Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

P-selectin is a host receptor for Plasmodium MSP7 ligands

Authors: Abigail J Perrin, S Josefin Bartholdson, Gavin J Wright

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

Plasmodium parasites typically elicit a non-sterile but protective immune response in human host populations, suggesting that the parasites actively modulate normal immunological mechanisms. P-selectin is a cell surface receptor expressed in mammals, that is a known component of the inflammatory response against pathogens and has been previously identified as a host factor that influences malaria-associated pathology both in human patients and rodent infection models.

Methods

To better understand the molecular mechanisms underlying the involvement of P-selectin in the pathogenesis of malaria, a systematic extracellular protein interaction screen was used to identify Plasmodium falciparum merozoite surface protein 7 (MSP7) as a binding partner of human P-selectin. This interaction, and those occurring between P-selectin and Plasmodium MSP7 homologues, was characterized biochemically.

Results

Plasmodium falciparum MSP7 and P-selectin were shown to bind each other directly via the N-terminus of PfMSP7 and the P-selectin C-type lectin and EGF-like domains. Orthologous proteins in the murine parasite Plasmodium berghei (PbMSRP1 and PbMSRP2) and mouse P-selectin also interacted. Finally, P-selectin, when complexed with MSP7, could no longer bind to its endogenous carbohydrate ligand, Sialyl-LewisX.

Conclusions

Novel interactions were identified between Plasmodium MSP7 protein family members and host P-selectin receptors. Since PfMSP7 could prevent interactions between P-selectin and its leukocyte ligands, these results provide a possible mechanism for the known immunomodulatory effects of both MSP7 and P-selectin in malaria infection models.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hay SI, Okiro EA, Gething PW, Patil AP, Tatem AJ, Guerra CA, et al. Estimating the global clinical burden of Plasmodium falciparum malaria in 2007. PLoS Med. 2010;7, e1000290.PubMedCentralPubMedCrossRef Hay SI, Okiro EA, Gething PW, Patil AP, Tatem AJ, Guerra CA, et al. Estimating the global clinical burden of Plasmodium falciparum malaria in 2007. PLoS Med. 2010;7, e1000290.PubMedCentralPubMedCrossRef
3.
go back to reference WHO. World Malaria Report. Geneva: World Health Organization; 2012. WHO. World Malaria Report. Geneva: World Health Organization; 2012.
4.
go back to reference Langhorne J, Ndungu FM, Sponaas A-M, Marsh K. Immunity to malaria: more questions than answers. Nat Immunol. 2008;9:725–32.PubMedCrossRef Langhorne J, Ndungu FM, Sponaas A-M, Marsh K. Immunity to malaria: more questions than answers. Nat Immunol. 2008;9:725–32.PubMedCrossRef
5.
go back to reference Facer CA, Theodoridou A. Elevated levels of P-selectin (GMP-140 CD62P) in patients with Plasmodium falciparum malaria. Microbiol Immunol. 1994;38:727–31.PubMedCrossRef Facer CA, Theodoridou A. Elevated levels of P-selectin (GMP-140 CD62P) in patients with Plasmodium falciparum malaria. Microbiol Immunol. 1994;38:727–31.PubMedCrossRef
6.
go back to reference Combes V, Rosenkranz AR, Redard M, Pizzolato G, Lepidi H, Vestweber D, et al. Pathogenic role of P-selectin in experimental cerebral malaria - importance of the endothelial compartment. Am J Pathol. 2004;164:781–6.PubMedCentralPubMedCrossRef Combes V, Rosenkranz AR, Redard M, Pizzolato G, Lepidi H, Vestweber D, et al. Pathogenic role of P-selectin in experimental cerebral malaria - importance of the endothelial compartment. Am J Pathol. 2004;164:781–6.PubMedCentralPubMedCrossRef
7.
go back to reference Chang WL, Li J, Sun GA, Chen HL, Specian RD, Berney SM, et al. P-selectin contributes to severe experimental malaria but is not required for leukocyte adhesion to brain microvasculature. Infect Immun. 2003;71:1911–8.PubMedCentralPubMedCrossRef Chang WL, Li J, Sun GA, Chen HL, Specian RD, Berney SM, et al. P-selectin contributes to severe experimental malaria but is not required for leukocyte adhesion to brain microvasculature. Infect Immun. 2003;71:1911–8.PubMedCentralPubMedCrossRef
8.
go back to reference Yipp BG, Anand S, Schollaardt T, Patel KD, Looareesuwan S, Ho M. Synergism of multiple adhesion molecules in mediating cytoadherence of Plasmodium falciparum-infected erythrocytes to microvascular endothelial cells under flow. Blood. 2000;96:2292–8.PubMed Yipp BG, Anand S, Schollaardt T, Patel KD, Looareesuwan S, Ho M. Synergism of multiple adhesion molecules in mediating cytoadherence of Plasmodium falciparum-infected erythrocytes to microvascular endothelial cells under flow. Blood. 2000;96:2292–8.PubMed
9.
go back to reference Mayadas TN, Johnson RC, Rayburn H, Hynes RO, Wagner DD. Leukocyte rolling and extravasation are severely compromised in P-selectin-deficient mice. Cell. 1993;74:541–54.PubMedCrossRef Mayadas TN, Johnson RC, Rayburn H, Hynes RO, Wagner DD. Leukocyte rolling and extravasation are severely compromised in P-selectin-deficient mice. Cell. 1993;74:541–54.PubMedCrossRef
10.
go back to reference Stenberg PE, McEver RP, Shuman MA, Jacques YV, Bainton DF. A platelet alpha-granule membrane-protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol. 1985;101:880–6.PubMedCrossRef Stenberg PE, McEver RP, Shuman MA, Jacques YV, Bainton DF. A platelet alpha-granule membrane-protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol. 1985;101:880–6.PubMedCrossRef
11.
go back to reference Sako D, Chang XJ, Barone KM, Vachino G, White HM, Shaw G, et al. Expression cloning of a functional glycoprotein ligand for P-selectin. Cell. 1993;75:1179–86.PubMedCrossRef Sako D, Chang XJ, Barone KM, Vachino G, White HM, Shaw G, et al. Expression cloning of a functional glycoprotein ligand for P-selectin. Cell. 1993;75:1179–86.PubMedCrossRef
12.
go back to reference Etzioni A, Doerschuk CM, Harlan JM. Of man and mouse: Leukocyte and endothelial adhesion molecule deficiencies. Blood. 1999;94:3281–8.PubMed Etzioni A, Doerschuk CM, Harlan JM. Of man and mouse: Leukocyte and endothelial adhesion molecule deficiencies. Blood. 1999;94:3281–8.PubMed
13.
go back to reference Senczuk AM, Reeder JC, Kosmala MM, Ho M. Plasmodium falciparum erythrocyte membrane protein 1 functions as a ligand for P-selectin. Blood. 2001;98:3132–5.PubMedCrossRef Senczuk AM, Reeder JC, Kosmala MM, Ho M. Plasmodium falciparum erythrocyte membrane protein 1 functions as a ligand for P-selectin. Blood. 2001;98:3132–5.PubMedCrossRef
14.
go back to reference Tewari R, Ogun SA, Gunaratne RS, Crisanti A, Holder AA. Disruption of Plasmodium berghei merozoite surface protein 7 gene modulates parasite growth in vivo. Blood. 2005;105:394–6.PubMedCrossRef Tewari R, Ogun SA, Gunaratne RS, Crisanti A, Holder AA. Disruption of Plasmodium berghei merozoite surface protein 7 gene modulates parasite growth in vivo. Blood. 2005;105:394–6.PubMedCrossRef
15.
go back to reference Kadekoppala M, O'Donnell RA, Grainger M, Crabb BS, Holder AA. Deletion of the Plasmodium falciparum merozoite surface protein 7 gene impairs parasite invasion of erythrocytes. Eukaryot Cell. 2008;7:2123–32.PubMedCentralPubMedCrossRef Kadekoppala M, O'Donnell RA, Grainger M, Crabb BS, Holder AA. Deletion of the Plasmodium falciparum merozoite surface protein 7 gene impairs parasite invasion of erythrocytes. Eukaryot Cell. 2008;7:2123–32.PubMedCentralPubMedCrossRef
16.
go back to reference Pachebat JA, Ling IT, Grainger M, Trucco C, Howell S, Fernandez-Reyes D, et al. The 22 kDa component of the protein complex on the surface of Plasmodium falciparum merozoites is derived from a larger precursor, merozoite surface protein 7. Mol Biochem Parasitol. 2001;117:83–9.PubMedCrossRef Pachebat JA, Ling IT, Grainger M, Trucco C, Howell S, Fernandez-Reyes D, et al. The 22 kDa component of the protein complex on the surface of Plasmodium falciparum merozoites is derived from a larger precursor, merozoite surface protein 7. Mol Biochem Parasitol. 2001;117:83–9.PubMedCrossRef
17.
go back to reference Crosnier C, Wanaguru M, McDade B, Osier FH, Marsh K, Rayner JC, et al. A library of functional recombinant cell-surface and secreted P. falciparum merozoite proteins. Mol Cell Proteomics. 2013;12:3976–86.PubMedCentralPubMedCrossRef Crosnier C, Wanaguru M, McDade B, Osier FH, Marsh K, Rayner JC, et al. A library of functional recombinant cell-surface and secreted P. falciparum merozoite proteins. Mol Cell Proteomics. 2013;12:3976–86.PubMedCentralPubMedCrossRef
18.
go back to reference Zenonos ZA, Rayner JC, Wright GJ. Towards a comprehensive Plasmodium falciparum merozoite cell surface and secreted recombinant protein library. Malar J. 2014;13:93.PubMedCentralPubMedCrossRef Zenonos ZA, Rayner JC, Wright GJ. Towards a comprehensive Plasmodium falciparum merozoite cell surface and secreted recombinant protein library. Malar J. 2014;13:93.PubMedCentralPubMedCrossRef
19.
go back to reference Sun Y, Gallagher-Jones M, Barker C, Wright GJ. A benchmarked protein microarray-based platform for the identification of novel low-affinity extracellular protein interactions. Anal Biochem. 2012;424:45–53.PubMedCentralPubMedCrossRef Sun Y, Gallagher-Jones M, Barker C, Wright GJ. A benchmarked protein microarray-based platform for the identification of novel low-affinity extracellular protein interactions. Anal Biochem. 2012;424:45–53.PubMedCentralPubMedCrossRef
20.
go back to reference Kerr JS, Wright GJ. Avidity-based extracellular interaction screening (AVEXIS) for the scalable detection of low-affinity extracellular receptor-ligand interactions. J Vis Exp. 2012;61, e3881.PubMed Kerr JS, Wright GJ. Avidity-based extracellular interaction screening (AVEXIS) for the scalable detection of low-affinity extracellular receptor-ligand interactions. J Vis Exp. 2012;61, e3881.PubMed
21.
go back to reference Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature. 2011;480:534–7.PubMedCentralPubMed Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature. 2011;480:534–7.PubMedCentralPubMed
22.
go back to reference Bushell KM, Sollner C, Schuster-Boeckler B, Bateman A, Wright GJ. Large-scale screening for novel low-affinity extracellular protein interactions. Genome Res. 2008;18:622–30.PubMedCentralPubMedCrossRef Bushell KM, Sollner C, Schuster-Boeckler B, Bateman A, Wright GJ. Large-scale screening for novel low-affinity extracellular protein interactions. Genome Res. 2008;18:622–30.PubMedCentralPubMedCrossRef
23.
go back to reference Soellner C, Wright GJ. A cell surface interaction network of neural leucine-rich repeat receptors. Genome Biol. 2009;10:R99.CrossRef Soellner C, Wright GJ. A cell surface interaction network of neural leucine-rich repeat receptors. Genome Biol. 2009;10:R99.CrossRef
24.
go back to reference Pachebat JA, Kadekoppala M, Grainger M, Dluzewski AR, Gunaratne RS, Scott-Finnigan TJ, et al. Extensive proteolytic processing of the malaria parasite merozoite surface protein 7 during biosynthesis and parasite release from erythrocytes. Mol Biochem Parasitol. 2007;151:59–69.PubMedCrossRef Pachebat JA, Kadekoppala M, Grainger M, Dluzewski AR, Gunaratne RS, Scott-Finnigan TJ, et al. Extensive proteolytic processing of the malaria parasite merozoite surface protein 7 during biosynthesis and parasite release from erythrocytes. Mol Biochem Parasitol. 2007;151:59–69.PubMedCrossRef
25.
go back to reference Saunders KB, Kansas GS, Tedder TF. Domain mapping of the selectin panel of mAb. Tissue Antigens. 1993;4:294. Saunders KB, Kansas GS, Tedder TF. Domain mapping of the selectin panel of mAb. Tissue Antigens. 1993;4:294.
26.
go back to reference Koenig A, Norgard-Sumnicht K, Linhardt R, Varki A. Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins - Implications for the use of unfractionated and low molecular weight heparins as therapeutic agents. J Clin Invest. 1998;101:877–89.PubMedCentralPubMedCrossRef Koenig A, Norgard-Sumnicht K, Linhardt R, Varki A. Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins - Implications for the use of unfractionated and low molecular weight heparins as therapeutic agents. J Clin Invest. 1998;101:877–89.PubMedCentralPubMedCrossRef
27.
28.
go back to reference Adda CG, Murphy VJ, Sunde M, Waddington LJ, Schloegel J, Talbo GH, et al. Plasmodium falciparum merozoite surface protein 2 is unstructured and forms amyloid-like fibrils. Mol Biochem Parasitol. 2009;166:159–71.PubMedCentralPubMedCrossRef Adda CG, Murphy VJ, Sunde M, Waddington LJ, Schloegel J, Talbo GH, et al. Plasmodium falciparum merozoite surface protein 2 is unstructured and forms amyloid-like fibrils. Mol Biochem Parasitol. 2009;166:159–71.PubMedCentralPubMedCrossRef
29.
go back to reference Zhang X, Adda CG, Low A, Zhang J, Zhang W, Sun H, et al. Role of the helical structure of the N-terminal region of Plasmodium falciparum merozoite surface protein 2 in fibril formation and membrane interaction. Biochemistry. 2012;51:1380–7.PubMedCrossRef Zhang X, Adda CG, Low A, Zhang J, Zhang W, Sun H, et al. Role of the helical structure of the N-terminal region of Plasmodium falciparum merozoite surface protein 2 in fibril formation and membrane interaction. Biochemistry. 2012;51:1380–7.PubMedCrossRef
30.
go back to reference Gondeau C, Corradin G, Heitz F, Le Peuch C, Balbo A, Schuck P, et al. The C-terminal domain of Plasmodium falciparum merozoite surface protein 3 self-assembles into alpha-helical coiled coil tetramer. Mol Biochem Parasitol. 2009;165:153–61.PubMedCentralPubMedCrossRef Gondeau C, Corradin G, Heitz F, Le Peuch C, Balbo A, Schuck P, et al. The C-terminal domain of Plasmodium falciparum merozoite surface protein 3 self-assembles into alpha-helical coiled coil tetramer. Mol Biochem Parasitol. 2009;165:153–61.PubMedCentralPubMedCrossRef
31.
go back to reference Imam M, Singh S, Kaushik NK, Chauhan VS. Plasmodium falciparum merozoite surface protein 3: oligomerisation, self-assembly and heme complex formation. J Biol Chem. 2014;289:3856–68.PubMedCentralPubMedCrossRef Imam M, Singh S, Kaushik NK, Chauhan VS. Plasmodium falciparum merozoite surface protein 3: oligomerisation, self-assembly and heme complex formation. J Biol Chem. 2014;289:3856–68.PubMedCentralPubMedCrossRef
32.
go back to reference Kadekoppala M, Holder AA. Merozoite surface proteins of the malaria parasite: The MSP1 complex and the MSP7 family. Int J Parasitol. 2010;40:1155–61.PubMedCrossRef Kadekoppala M, Holder AA. Merozoite surface proteins of the malaria parasite: The MSP1 complex and the MSP7 family. Int J Parasitol. 2010;40:1155–61.PubMedCrossRef
33.
go back to reference Heiber A, Kruse F, Pick C, Gruering C, Flemming S, Oberli A, et al. Identification of new PNEPs indicates a substantial non-PEXEL exportome and underpins common features in Plasmodium falciparum protein export. PLoS Pathog. 2013;9, e1003546.PubMedCentralPubMedCrossRef Heiber A, Kruse F, Pick C, Gruering C, Flemming S, Oberli A, et al. Identification of new PNEPs indicates a substantial non-PEXEL exportome and underpins common features in Plasmodium falciparum protein export. PLoS Pathog. 2013;9, e1003546.PubMedCentralPubMedCrossRef
34.
go back to reference Kauth CW, Woehlbier U, Kern M, Mekonnen Z, Lutz R, Muecke N, et al. Interactions between merozoite surface proteins 1, 6, and 7 of the malaria parasite Plasmodium falciparum. J Biol Chem. 2006;281:31517–27.PubMedCrossRef Kauth CW, Woehlbier U, Kern M, Mekonnen Z, Lutz R, Muecke N, et al. Interactions between merozoite surface proteins 1, 6, and 7 of the malaria parasite Plasmodium falciparum. J Biol Chem. 2006;281:31517–27.PubMedCrossRef
35.
go back to reference Gomez ND, Safeukui I, Adelani AA, Tewari R, Reddy JK, Rao S, et al. Deletion of a malaria invasion gene reduces death and anemia, in model hosts. PLoS One. 2011;6, e25477.PubMedCentralPubMedCrossRef Gomez ND, Safeukui I, Adelani AA, Tewari R, Reddy JK, Rao S, et al. Deletion of a malaria invasion gene reduces death and anemia, in model hosts. PLoS One. 2011;6, e25477.PubMedCentralPubMedCrossRef
36.
go back to reference Spaccapelo R, Aime E, Caterbi S, Arcidiacono P, Capuccini B, Di Cristina M, et al. Disruption of plasmepsin-4 and merozoites surface protein-7 genes in Plasmodium berghei induces combined virulence-attenuated phenotype. Sci Rep. 2011;1:39.PubMedCentralPubMedCrossRef Spaccapelo R, Aime E, Caterbi S, Arcidiacono P, Capuccini B, Di Cristina M, et al. Disruption of plasmepsin-4 and merozoites surface protein-7 genes in Plasmodium berghei induces combined virulence-attenuated phenotype. Sci Rep. 2011;1:39.PubMedCentralPubMedCrossRef
37.
go back to reference Safeukui I, Gomez ND, Adelani AA, Burte F, Afolabi NK, Akondy R, et al. Malaria induces anemia through CD8+ T cell-dependent parasite clearance and erythrocyte removal in the spleen. Mbio. 2015;6:e02493–14.PubMedCentralPubMedCrossRef Safeukui I, Gomez ND, Adelani AA, Burte F, Afolabi NK, Akondy R, et al. Malaria induces anemia through CD8+ T cell-dependent parasite clearance and erythrocyte removal in the spleen. Mbio. 2015;6:e02493–14.PubMedCentralPubMedCrossRef
38.
go back to reference Kuss C, Gan CS, Gunalan K, Bozdech Z, Sze SK, Preiser PR. Quantitative proteomics reveals new insights into erythrocyte invasion by Plasmodium falciparum. Mol Cell Proteomics. 2012;11:M111.010645.PubMedCentralPubMedCrossRef Kuss C, Gan CS, Gunalan K, Bozdech Z, Sze SK, Preiser PR. Quantitative proteomics reveals new insights into erythrocyte invasion by Plasmodium falciparum. Mol Cell Proteomics. 2012;11:M111.010645.PubMedCentralPubMedCrossRef
39.
go back to reference Kadekoppala M, Ogun SA, Howell S, Gunaratne RS, Holder AA. Systematic genetic analysis of the Plasmodium falciparum MSP7-like family reveals differences in protein expression, location, and importance in asexual growth of the blood-stage parasite. Eukaryot Cell. 2010;9:1064–74.PubMedCentralPubMedCrossRef Kadekoppala M, Ogun SA, Howell S, Gunaratne RS, Holder AA. Systematic genetic analysis of the Plasmodium falciparum MSP7-like family reveals differences in protein expression, location, and importance in asexual growth of the blood-stage parasite. Eukaryot Cell. 2010;9:1064–74.PubMedCentralPubMedCrossRef
40.
go back to reference Pasini EM, Kirkegaard M, Mortensen P, Lutz HU, Thomas AW, Mann M. In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood. 2006;108:791–801.PubMedCrossRef Pasini EM, Kirkegaard M, Mortensen P, Lutz HU, Thomas AW, Mann M. In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood. 2006;108:791–801.PubMedCrossRef
41.
go back to reference Elstad MR, Lapine TR, Cawley FS, McEver RP, McIntyre TM, Prescott SM, et al. P-selectin regulates platelet-activating-factor synthesis and phagocytosis by monocytes. J Immunol. 1995;155:2109–22.PubMed Elstad MR, Lapine TR, Cawley FS, McEver RP, McIntyre TM, Prescott SM, et al. P-selectin regulates platelet-activating-factor synthesis and phagocytosis by monocytes. J Immunol. 1995;155:2109–22.PubMed
Metadata
Title
P-selectin is a host receptor for Plasmodium MSP7 ligands
Authors
Abigail J Perrin
S Josefin Bartholdson
Gavin J Wright
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0750-z

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue