Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

Simultaneous quantification of proposed anti-malarial combination comprising of lumefantrine and CDRI 97–78 in rat plasma using the HPLC–ESI-MS/MS method: application to drug interaction study

Authors: Muhammad Wahajuddin, Sheelendra P Singh, Isha Taneja, Kanumuri SR Raju, Jiaur R Gayen, Hefazat H Siddiqui, Shio K Singh

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

Lumefantrine is the mainstay of anti-malarial combination therapy in most endemic countries presently. However, it cannot be used alone owing to its long onset time of action. CDRI 97–78 is a promising trioxane-derivative anti-malarial candidate that is currently being investigated as a substitute for artemisinin derivatives owing to their emerging resistance.

Methods

In the present study, a sensitive, simple and rapid high-performance liquid chromatography coupled with positive ion electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method was developed for the simultaneous determination of lumefantrine and CDRI 97-78’s metabolite, 97–63, in rat plasma using halofantrine as an internal standard. Lumefantrine and 97–63 were separated on a Waters Atlantis C18 (4.6 × 50 mm, 5.0 μm) column under isocratic condition with mobile phase consisting of acetonitrile: methanol (50:50, v/v) and ammonium formate buffer (10 mM, pH 4.5) in the ratio of 95:5 (v/v) at a flow rate of 0.65 mL/min.

Results

The method was accurate and precise within the linearity range 3.9-500 ng/mL for both lumefantrine and 97–63 with a correlation coefficient (r2) of ≥0.998. The intra- and inter-day assay precision ranged from 2.24 to 7.14% and 3.97 to 5.90%, and intra- and inter-day assay accuracy was between 94.93 and 109.51% and 96.87 and 108.38%, respectively, for both the analytes. Upon coadministration of 97–78, the relative bioavailability of lumefantrine significantly decreased to 64.41%.

Conclusions

A highly sensitive, specific and reproducible high-throughput LC-ESI-MS/MS assay was developed and validated to quantify lumefantrine and CDRI 97–78. The method was successfully applied to study the effect of oral co-administration of lumefantrine on the pharmacokinetics of 97–78 in male Sprague–Dawley rats and vice versa. Co-administration of 97–78 significantly decreased the systemic exposure of lumefantrine.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. World malaria report 2013. Geneva: World Health Organization; 2013. WHO. World malaria report 2013. Geneva: World Health Organization; 2013.
2.
go back to reference Wahajuddin, Singh SP, Singh SK, Jain GK. Quantitation of Lumefantrine in Biological Matrices. Cur Pharm Anal. 2011; 7:42-6. Wahajuddin, Singh SP, Singh SK, Jain GK. Quantitation of Lumefantrine in Biological Matrices. Cur Pharm Anal. 2011; 7:42-6.
3.
go back to reference Wahajuddin, Raju KSR, Taneja I. Bioanalysis of antimalarials using liquid chromatography. Trends Analyt Chem. 2013;42:186–204.CrossRef Wahajuddin, Raju KSR, Taneja I. Bioanalysis of antimalarials using liquid chromatography. Trends Analyt Chem. 2013;42:186–204.CrossRef
4.
go back to reference Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–67.CrossRefPubMedCentralPubMed Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–67.CrossRefPubMedCentralPubMed
5.
go back to reference Singh C, Malik H, Puri SK: Spiro-1, 2, 4-trioxanes. US Patent 7495025 B2. 2009. Singh C, Malik H, Puri SK: Spiro-1, 2, 4-trioxanes. US Patent 7495025 B2. 2009.
6.
go back to reference Singh C, Puri SK. Substituted 1, 2, 4-trioxanes as antimalarial agents and a process of producing the substituted 1, 2, 4-trioxanes. US Patent 6316493 B1,2001. Singh C, Puri SK. Substituted 1, 2, 4-trioxanes as antimalarial agents and a process of producing the substituted 1, 2, 4-trioxanes. US Patent 6316493 B1,2001.
7.
go back to reference Shafiq N, Rajagopalan S, Kushwaha HN, Mittal N, Chandurkar N, Bhalla A, et al. Single ascending dose safety and pharmacokinetics of CDRI-97/78: first-in-human study of a novel antimalarial drug. Malar Res Treat. 2014;2014:372521.PubMedCentralPubMed Shafiq N, Rajagopalan S, Kushwaha HN, Mittal N, Chandurkar N, Bhalla A, et al. Single ascending dose safety and pharmacokinetics of CDRI-97/78: first-in-human study of a novel antimalarial drug. Malar Res Treat. 2014;2014:372521.PubMedCentralPubMed
8.
go back to reference Singh RP, Sabarinath S, Gautam N, Gupta RC, Singh SK. Pharmacokinetic study of the novel, synthetic trioxane antimalarial compound 97–78 in rats using an LC-MS/MS method for quantification. Arzneimittel-Forschung. 2011;61:120–5.PubMed Singh RP, Sabarinath S, Gautam N, Gupta RC, Singh SK. Pharmacokinetic study of the novel, synthetic trioxane antimalarial compound 9778 in rats using an LC-MS/MS method for quantification. Arzneimittel-Forschung. 2011;61:120–5.PubMed
9.
go back to reference Wahajuddin, Singh SP, Jain GK. Determination of lumefantrine in rat plasma by liquid-liquid extraction using LC-MS/MS with electrospray ionization: assay development, validation and application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877:1133–9.CrossRefPubMed Wahajuddin, Singh SP, Jain GK. Determination of lumefantrine in rat plasma by liquid-liquid extraction using LC-MS/MS with electrospray ionization: assay development, validation and application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877:1133–9.CrossRefPubMed
10.
go back to reference Wahajuddin, Singh SP, Jain GK. Gender differences in pharmacokinetics of lumefantrine and its metabolite desbutyl-lumefantrine in rats. Biopharm Drug Dispos. 2012;33:229–34.CrossRefPubMed Wahajuddin, Singh SP, Jain GK. Gender differences in pharmacokinetics of lumefantrine and its metabolite desbutyl-lumefantrine in rats. Biopharm Drug Dispos. 2012;33:229–34.CrossRefPubMed
11.
go back to reference Wahajuddin, Singh SP, Raju KSR, Nafis A, Puri SK, Jain GK. Intravenous pharmacokinetics, oral bioavailability, dose proportionality and in situ permeability of anti-malarial lumefantrine in rats. Malar J. 2011;10:293.CrossRefPubMedCentralPubMed Wahajuddin, Singh SP, Raju KSR, Nafis A, Puri SK, Jain GK. Intravenous pharmacokinetics, oral bioavailability, dose proportionality and in situ permeability of anti-malarial lumefantrine in rats. Malar J. 2011;10:293.CrossRefPubMedCentralPubMed
12.
go back to reference US FDA. Guidance for industry: bioanalytical method validation. Rockville, MD: CDER; 2013. US FDA. Guidance for industry: bioanalytical method validation. Rockville, MD: CDER; 2013.
Metadata
Title
Simultaneous quantification of proposed anti-malarial combination comprising of lumefantrine and CDRI 97–78 in rat plasma using the HPLC–ESI-MS/MS method: application to drug interaction study
Authors
Muhammad Wahajuddin
Sheelendra P Singh
Isha Taneja
Kanumuri SR Raju
Jiaur R Gayen
Hefazat H Siddiqui
Shio K Singh
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0684-5

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue