genes for glycosylphosphatidylinositol toxin biosynthesis in Plasmodium falciparum. Infect Immun. 2002;70:4510–22.PubMedCentralCrossRefPubMed
28.
go back to reference Aurrecoechea C, Barreto A, Brestelli J, Brunk BP, Cade S, Doherty R, et al. EuPathDB: the eukaryotic pathogen database. Nucleic Acids Res 2013, 41(Database issue):D684–91. Aurrecoechea C, Barreto A, Brestelli J, Brunk BP, Cade S, Doherty R, et al. EuPathDB: the eukaryotic pathogen database. Nucleic Acids Res 2013, 41(Database issue):D684–91.
29.
go back to reference Cortes LK, Scarcelli JJ, Taron CH. Complementation of essential yeast GPI mannosyltransferase mutations suggests a novel specificity for certain Trypanosoma and Plasmodium PigB proteins. PLoS ONE. 2014;9:e87673.PubMedCentralCrossRefPubMed Cortes LK, Scarcelli JJ, Taron CH. Complementation of essential yeast GPI mannosyltransferase mutations suggests a novel specificity for certain Trypanosoma and Plasmodium PigB proteins. PLoS ONE. 2014;9:e87673.PubMedCentralCrossRefPubMed
30.
go back to reference Gilson PR, Nebl T, Vukcevic D, Moritz RL, Sargeant T, Speed TP, et al. Identification and stoichiometry of glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics. 2006;5:1286–99.CrossRefPubMed Gilson PR, Nebl T, Vukcevic D, Moritz RL, Sargeant T, Speed TP, et al. Identification and stoichiometry of glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics. 2006;5:1286–99.CrossRefPubMed
31.
go back to reference Wang Q, Fujioka H, Nussenzweig V. Mutational analysis of the GPI-anchor addition sequence from the circumsporozoite protein of Plasmodium. Cell Microbiol. 2005;7:1616–26.CrossRefPubMed Wang Q, Fujioka H, Nussenzweig V. Mutational analysis of the GPI-anchor addition sequence from the circumsporozoite protein of Plasmodium. Cell Microbiol. 2005;7:1616–26.CrossRefPubMed
32.
go back to reference Van Dijk MR, Janse CJ, Thompson J, Waters AP, Braks JA, Dodemont HJ, et al. A central role for P48/45 in malaria parasite male gamete fertility. Cell. 2001;104:153–64.CrossRefPubMed Van Dijk MR, Janse CJ, Thompson J, Waters AP, Braks JA, Dodemont HJ, et al. A central role for P48/45 in malaria parasite male gamete fertility. Cell. 2001;104:153–64.CrossRefPubMed
33.
go back to reference Sanders PR, Kats LM, Drew DR, O’Donnell RA, O’Neill M, Maier AG, et al. A set of glycosylphosphatidyl inositol-anchored membrane proteins of Plasmodium falciparum is refractory to genetic deletion. Infect Immun. 2006;74:4330–8.PubMedCentralCrossRefPubMed Sanders PR, Kats LM, Drew DR, O’Donnell RA, O’Neill M, Maier AG, et al. A set of glycosylphosphatidyl inositol-anchored membrane proteins of Plasmodium falciparum is refractory to genetic deletion. Infect Immun. 2006;74:4330–8.PubMedCentralCrossRefPubMed
34.
go back to reference Doucey MA, Hess D, Cacan R, Hofsteenge J. Protein C-mannosylation is enzyme-catalysed and uses dolichyl-phosphate-mannose as a precursor. Mol Biol Cell. 1998;9:291–300.PubMedCentralCrossRefPubMed Doucey MA, Hess D, Cacan R, Hofsteenge J. Protein C-mannosylation is enzyme-catalysed and uses dolichyl-phosphate-mannose as a precursor. Mol Biol Cell. 1998;9:291–300.PubMedCentralCrossRefPubMed
35.
go back to reference Hofsteenge J, Huwiler KG, Macek B, Hess D, Lawler J, Mosher DF, et al. C-mannosylation and O-fucosylation of the thrombospondin type 1 module. J Biol Chem. 2001;276:6485–98.CrossRefPubMed Hofsteenge J, Huwiler KG, Macek B, Hess D, Lawler J, Mosher DF, et al. C-mannosylation and O-fucosylation of the thrombospondin type 1 module. J Biol Chem. 2001;276:6485–98.CrossRefPubMed
36.
go back to reference Tucker RP. The thrombospondin type 1 repeat superfamily. Int J Biochem Cell Biol. 2004;36:969–74.CrossRefPubMed Tucker RP. The thrombospondin type 1 repeat superfamily. Int J Biochem Cell Biol. 2004;36:969–74.CrossRefPubMed
37.
38.
go back to reference Buettner FFR, Ashikov A, Tiemann B, Lehle L, Bakker HC. Elegans DPY-19 is a C-mannosyltransferase glycosylating thrombospondin repeats. Mol Cell. 2013;50:295–302.CrossRefPubMed Buettner FFR, Ashikov A, Tiemann B, Lehle L, Bakker HC. Elegans DPY-19 is a C-mannosyltransferase glycosylating thrombospondin repeats. Mol Cell. 2013;50:295–302.CrossRefPubMed
39.
40.
go back to reference Becker DJ, Lowe JB. Fucose: biosynthesis and biological function in mammals. Glycobiology. 2003;13:41R–53R.CrossRefPubMed Becker DJ, Lowe JB. Fucose: biosynthesis and biological function in mammals. Glycobiology. 2003;13:41R–53R.CrossRefPubMed
41.
go back to reference Dieckmann-Schuppert A, Bause E, Schwarz RT. Glycosylation reactions in Plasmodium falciparum, Toxoplasma gondii, and Trypanosoma brucei brucei probed by the use of synthetic peptides. Biochim Biophys Acta. 1994;1199:37–44.CrossRefPubMed Dieckmann-Schuppert A, Bause E, Schwarz RT. Glycosylation reactions in Plasmodium falciparum, Toxoplasma gondii, and Trypanosoma brucei brucei probed by the use of synthetic peptides. Biochim Biophys Acta. 1994;1199:37–44.CrossRefPubMed
42.
go back to reference Luo Y, Koles K, Vorndam W, Haltiwanger RS, Panin VM. Protein O-fucosyltransferase 2 adds O-fucose to thrombospondin type 1 repeats. J Biol Chem. 2006;281:9393–9.CrossRefPubMed Luo Y, Koles K, Vorndam W, Haltiwanger RS, Panin VM. Protein O-fucosyltransferase 2 adds O-fucose to thrombospondin type 1 repeats. J Biol Chem. 2006;281:9393–9.CrossRefPubMed
43.
go back to reference Sultan AA, Thathy V, Frevert U, Robson KJ, Crisanti A, Nussenzweig V, et al. TRAP is necessary for gliding motility and infectivity of Plasmodium sporozoites. Cell. 1997;90:511–22.CrossRefPubMed Sultan AA, Thathy V, Frevert U, Robson KJ, Crisanti A, Nussenzweig V, et al. TRAP is necessary for gliding motility and infectivity of Plasmodium sporozoites. Cell. 1997;90:511–22.CrossRefPubMed
44.
go back to reference Uchime O, Herrera R, Reiter K, Kotova S, Shimp RL, Miura K, et al. Analysis of the conformation and function of the Plasmodium falciparum merozoite proteins MTRAP and PTRAMP. Eukaryot Cell. 2012;11:615–25.PubMedCentralCrossRefPubMed Uchime O, Herrera R, Reiter K, Kotova S, Shimp RL, Miura K, et al. Analysis of the conformation and function of the Plasmodium falciparum merozoite proteins MTRAP and PTRAMP. Eukaryot Cell. 2012;11:615–25.PubMedCentralCrossRefPubMed
45.
go back to reference Agnandji ST, Lell B, Soulanoudjingar SS, Fernandes JF, Abossolo BP, Conzelmann C, et al. First results of phase 3 trial of RTS, S/AS01 malaria vaccine in African children. N Engl J Med. 2011;365:1863–75.CrossRefPubMed Agnandji ST, Lell B, Soulanoudjingar SS, Fernandes JF, Abossolo BP, Conzelmann C, et al. First results of phase 3 trial of RTS, S/AS01 malaria vaccine in African children. N Engl J Med. 2011;365:1863–75.CrossRefPubMed
46.
go back to reference Lindner SE, Swearingen KE, Harupa A, Vaughan AM, Sinnis P, Moritz RL, et al. Total and putative surface proteomics of malaria parasite salivary gland sporozoites. Mol Cell Proteomics. 2013;12:1127–43.PubMedCentralCrossRefPubMed Lindner SE, Swearingen KE, Harupa A, Vaughan AM, Sinnis P, Moritz RL, et al. Total and putative surface proteomics of malaria parasite salivary gland sporozoites. Mol Cell Proteomics. 2013;12:1127–43.PubMedCentralCrossRefPubMed
47.
go back to reference Naderer T, Heng J, McConville MJ. Evidence that intracellular stages of Leishmania major utilize amino sugars as a major carbon source. PLoS Pathog. 2010;6:e1001245.PubMedCentralCrossRefPubMed Naderer T, Heng J, McConville MJ. Evidence that intracellular stages of Leishmania major utilize amino sugars as a major carbon source. PLoS Pathog. 2010;6:e1001245.PubMedCentralCrossRefPubMed
48.
go back to reference Stokes MJ, Güther MLS, Turnock DC, Prescott AR, Martin KL, Alphey MS, et al. The synthesis of UDP-N-acetylglucosamine is essential for bloodstream form Trypanosoma brucei in vitro and in vivo and UDP-N-acetylglucosamine starvation reveals a hierarchy in parasite protein glycosylation. J Biol Chem. 2008;283:16147–61.PubMedCentralCrossRefPubMed Stokes MJ, Güther MLS, Turnock DC, Prescott AR, Martin KL, Alphey MS, et al. The synthesis of UDP-N-acetylglucosamine is essential for bloodstream form Trypanosoma brucei in vitro and in vivo and UDP-N-acetylglucosamine starvation reveals a hierarchy in parasite protein glycosylation. J Biol Chem. 2008;283:16147–61.PubMedCentralCrossRefPubMed
49.
go back to reference Mariño K, Güther MLS, Wernimont AK, Qiu W, Hui R, Ferguson MAJ. Characterization, localization, essentiality, and high-resolution crystal structure of glucosamine 6-phosphate N-acetyltransferase from Trypanosoma brucei. Eukaryot Cell. 2011;10:985–97.PubMedCentralCrossRefPubMed Mariño K, Güther MLS, Wernimont AK, Qiu W, Hui R, Ferguson MAJ. Characterization, localization, essentiality, and high-resolution crystal structure of glucosamine 6-phosphate N-acetyltransferase from Trypanosoma brucei. Eukaryot Cell. 2011;10:985–97.PubMedCentralCrossRefPubMed
50.
go back to reference Mio T, Yamada-Okabe T, Arisawa M, Yamada-Okabe H. Saccharomyces cerevisiae GNA1, an essential gene encoding a novel acetyltransferase involved in UDP-N-acetylglucosamine synthesis. J Biol Chem. 1999;274:424–9.CrossRefPubMed Mio T, Yamada-Okabe T, Arisawa M, Yamada-Okabe H. Saccharomyces cerevisiae GNA1, an essential gene encoding a novel acetyltransferase involved in UDP-N-acetylglucosamine synthesis. J Biol Chem. 1999;274:424–9.CrossRefPubMed
51.
go back to reference Gerold P, Jung N, Azzouz N, Freiberg N, Kobe S, Schwarz RT. Biosynthesis of glycosylphosphatidylinositols of Plasmodium falciparum in a cell-free incubation system: inositol acylation is needed for mannosylation of glycosylphosphatidylinositols. Biochem J. 1999;344:731–8.PubMedCentralCrossRefPubMed Gerold P, Jung N, Azzouz N, Freiberg N, Kobe S, Schwarz RT. Biosynthesis of glycosylphosphatidylinositols of Plasmodium falciparum in a cell-free incubation system: inositol acylation is needed for mannosylation of glycosylphosphatidylinositols. Biochem J. 1999;344:731–8.PubMedCentralCrossRefPubMed
52.
go back to reference Kimura EA, Couto AS, Peres VJ, Casal OL, Katzin AM. N-linked glycoproteins are related to schizogony of the intraerythrocytic stage in Plasmodium falciparum. J Biol Chem. 1996;271:14452–61.CrossRefPubMed Kimura EA, Couto AS, Peres VJ, Casal OL, Katzin AM. N-linked glycoproteins are related to schizogony of the intraerythrocytic stage in Plasmodium falciparum. J Biol Chem. 1996;271:14452–61.CrossRefPubMed
53.
go back to reference Kornfeld R, Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–64.CrossRefPubMed Kornfeld R, Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–64.CrossRefPubMed
54.
go back to reference Gao X-D, Tachikawa H, Sato T, Jigami Y, Dean N. Alg14 recruits Alg13 to the cytoplasmic face of the endoplasmic reticulum to form a novel bipartite UDP-N-acetylglucosamine transferase required for the second step of N-linked glycosylation. J Biol Chem. 2005;280:36254–62.CrossRefPubMed Gao X-D, Tachikawa H, Sato T, Jigami Y, Dean N. Alg14 recruits Alg13 to the cytoplasmic face of the endoplasmic reticulum to form a novel bipartite UDP-N-acetylglucosamine transferase required for the second step of N-linked glycosylation. J Biol Chem. 2005;280:36254–62.CrossRefPubMed
55.
go back to reference Lu J, Takahashi T, Ohoka A, Nakajima K, Hashimoto R, Miura N, et al. Alg14 organizes the formation of a multiglycosyltransferase complex involved in initiation of lipid-linked oligosaccharide biosynthesis. Glycobiology. 2012;22:504–16.CrossRefPubMed Lu J, Takahashi T, Ohoka A, Nakajima K, Hashimoto R, Miura N, et al. Alg14 organizes the formation of a multiglycosyltransferase complex involved in initiation of lipid-linked oligosaccharide biosynthesis. Glycobiology. 2012;22:504–16.CrossRefPubMed
56.
go back to reference Gao X-D, Moriyama S, Miura N, Dean N, Nishimura S-I. Interaction between the C termini of Alg13 and Alg14 mediates formation of the active UDP-N-acetylglucosamine transferase complex. J Biol Chem. 2008;283:32534–41.PubMedCentralCrossRefPubMed Gao X-D, Moriyama S, Miura N, Dean N, Nishimura S-I. Interaction between the C termini of Alg13 and Alg14 mediates formation of the active UDP-N-acetylglucosamine transferase complex. J Biol Chem. 2008;283:32534–41.PubMedCentralCrossRefPubMed
57.
go back to reference Silberstein S, Gilmore R. Biochemistry, molecular biology, and genetics of the oligosaccharyltransferase. FASEB J. 1996;10:849–58.PubMed Silberstein S, Gilmore R. Biochemistry, molecular biology, and genetics of the oligosaccharyltransferase. FASEB J. 1996;10:849–58.PubMed
58.
go back to reference Yan Q, Lennarz WJ. Studies on the function of oligosaccharyl transferase subunits. Stt3p is directly involved in the glycosylation process. J Biol Chem. 2002;277:47692–700.CrossRefPubMed Yan Q, Lennarz WJ. Studies on the function of oligosaccharyl transferase subunits. Stt3p is directly involved in the glycosylation process. J Biol Chem. 2002;277:47692–700.CrossRefPubMed
59.
go back to reference Naik RS, Venkatesan M, Gowda DC. Plasmodium falciparum: the lethal effects of tunicamycin and mevastatin on the parasite are not mediated by the inhibition of N-linked oligosaccharide biosynthesis. Exp Parasitol. 2001;98:110–4.CrossRefPubMed Naik RS, Venkatesan M, Gowda DC. Plasmodium falciparum: the lethal effects of tunicamycin and mevastatin on the parasite are not mediated by the inhibition of N-linked oligosaccharide biosynthesis. Exp Parasitol. 2001;98:110–4.CrossRefPubMed
60.
go back to reference Dieckmann-Schuppert A, Hensel J, Schwarz RT. Studies on the effect of tunicamycin on erythrocytic stages of Plasmodium falciparum. Biochem Soc Trans. 1992;20:184S.CrossRefPubMed Dieckmann-Schuppert A, Hensel J, Schwarz RT. Studies on the effect of tunicamycin on erythrocytic stages of Plasmodium falciparum. Biochem Soc Trans. 1992;20:184S.CrossRefPubMed
61.
go back to reference Watanabe R, Inoue N, Westfall B, Taron CH, Orlean P, Takeda J, et al. The first step of glycosylphosphatidylinositol biosynthesis is mediated by a complex of PIG-A, PIG-H, PIG-C and GPI1. EMBO J. 1998;17:877–85.PubMedCentralCrossRefPubMed Watanabe R, Inoue N, Westfall B, Taron CH, Orlean P, Takeda J, et al. The first step of glycosylphosphatidylinositol biosynthesis is mediated by a complex of PIG-A, PIG-H, PIG-C and GPI1. EMBO J. 1998;17:877–85.PubMedCentralCrossRefPubMed
62.
go back to reference Miyata T, Takeda J, Iida Y, Yamada N, Inoue N, Takahashi M, et al. The cloning of PIG-A, a component in the early step of GPI-anchor biosynthesis. Science. 1993;259:1318–20.CrossRefPubMed Miyata T, Takeda J, Iida Y, Yamada N, Inoue N, Takahashi M, et al. The cloning of PIG-A, a component in the early step of GPI-anchor biosynthesis. Science. 1993;259:1318–20.CrossRefPubMed
63.
go back to reference Inoue N, Watanabe R, Takeda J, Kinoshita T. PIG-C, one of the three human genes involved in the first step of glycosylphosphatidylinositol biosynthesis is a homologue of Saccharomyces cerevisiae GPI2. Biochem Biophys Res Commun. 1996;226:193–9.CrossRefPubMed Inoue N, Watanabe R, Takeda J, Kinoshita T. PIG-C, one of the three human genes involved in the first step of glycosylphosphatidylinositol biosynthesis is a homologue of Saccharomyces cerevisiae GPI2. Biochem Biophys Res Commun. 1996;226:193–9.CrossRefPubMed
64.
go back to reference Hong Y, Ohishi K, Watanabe R, Endo Y, Maeda Y, Kinoshita T. GPI1 stabilizes an enzyme essential in the first step of glycosylphosphatidylinositol biosynthesis. J Biol Chem. 1999;274:18582–8.CrossRefPubMed Hong Y, Ohishi K, Watanabe R, Endo Y, Maeda Y, Kinoshita T. GPI1 stabilizes an enzyme essential in the first step of glycosylphosphatidylinositol biosynthesis. J Biol Chem. 1999;274:18582–8.CrossRefPubMed
65.
go back to reference Watanabe R, Ohishi K, Maeda Y, Nakamura N, Kinoshita T. Mammalian PIG-L and its yeast homologue Gpi12p are N-acetylglucosaminylphosphatidylinositol de-N-acetylases essential in glycosylphosphatidylinositol biosynthesis. Biochem J. 1999;339:185–92.PubMedCentralPubMed Watanabe R, Ohishi K, Maeda Y, Nakamura N, Kinoshita T. Mammalian PIG-L and its yeast homologue Gpi12p are N-acetylglucosaminylphosphatidylinositol de-N-acetylases essential in glycosylphosphatidylinositol biosynthesis. Biochem J. 1999;339:185–92.PubMedCentralPubMed
66.
go back to reference Arrighi RBG, Faye I. Plasmodium falciparum GPI toxin: a common foe for man and mosquito. Acta Trop. 2010;114:162–5.CrossRefPubMed Arrighi RBG, Faye I. Plasmodium falciparum GPI toxin: a common foe for man and mosquito. Acta Trop. 2010;114:162–5.CrossRefPubMed
67.
68.
69.
go back to reference Damerow S, Lamerz A-C, Haselhorst T, Führing J, Zarnovican P, von Itzstein M, et al. Leishmania UDP-sugar pyrophosphorylase: the missing link in galactose salvage? J Biol Chem. 2010;285:878–87.PubMedCentralCrossRefPubMed Damerow S, Lamerz A-C, Haselhorst T, Führing J, Zarnovican P, von Itzstein M, et al. Leishmania UDP-sugar pyrophosphorylase: the missing link in galactose salvage? J Biol Chem. 2010;285:878–87.PubMedCentralCrossRefPubMed
70.
go back to reference Coleman HD, Ellis DD, Gilbert M, Mansfield SD. Up-regulation of sucrose synthase and UDP-glucose pyrophosphorylase impacts plant growth and metabolism. Plant Biotechnol J. 2006;4:87–101.CrossRefPubMed Coleman HD, Ellis DD, Gilbert M, Mansfield SD. Up-regulation of sucrose synthase and UDP-glucose pyrophosphorylase impacts plant growth and metabolism. Plant Biotechnol J. 2006;4:87–101.CrossRefPubMed
71.
go back to reference Dickmanns A, Damerow S, Neumann P, Schulz E-C, Lamerz A-C, Routier FH, et al. Structural basis for the broad substrate range of the UDP-sugar pyrophosphorylase from Leishmania major. J Mol Biol. 2011;405:461–78.CrossRefPubMed Dickmanns A, Damerow S, Neumann P, Schulz E-C, Lamerz A-C, Routier FH, et al. Structural basis for the broad substrate range of the UDP-sugar pyrophosphorylase from Leishmania major. J Mol Biol. 2011;405:461–78.CrossRefPubMed
72.
go back to reference Woodrow CJ, Burchmore RJ, Krishna S. Hexose permeation pathways in Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci USA. 2000;97:9931–6.PubMedCentralCrossRefPubMed Woodrow CJ, Burchmore RJ, Krishna S. Hexose permeation pathways in Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci USA. 2000;97:9931–6.PubMedCentralCrossRefPubMed
73.
74.
go back to reference Ramasamy R, Reese RT. Terminal galactose residues and the antigenicity of Plasmodium falciparum glycoproteins. Mol Biochem Parasitol. 1986;19:91–101.CrossRefPubMed Ramasamy R, Reese RT. Terminal galactose residues and the antigenicity of Plasmodium falciparum glycoproteins. Mol Biochem Parasitol. 1986;19:91–101.CrossRefPubMed
75.
go back to reference Ramasamy R, Reese RT. A role for carbohydrate moieties in the immune response to malaria. J Immunol. 1985;134:1952–5.PubMed Ramasamy R, Reese RT. A role for carbohydrate moieties in the immune response to malaria. J Immunol. 1985;134:1952–5.PubMed
76.
go back to reference Ravindran B, Satapathy AK, Das MK. Naturally-occurring anti-alpha-galactosyl antibodies in human Plasmodium falciparum infections–a possible role for autoantibodies in malaria. Immunol Lett. 1988;19:137–41.CrossRefPubMed Ravindran B, Satapathy AK, Das MK. Naturally-occurring anti-alpha-galactosyl antibodies in human Plasmodium falciparum infections–a possible role for autoantibodies in malaria. Immunol Lett. 1988;19:137–41.CrossRefPubMed
77.
go back to reference Maréchal E, Azzouz N, de Macedo CS, Block MA, Feagin JE, Schwarz RT, et al. Synthesis of chloroplast galactolipids in apicomplexan parasites. Eukaryot Cell. 2002;1:653–6.PubMedCentralCrossRefPubMed Maréchal E, Azzouz N, de Macedo CS, Block MA, Feagin JE, Schwarz RT, et al. Synthesis of chloroplast galactolipids in apicomplexan parasites. Eukaryot Cell. 2002;1:653–6.PubMedCentralCrossRefPubMed
78.
79.
go back to reference Botté CY, Yamaryo-Botté Y, Rupasinghe TWT, Mullin KA, MacRae JI, Spurck TP, et al. Atypical lipid composition in the purified relict plastid (apicoplast) of malaria parasites. Proc Natl Acad Sci U S A. 2013;110:7506–11.PubMedCentralCrossRefPubMed Botté CY, Yamaryo-Botté Y, Rupasinghe TWT, Mullin KA, MacRae JI, Spurck TP, et al. Atypical lipid composition in the purified relict plastid (apicoplast) of malaria parasites. Proc Natl Acad Sci U S A. 2013;110:7506–11.PubMedCentralCrossRefPubMed
80.
go back to reference Ramasamy R, Field MC. Terminal galactosylation of glycoconjugates in Plasmodium falciparum asexual blood stages and Trypanosoma brucei bloodstream trypomastigotes. Exp Parasitol. 2012;130:314–20.CrossRefPubMed Ramasamy R, Field MC. Terminal galactosylation of glycoconjugates in Plasmodium falciparum asexual blood stages and Trypanosoma brucei bloodstream trypomastigotes. Exp Parasitol. 2012;130:314–20.CrossRefPubMed
81.
go back to reference Peng HL, Chang HY. Cloning of a human liver UDP-glucose pyrophosphorylase cDNA by complementation of the bacterial galU mutation. FEBS Lett. 1993;329:153–8.CrossRefPubMed Peng HL, Chang HY. Cloning of a human liver UDP-glucose pyrophosphorylase cDNA by complementation of the bacterial galU mutation. FEBS Lett. 1993;329:153–8.CrossRefPubMed
82.
go back to reference Litterer LA, Schnurr JA, Plaisance KL, Storey KK, Gronwald JW, Somers DA. Characterization and expression of Arabidopsis UDP-sugar pyrophosphorylase. Plant Physiol Biochem. 2006;44:171–80.CrossRefPubMed Litterer LA, Schnurr JA, Plaisance KL, Storey KK, Gronwald JW, Somers DA. Characterization and expression of Arabidopsis UDP-sugar pyrophosphorylase. Plant Physiol Biochem. 2006;44:171–80.CrossRefPubMed
83.
go back to reference Helenius A, Aebi M. Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem. 2004;73:1019–49.CrossRefPubMed Helenius A, Aebi M. Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem. 2004;73:1019–49.CrossRefPubMed
84.
go back to reference Moremen KW, Molinari M. N-linked glycan recognition and processing: the molecular basis of endoplasmic reticulum quality control. Curr Opin Struct Biol. 2006;16:592–9.PubMedCentralCrossRefPubMed Moremen KW, Molinari M. N-linked glycan recognition and processing: the molecular basis of endoplasmic reticulum quality control. Curr Opin Struct Biol. 2006;16:592–9.PubMedCentralCrossRefPubMed
85.
go back to reference Schrag JD, Bergeron JJ, Li Y, Borisova S, Hahn M, Thomas DY, et al. The Structure of calnexin, an ER chaperone involved in quality control of protein folding. Mol Cell. 2001;8:633–44.CrossRefPubMed Schrag JD, Bergeron JJ, Li Y, Borisova S, Hahn M, Thomas DY, et al. The Structure of calnexin, an ER chaperone involved in quality control of protein folding. Mol Cell. 2001;8:633–44.CrossRefPubMed
86.
go back to reference Trombetta ES, Parodi AJ. Quality control and protein folding in the secretory pathway. Annu Rev Cell Dev Biol. 2003;19:649–76.CrossRefPubMed Trombetta ES, Parodi AJ. Quality control and protein folding in the secretory pathway. Annu Rev Cell Dev Biol. 2003;19:649–76.CrossRefPubMed
87.
go back to reference Izquierdo L, Atrih A, Rodrigues JA, Jones DC, Ferguson MAJ. Trypanosoma brucei UDP-glucose:glycoprotein glucosyltransferase has unusual substrate specificity and protects the parasite from stress. Eukaryot Cell. 2009;8:230–40.PubMedCentralCrossRefPubMed Izquierdo L, Atrih A, Rodrigues JA, Jones DC, Ferguson MAJ. Trypanosoma brucei UDP-glucose:glycoprotein glucosyltransferase has unusual substrate specificity and protects the parasite from stress. Eukaryot Cell. 2009;8:230–40.PubMedCentralCrossRefPubMed
88.
go back to reference Banerjee S, Vishwanath P, Cui J, Kelleher DJ, Gilmore R, Robbins PW, et al. The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation. Proc Natl Acad Sci U S A. 2007;104:11676–81.PubMedCentralCrossRefPubMed Banerjee S, Vishwanath P, Cui J, Kelleher DJ, Gilmore R, Robbins PW, et al. The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation. Proc Natl Acad Sci U S A. 2007;104:11676–81.PubMedCentralCrossRefPubMed
89.
go back to reference Takeuchi H, Kantharia J, Sethi MK, Bakker H, Haltiwanger RS. Site-specific O-glucosylation of the epidermal growth factor-like (EGF) repeats of notch: efficiency of glycosylation is affected by proper folding and amino acid sequence of individual EGF repeats. J Biol Chem. 2012;287:33934–44.PubMedCentralCrossRefPubMed Takeuchi H, Kantharia J, Sethi MK, Bakker H, Haltiwanger RS. Site-specific O-glucosylation of the epidermal growth factor-like (EGF) repeats of notch: efficiency of glycosylation is affected by proper folding and amino acid sequence of individual EGF repeats. J Biol Chem. 2012;287:33934–44.PubMedCentralCrossRefPubMed
90.
go back to reference Kozma K, Keusch JJ, Hegemann B, Luther KB, Klein D, Hess D, et al. Identification and characterization of abeta1,3-glucosyltransferase that synthesizes the Glc-beta1,3-Fuc disaccharide on thrombospondin type 1 repeats. J Biol Chem. 2006;281:36742–51.CrossRefPubMed Kozma K, Keusch JJ, Hegemann B, Luther KB, Klein D, Hess D, et al. Identification and characterization of abeta1,3-glucosyltransferase that synthesizes the Glc-beta1,3-Fuc disaccharide on thrombospondin type 1 repeats. J Biol Chem. 2006;281:36742–51.CrossRefPubMed
91.
go back to reference Gerold P, Schwarz RT. Biosynthesis of glycosphingolipids de-novo by the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol. 2001;112:29–37.CrossRefPubMed Gerold P, Schwarz RT. Biosynthesis of glycosphingolipids de-novo by the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol. 2001;112:29–37.CrossRefPubMed
92.
go back to reference Merrill AH, Sullards MC, Wang E, Voss KA, Riley RT. Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins. Environ Health Perspect. 2001;109(Suppl 2):283–9.PubMedCentralCrossRefPubMed Merrill AH, Sullards MC, Wang E, Voss KA, Riley RT. Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins. Environ Health Perspect. 2001;109(Suppl 2):283–9.PubMedCentralCrossRefPubMed
94.
go back to reference Couto AS, Caffaro C, Uhrig ML, Kimura E, Peres VJ, Merino EF, et al. Glycosphingolipids in Plasmodium falciparum. Presence of an active glucosylceramide synthase. Eur J Biochem. 2004;271:2204–14.CrossRefPubMed Couto AS, Caffaro C, Uhrig ML, Kimura E, Peres VJ, Merino EF, et al. Glycosphingolipids in Plasmodium falciparum. Presence of an active glucosylceramide synthase. Eur J Biochem. 2004;271:2204–14.CrossRefPubMed
Metadata
Title
Sugar activation and glycosylation in Plasmodium
Authors
Marta Cova
João A. Rodrigues
Terry K. Smith
Luis Izquierdo
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0949-z

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue