Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

Up-regulated S100 calcium binding protein A8 in Plasmodium-infected patients correlates with CD4+CD25+Foxp3 regulatory T cell generation

Authors: Hyeong-Woo Lee, Tong-Soo Kim, Yoon-Joong Kang, Jung-Yeon Kim, Sangeun Lee, Won-Ja Lee, Youngjoo Sohn

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

The pro-inflammatory S100 calcium binding protein A8 (S100A8) is elevated in the serum of patients with Plasmodium falciparum malaria, but its function in Plasmodium vivax malaria is not yet clear. This function was investigated in P. vivax-infected patients in this study.

Methods

The level of S100A8 in the serum was measured with ELISA. Full amino acids of S100A8 were synthesized to verify the functions for maturation of immature dendritic cell (iDC) and evaluation of CD4+CD25+Foxp3+ regulatory T (Treg) generation by mature DC (mDC).

Results

A higher amount of S100A8 was detected in vivax-infected patients (141.2 ± 61.849 ng/ml, n = 40) compared with normal control group (48.1 ± 27.384 ng/ml, n = 40). The level of S100A8 did not coincide with that of anti-malarial antibody measured by indirect fluorescent antibody test (IFAT) using parasite-infected red blood cells as antigen. Programmed death-ligand 1 (PD-L1) was up-regulated on the surface of iDCs following treatment with synthetic S100A8, not with synthetic MSP-1, AMA-1 and CSP, as compared to the expression seen for non-treated iDCs. The addition of red blood cells of infected patients to iDCs also elevated their surface expression of CD86. However, the serum levels of S100A8 decreased with increase in parasitaemia. DCs matured by sera containing S100A8 generated Treg cells from naïve T cells. The ratio of Treg cells generated was inversely proportional to the concentration of S100A8 in sera.

Conclusions

Treg cells suppress the activity of cytotoxic T cells, which kill malaria parasites; therefore, the up-regulation of S100A8 in malaria patients may contribute to pathogen immune escape or tolerance.
Literature
1.
go back to reference Sinden RE, Alavi Y, Raine JD. Mosquito–malaria interactions: a reappraisal of the concepts of susceptibility and refractoriness. Insect Biochem Mol Biol. 2004;34:625–9.CrossRefPubMed Sinden RE, Alavi Y, Raine JD. Mosquito–malaria interactions: a reappraisal of the concepts of susceptibility and refractoriness. Insect Biochem Mol Biol. 2004;34:625–9.CrossRefPubMed
2.
go back to reference Horne-Debets JM, Faleiro R, Karunarathne DS, Liu XQ, Lineberg KE, Poh CM, et al. PD-1 dependent exhaustion of CD8+ T cells drives chronic malaria. Cell Rep. 2013;5:1204–13.CrossRefPubMed Horne-Debets JM, Faleiro R, Karunarathne DS, Liu XQ, Lineberg KE, Poh CM, et al. PD-1 dependent exhaustion of CD8+ T cells drives chronic malaria. Cell Rep. 2013;5:1204–13.CrossRefPubMed
3.
go back to reference Warrell DA, Gilles HM. Essential malariology. New York: Oxford University Press; 2002. Warrell DA, Gilles HM. Essential malariology. New York: Oxford University Press; 2002.
4.
5.
go back to reference Brocker T, Riedinger M, Karjalainen K. Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo. J Exp Med. 1997;185:541–50.PubMedCentralCrossRefPubMed Brocker T, Riedinger M, Karjalainen K. Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo. J Exp Med. 1997;185:541–50.PubMedCentralCrossRefPubMed
6.
go back to reference Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med. 2001;194:769–79.PubMedCentralCrossRefPubMed Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med. 2001;194:769–79.PubMedCentralCrossRefPubMed
7.
go back to reference Steinman RM, Nussenzweig MC. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci USA. 2002;99:351–8.PubMedCentralCrossRefPubMed Steinman RM, Nussenzweig MC. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci USA. 2002;99:351–8.PubMedCentralCrossRefPubMed
8.
go back to reference Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, von Boehmer H. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol. 2005;6:1219–27.CrossRefPubMed Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, von Boehmer H. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol. 2005;6:1219–27.CrossRefPubMed
9.
go back to reference Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64.PubMed Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64.PubMed
10.
go back to reference Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4:330–6.CrossRefPubMed Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4:330–6.CrossRefPubMed
11.
go back to reference Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–61.CrossRefPubMed Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–61.CrossRefPubMed
12.
go back to reference Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol. 2003;4:337–42.CrossRefPubMed Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol. 2003;4:337–42.CrossRefPubMed
13.
go back to reference Belkaid Y, Rouse BT. Natural regulatory T cells in infectious disease. Nat Immunol. 2005;6:353–60.CrossRefPubMed Belkaid Y, Rouse BT. Natural regulatory T cells in infectious disease. Nat Immunol. 2005;6:353–60.CrossRefPubMed
14.
go back to reference Foell D, Wittkowski H, Vogl T, Roth J. S100A8 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol. 2007;81:28–37.CrossRefPubMed Foell D, Wittkowski H, Vogl T, Roth J. S100A8 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol. 2007;81:28–37.CrossRefPubMed
15.
go back to reference Pisetsky DS, Erlandsson-Harris H, Andersson U. High-mobility group box protein 1 (HMGB1): and alarmin mediating the pathogenesis of rheumatic disease. Arthritis Res Ther. 2008;10:209.PubMedCentralCrossRefPubMed Pisetsky DS, Erlandsson-Harris H, Andersson U. High-mobility group box protein 1 (HMGB1): and alarmin mediating the pathogenesis of rheumatic disease. Arthritis Res Ther. 2008;10:209.PubMedCentralCrossRefPubMed
17.
go back to reference He RL, Zhou J, Hanson CZ, Chen J, Cheng N, Ye RD. Serum amyloid A induces G-CSF expression and neutrophilia via Toll-like receptor 2. Blood. 2009;113:429–37.PubMedCentralCrossRefPubMed He RL, Zhou J, Hanson CZ, Chen J, Cheng N, Ye RD. Serum amyloid A induces G-CSF expression and neutrophilia via Toll-like receptor 2. Blood. 2009;113:429–37.PubMedCentralCrossRefPubMed
18.
go back to reference Sandri S, Rodriguez D, Gomes E, Monteiro HP, Russo M, Campa A. Is serum amyloid A an endogenous TLR4 agonist? J Leukoc Biol. 2008;83:1174–80.CrossRefPubMed Sandri S, Rodriguez D, Gomes E, Monteiro HP, Russo M, Campa A. Is serum amyloid A an endogenous TLR4 agonist? J Leukoc Biol. 2008;83:1174–80.CrossRefPubMed
19.
go back to reference Petersen B, Wolf M, Austermann J, van Lent P, Foell D, Ahlmann M, et al. The alarmin Mrp8/14 as regulator of the adaptive immune response during allergic contact dermatitis. EMBO J. 2013;32:100–11.PubMedCentralCrossRefPubMed Petersen B, Wolf M, Austermann J, van Lent P, Foell D, Ahlmann M, et al. The alarmin Mrp8/14 as regulator of the adaptive immune response during allergic contact dermatitis. EMBO J. 2013;32:100–11.PubMedCentralCrossRefPubMed
20.
go back to reference Bordmann G, Burmeister G, Saladin S, Urassa H, Mwankyusye S, Weiss N, et al. Mrp 8/14 as marker for Plasmodium falciparum-induced malaria episodes in individuals in a holoendemic area. Clin Diagn Lab Immunol. 1997;4:435–9.PubMedCentralPubMed Bordmann G, Burmeister G, Saladin S, Urassa H, Mwankyusye S, Weiss N, et al. Mrp 8/14 as marker for Plasmodium falciparum-induced malaria episodes in individuals in a holoendemic area. Clin Diagn Lab Immunol. 1997;4:435–9.PubMedCentralPubMed
22.
go back to reference Collins WE, Skinner JC. The indirect fluorescent antibody test for malaria. Am Trop J Med Hyg. 1972;21:690–5. Collins WE, Skinner JC. The indirect fluorescent antibody test for malaria. Am Trop J Med Hyg. 1972;21:690–5.
23.
go back to reference Rosa DS, Iwai LK, Tzelepis F, Bargier DY, Medeiros MA, Soares IS, et al. Immunogenicity of a recombinant protein containing the Plasmodium vivax vaccine candidate MSP1(19) and two human CD4+ T-cell epitopes administered to non-human primates (Callithrix jacchus jacchus). Microbes Infect. 2006;8:21307.CrossRef Rosa DS, Iwai LK, Tzelepis F, Bargier DY, Medeiros MA, Soares IS, et al. Immunogenicity of a recombinant protein containing the Plasmodium vivax vaccine candidate MSP1(19) and two human CD4+ T-cell epitopes administered to non-human primates (Callithrix jacchus jacchus). Microbes Infect. 2006;8:21307.CrossRef
24.
go back to reference Bueno LL, Lobo FP, Morais CG, Mourao LC, de Avila RA, Soares IS, et al. Identification of a highly antigenic linear B cell epitope within Plasmodium vivax apical membrane antigen 1 (AMA-1). PLoS One. 2011;6:e21289.PubMedCentralCrossRefPubMed Bueno LL, Lobo FP, Morais CG, Mourao LC, de Avila RA, Soares IS, et al. Identification of a highly antigenic linear B cell epitope within Plasmodium vivax apical membrane antigen 1 (AMA-1). PLoS One. 2011;6:e21289.PubMedCentralCrossRefPubMed
25.
go back to reference Herrera S, Bonelo A, Perlaza BL, Valencia AZ, Cifuentes C, Hurtado S, et al. Use of long synthetic peptides to study the antigenicity and immunogenicity of the Plasmodium vivax circumsporozoite protein. Int J Parasitol. 2004;34:1535–46.CrossRefPubMed Herrera S, Bonelo A, Perlaza BL, Valencia AZ, Cifuentes C, Hurtado S, et al. Use of long synthetic peptides to study the antigenicity and immunogenicity of the Plasmodium vivax circumsporozoite protein. Int J Parasitol. 2004;34:1535–46.CrossRefPubMed
26.
go back to reference Butler NS, Moebius J, Pewe LL, Traore B, Doumbo OK, Tygrett LT, et al. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nat Immunol. 2011;13:188–95.PubMedCentralCrossRefPubMed Butler NS, Moebius J, Pewe LL, Traore B, Doumbo OK, Tygrett LT, et al. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nat Immunol. 2011;13:188–95.PubMedCentralCrossRefPubMed
27.
go back to reference Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 2007;27:111–22.PubMedCentralCrossRefPubMed Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 2007;27:111–22.PubMedCentralCrossRefPubMed
28.
29.
go back to reference Seixas E, Cross C, Quin S, Langhorne J. Direct activation of dendritic cells by the malaria parasite, Plasmodium chabaudi chabaudi. Eur J Immunol. 2001;31:2970–8.CrossRefPubMed Seixas E, Cross C, Quin S, Langhorne J. Direct activation of dendritic cells by the malaria parasite, Plasmodium chabaudi chabaudi. Eur J Immunol. 2001;31:2970–8.CrossRefPubMed
30.
31.
go back to reference Kho WG, Jang JY, Hong ST, Lee HW, Lee WJ, Lee JS. Border malaria characters of reemerging vivax malaria in the Republic of Korea. Kor J Parasitol. 1999;37:71–6.CrossRef Kho WG, Jang JY, Hong ST, Lee HW, Lee WJ, Lee JS. Border malaria characters of reemerging vivax malaria in the Republic of Korea. Kor J Parasitol. 1999;37:71–6.CrossRef
32.
go back to reference Lee JS, Kho WG, Lee HW, Seo M, Lee WJ. Current status of vivax malaria among civilians in Korea. Kor J Parasitol. 1998;36:241–8.CrossRef Lee JS, Kho WG, Lee HW, Seo M, Lee WJ. Current status of vivax malaria among civilians in Korea. Kor J Parasitol. 1998;36:241–8.CrossRef
33.
go back to reference Mackroth MS, Malhotra I, Mungai P, Koech D, Muchiri E, King CL. Human cord blood CD4+CD25hi regulatory T cells suppress prenatally acquired T cell responses to Plasmodium falciparum antigens. J Immunol. 2011;186:2780–91.CrossRefPubMed Mackroth MS, Malhotra I, Mungai P, Koech D, Muchiri E, King CL. Human cord blood CD4+CD25hi regulatory T cells suppress prenatally acquired T cell responses to Plasmodium falciparum antigens. J Immunol. 2011;186:2780–91.CrossRefPubMed
34.
go back to reference Hisaeda H, Maekawa Y, Iwakawa D, Okada H, Himeno K, Kishihara K, et al. Escape of malaria parasites from host immunity requires CD4+ CD25+ regulatory T cells. Nat Med. 2004;10:29–30.CrossRefPubMed Hisaeda H, Maekawa Y, Iwakawa D, Okada H, Himeno K, Kishihara K, et al. Escape of malaria parasites from host immunity requires CD4+ CD25+ regulatory T cells. Nat Med. 2004;10:29–30.CrossRefPubMed
35.
37.
38.
go back to reference LeibundGut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, et al. Syk-and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007;8:630–8.CrossRefPubMed LeibundGut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, et al. Syk-and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007;8:630–8.CrossRefPubMed
39.
go back to reference van Beelen AJ, Zelinkova Z, Taanman-Kueter EW, Muller FJ, Hommes DW, Zaat SA, et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity. 2007;27:660–9.CrossRefPubMed van Beelen AJ, Zelinkova Z, Taanman-Kueter EW, Muller FJ, Hommes DW, Zaat SA, et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity. 2007;27:660–9.CrossRefPubMed
40.
go back to reference Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGF-β in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24:179–89.CrossRefPubMed Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGF-β in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24:179–89.CrossRefPubMed
41.
go back to reference Steinman RM, Turley S, Mellman I, Inaba K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med. 2000;191:411–6.PubMedCentralCrossRefPubMed Steinman RM, Turley S, Mellman I, Inaba K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med. 2000;191:411–6.PubMedCentralCrossRefPubMed
42.
go back to reference Jonuleit H, Schmitt E, Teinbrink K, Enk AH. Dendritic cells as a tool to induce anergic and regulatory T cells. Trends Immunol. 2001;22:394–400.CrossRefPubMed Jonuleit H, Schmitt E, Teinbrink K, Enk AH. Dendritic cells as a tool to induce anergic and regulatory T cells. Trends Immunol. 2001;22:394–400.CrossRefPubMed
43.
go back to reference Kuipers H, Muskens F, Willart M, Hijdra D, van Assema FB, Coyle AJ, et al. Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4+ cell activation. Eur J Immunol. 2006;36:2472–82.CrossRefPubMed Kuipers H, Muskens F, Willart M, Hijdra D, van Assema FB, Coyle AJ, et al. Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4+ cell activation. Eur J Immunol. 2006;36:2472–82.CrossRefPubMed
44.
go back to reference Urzainqui A, Martínez del Hoyo G, Lamana A, de la Fuente H, Barreiro O, Olazabal IM, et al. Functional role of P-selectin glycoprotein ligand 1/P-selectin interaction in the generation of tolerogenic dendritic cells. J Immunol. 2007;179:7457–65.CrossRefPubMed Urzainqui A, Martínez del Hoyo G, Lamana A, de la Fuente H, Barreiro O, Olazabal IM, et al. Functional role of P-selectin glycoprotein ligand 1/P-selectin interaction in the generation of tolerogenic dendritic cells. J Immunol. 2007;179:7457–65.CrossRefPubMed
45.
go back to reference Lee HW, Bae KH, Kong Y, Yang W, Song X, Wilson B. Dendritic cell maturation function of Myeloid-related protein 8 expressed in human invariant NKT cells. 6th International Symposium on CD1 and NKT cells, 2011, Chicago, USA. Lee HW, Bae KH, Kong Y, Yang W, Song X, Wilson B. Dendritic cell maturation function of Myeloid-related protein 8 expressed in human invariant NKT cells. 6th International Symposium on CD1 and NKT cells, 2011, Chicago, USA.
46.
go back to reference Urban BC, Ferguson DJ, Pain A, Willcox N, Plebanski M, Austyn JM, et al. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature. 1999;400:73–7.CrossRefPubMed Urban BC, Ferguson DJ, Pain A, Willcox N, Plebanski M, Austyn JM, et al. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature. 1999;400:73–7.CrossRefPubMed
47.
go back to reference Rennick DM, Fort MM, Davidson NJ. Studies with IL-10−/− mice: an overview. J Leukoc Biol. 1997;61:389–96.PubMed Rennick DM, Fort MM, Davidson NJ. Studies with IL-10−/− mice: an overview. J Leukoc Biol. 1997;61:389–96.PubMed
48.
go back to reference Lackmann M, Rajasekariah P, Iismaa SE, Jones G, Cornish CJ, Hu S, et al. Identification of a chemotactic domain of the pro-inflammatory S100 protein CP-10. J Immunol. 1993;150:2981–91.PubMed Lackmann M, Rajasekariah P, Iismaa SE, Jones G, Cornish CJ, Hu S, et al. Identification of a chemotactic domain of the pro-inflammatory S100 protein CP-10. J Immunol. 1993;150:2981–91.PubMed
49.
go back to reference Devery JM, King NJ, Geczy CL. Acute inflammatory activity of the S100 protein CP-10: activation of neutrophils in vivo and in vitro. J Immunol. 1994;152:1888–97.PubMed Devery JM, King NJ, Geczy CL. Acute inflammatory activity of the S100 protein CP-10: activation of neutrophils in vivo and in vitro. J Immunol. 1994;152:1888–97.PubMed
50.
go back to reference Lau W, Dever JM, Geczy CL. A chemotactic S100 peptide enhances scavenger receptor and Mac-1 expression and cholesteryl ester accumulation in murine peritoneal macrophages in vivo. J Clin Invest. 1995;95:1957–65.PubMedCentralCrossRefPubMed Lau W, Dever JM, Geczy CL. A chemotactic S100 peptide enhances scavenger receptor and Mac-1 expression and cholesteryl ester accumulation in murine peritoneal macrophages in vivo. J Clin Invest. 1995;95:1957–65.PubMedCentralCrossRefPubMed
51.
go back to reference Cornish CJ, Devery JM, Poronnik P, Lackmann M, Cook DI, Geczy CL. S100 protein CP-10 stimulates myeloid cell chemotaxis without activation. J Cell Physiol. 1996;166:427–37.CrossRefPubMed Cornish CJ, Devery JM, Poronnik P, Lackmann M, Cook DI, Geczy CL. S100 protein CP-10 stimulates myeloid cell chemotaxis without activation. J Cell Physiol. 1996;166:427–37.CrossRefPubMed
52.
go back to reference Hisaeda H, Maekawa Y, Iwakawa D, Okada H, Himeno K, Kishihara K, et al. Escape of malaria parasites from host immunity requires CD4+ CD25+ regulatory T cells. Nat Med. 2004;10:29–30.CrossRefPubMed Hisaeda H, Maekawa Y, Iwakawa D, Okada H, Himeno K, Kishihara K, et al. Escape of malaria parasites from host immunity requires CD4+ CD25+ regulatory T cells. Nat Med. 2004;10:29–30.CrossRefPubMed
53.
go back to reference Schafer BW, Heizmann CW. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci. 1996;21:134–40.CrossRefPubMed Schafer BW, Heizmann CW. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci. 1996;21:134–40.CrossRefPubMed
54.
go back to reference Hessian PA, Edgeworth J, Hogg N. MRP-8 and MRP-14, two abundant Ca(2+)-binding proteins of neutrophils and monocytes. J Leukocyte Biol. 1993;53:197–204.PubMed Hessian PA, Edgeworth J, Hogg N. MRP-8 and MRP-14, two abundant Ca(2+)-binding proteins of neutrophils and monocytes. J Leukocyte Biol. 1993;53:197–204.PubMed
55.
go back to reference Delabie J, de Wolf-Peeters C, van den Oord JJ, Desmet VJ. Differential expression of the calcium-binding proteins MRP8 and MRP14 in granulomatous conditions: an immunohistochemical study. Clin Exp Immunol. 1990;81:123–6.PubMedCentralCrossRefPubMed Delabie J, de Wolf-Peeters C, van den Oord JJ, Desmet VJ. Differential expression of the calcium-binding proteins MRP8 and MRP14 in granulomatous conditions: an immunohistochemical study. Clin Exp Immunol. 1990;81:123–6.PubMedCentralCrossRefPubMed
56.
go back to reference Zwadlo G, Brüggen J, Gerhards G, Schlegel R, Sorg C. Two calcium-binding proteins associated with specific stages of myeloid cell differentiation are expressed by subsets of macrophages in inflammatory tissues. Clin Exp Immunol. 1988;72:510–5.PubMedCentralPubMed Zwadlo G, Brüggen J, Gerhards G, Schlegel R, Sorg C. Two calcium-binding proteins associated with specific stages of myeloid cell differentiation are expressed by subsets of macrophages in inflammatory tissues. Clin Exp Immunol. 1988;72:510–5.PubMedCentralPubMed
57.
go back to reference Zwadlo G, Schlegel R, Sorg C. A monoclonal antibody to a subset of human monocytes found only in the peripheral blood and inflammatory tissues. J Immunol. 1986;137:512–8.PubMed Zwadlo G, Schlegel R, Sorg C. A monoclonal antibody to a subset of human monocytes found only in the peripheral blood and inflammatory tissues. J Immunol. 1986;137:512–8.PubMed
58.
go back to reference Xu K, Yen T, Geczy CL. IL-10 up-regulates macrophage expression of the S100 protein S100A8. J Immunol. 2001;166:6358–66.CrossRefPubMed Xu K, Yen T, Geczy CL. IL-10 up-regulates macrophage expression of the S100 protein S100A8. J Immunol. 2001;166:6358–66.CrossRefPubMed
59.
go back to reference Harrison CA, Raftery MJ, Walsh J, Alewood P, Iismaa SE, Thliveris S, et al. Oxidation regulates the inflammatory properties of the murine S100 protein S100A8. J Biol Chem. 1999;274:8561–9.CrossRefPubMed Harrison CA, Raftery MJ, Walsh J, Alewood P, Iismaa SE, Thliveris S, et al. Oxidation regulates the inflammatory properties of the murine S100 protein S100A8. J Biol Chem. 1999;274:8561–9.CrossRefPubMed
Metadata
Title
Up-regulated S100 calcium binding protein A8 in Plasmodium-infected patients correlates with CD4+CD25+Foxp3 regulatory T cell generation
Authors
Hyeong-Woo Lee
Tong-Soo Kim
Yoon-Joong Kang
Jung-Yeon Kim
Sangeun Lee
Won-Ja Lee
Youngjoo Sohn
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0855-4

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue