Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

Outdoor biting by Anopheles mosquitoes on Bioko Island does not currently impact on malaria control

Authors: John Bradley, Jo Lines, Godwin Fuseini, Christopher Schwabe, Feliciano Monti, Michel Slotman, Daniel Vargas, Guillermo Garcia, Dianna Hergott, Immo Kleinschmidt

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

There have been many recent reports that the rate of outdoor biting by malaria vectors has increased. This study examined the impact this might have on malaria transmission by assessing the association between exposure to outdoor bites and malaria infection on Bioko Island, Equatorial Guinea.

Methods

Responses to questions about time spent outside the previous night from a malaria indicator survey were combined with human landing catch measurements of hourly rates of outdoor and indoor biting for the whole island to estimate the number of outdoor and indoor bites received by each survey respondent. The association between RDT measured malaria infection status of individuals and outdoor bites received was investigated.

Results

The average number of bites received per person per night was estimated as 3.51 in total, of which 0.69 (19.7%) would occur outdoors. Malaria infection was not significantly higher in individuals who reported spending time outside between 7 pm and 6 am the previous night compared to those not spending time outside in both adults (18.9% vs 17.4%, p = 0.20) and children (29.2% vs 27.1%, p = 0.20). Malaria infection in neither adults (p = 0.56) nor in children (p = 0.12) was associated with exposure to outdoor bites, even after adjusting for confounders.

Conclusions

Malaria vector mosquitoes in Bioko do bite humans outdoors, and this has the potential to reduce the effectiveness of vector control. However, outdoor biting is currently not a major factor influencing the malaria burden, mainly because more than 95% of the population are indoors during the middle of the night, which is the peak biting period for malaria vector mosquitoes. The majority of resources should remain with control measures that target indoor biting and resting such as LLINs and IRS.
Literature
1.
go back to reference Huho B, Briet O, Seyoum A, Sikaala C, Bayoh N, Gimnig J, et al. Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa. Int J Epidemiol. 2013;42:235–47.CrossRefPubMedCentralPubMed Huho B, Briet O, Seyoum A, Sikaala C, Bayoh N, Gimnig J, et al. Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa. Int J Epidemiol. 2013;42:235–47.CrossRefPubMedCentralPubMed
2.
go back to reference Govella NJ, Ferguson H. Why use of interventions targeting outdoor biting mosquitoes will be necessary to achieve malaria elimination. Front Physiol. 2012;3:199.CrossRefPubMedCentralPubMed Govella NJ, Ferguson H. Why use of interventions targeting outdoor biting mosquitoes will be necessary to achieve malaria elimination. Front Physiol. 2012;3:199.CrossRefPubMedCentralPubMed
3.
go back to reference Killeen GF, Chitnis N. Potential causes and consequences of behavioural resilience and resistance in malaria vector populations: a mathematical modelling analysis. Malar J. 2014;13:97.CrossRefPubMedCentralPubMed Killeen GF, Chitnis N. Potential causes and consequences of behavioural resilience and resistance in malaria vector populations: a mathematical modelling analysis. Malar J. 2014;13:97.CrossRefPubMedCentralPubMed
4.
5.
go back to reference Reddy MR, Overgaard HJ, Abaga S, Reddy VP, Caccone A, Kiszewski AE, et al. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malar J. 2011;10:184.CrossRefPubMedCentralPubMed Reddy MR, Overgaard HJ, Abaga S, Reddy VP, Caccone A, Kiszewski AE, et al. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malar J. 2011;10:184.CrossRefPubMedCentralPubMed
6.
go back to reference Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J. 2011;10:80.CrossRefPubMedCentralPubMed Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J. 2011;10:80.CrossRefPubMedCentralPubMed
8.
go back to reference Bayoh MN, Mathias DK, Odiere MR, Mutuku FM, Kamau L, Gimnig JE, et al. Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province. Kenya Malar J. 2010;9:62.CrossRef Bayoh MN, Mathias DK, Odiere MR, Mutuku FM, Kamau L, Gimnig JE, et al. Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province. Kenya Malar J. 2010;9:62.CrossRef
9.
go back to reference Russell TL, Beebe NW, Cooper RD, Lobo NF, Burkot TR. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J. 2013;12:56.CrossRefPubMedCentralPubMed Russell TL, Beebe NW, Cooper RD, Lobo NF, Burkot TR. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J. 2013;12:56.CrossRefPubMedCentralPubMed
10.
go back to reference Govella NJ, Okumu FO, Killeen GF. Insecticide-treated nets can reduce malaria transmission by mosquitoes which feed outdoors. Am J Trop Med Hyg. 2010;82:415–9.CrossRefPubMedCentralPubMed Govella NJ, Okumu FO, Killeen GF. Insecticide-treated nets can reduce malaria transmission by mosquitoes which feed outdoors. Am J Trop Med Hyg. 2010;82:415–9.CrossRefPubMedCentralPubMed
11.
go back to reference Overgaard HJ, Reddy VP, Abaga S, Matias A, Reddy MR, Kulkarni V, et al. Malaria transmission after five years of vector control on Bioko Island, Equatorial Guinea. Parasit Vectors. 2012;5:253.CrossRefPubMedCentralPubMed Overgaard HJ, Reddy VP, Abaga S, Matias A, Reddy MR, Kulkarni V, et al. Malaria transmission after five years of vector control on Bioko Island, Equatorial Guinea. Parasit Vectors. 2012;5:253.CrossRefPubMedCentralPubMed
12.
go back to reference Seyoum A, Sikaala CH, Chanda J, Chinula D, Ntamatungiro AJ, Hawela M, et al. Human exposure to anopheline mosquitoes occurs primarily indoors, even for users of insecticide-treated nets in Luangwa Valley, South-east Zambia. Parasit Vectors. 2012;5:101.CrossRefPubMedCentralPubMed Seyoum A, Sikaala CH, Chanda J, Chinula D, Ntamatungiro AJ, Hawela M, et al. Human exposure to anopheline mosquitoes occurs primarily indoors, even for users of insecticide-treated nets in Luangwa Valley, South-east Zambia. Parasit Vectors. 2012;5:101.CrossRefPubMedCentralPubMed
13.
go back to reference Stevenson J, St Laurent B, Lobo NF, Cooke MK, Kahindi SC, Oriango RM, et al. Novel vectors of malaria parasites in the western highlands of Kenya. Emerg Infect Dis. 2012;18:1547–9.CrossRefPubMedCentralPubMed Stevenson J, St Laurent B, Lobo NF, Cooke MK, Kahindi SC, Oriango RM, et al. Novel vectors of malaria parasites in the western highlands of Kenya. Emerg Infect Dis. 2012;18:1547–9.CrossRefPubMedCentralPubMed
14.
go back to reference Bradley J, Rehman AM, Schwabe C, Vargas D, Monti F, Ela C, et al. Reduced prevalence of malaria infection in children living in houses with window screening or closed eaves on Bioko Island, equatorial Guinea. PLoS One. 2013;8, e80626.CrossRefPubMedCentralPubMed Bradley J, Rehman AM, Schwabe C, Vargas D, Monti F, Ela C, et al. Reduced prevalence of malaria infection in children living in houses with window screening or closed eaves on Bioko Island, equatorial Guinea. PLoS One. 2013;8, e80626.CrossRefPubMedCentralPubMed
15.
go back to reference Kleinschmidt I, Schwabe C, Benavente L, Torrez M, Ridl FC, Segura JL, et al. Marked increase in child survival after four years of intensive malaria control. Am J Trop Med Hyg. 2009;80:882–8.PubMedCentralPubMed Kleinschmidt I, Schwabe C, Benavente L, Torrez M, Ridl FC, Segura JL, et al. Marked increase in child survival after four years of intensive malaria control. Am J Trop Med Hyg. 2009;80:882–8.PubMedCentralPubMed
16.
go back to reference Kleinschmidt I, Sharp B, Benavente LE, Schwabe C, Torrez M, Kuklinski J, et al. Reduction in infection with Plasmodium falciparum one year after the introduction of malaria control interventions on Bioko Island, Equatorial Guinea. Am J Trop Med Hyg. 2006;74:972–8.PubMed Kleinschmidt I, Sharp B, Benavente LE, Schwabe C, Torrez M, Kuklinski J, et al. Reduction in infection with Plasmodium falciparum one year after the introduction of malaria control interventions on Bioko Island, Equatorial Guinea. Am J Trop Med Hyg. 2006;74:972–8.PubMed
17.
go back to reference Cano J, Berzosa PJ, Roche J, Rubio JM, Moyano E, Guerra-Neira A, et al. Malaria vectors in the Bioko Island (Equatorial Guinea): estimation of vector dynamics and transmission intensities. J Med Entomol. 2004;41:158–61.CrossRefPubMed Cano J, Berzosa PJ, Roche J, Rubio JM, Moyano E, Guerra-Neira A, et al. Malaria vectors in the Bioko Island (Equatorial Guinea): estimation of vector dynamics and transmission intensities. J Med Entomol. 2004;41:158–61.CrossRefPubMed
18.
go back to reference Molina R, Benito A, Roche J, Blanca F, Amela C, Sanchez A, et al. Baseline entomological data for a pilot malaria control program in Equatorial Guinea. J Med Entomol. 1993;30:622–4.CrossRefPubMed Molina R, Benito A, Roche J, Blanca F, Amela C, Sanchez A, et al. Baseline entomological data for a pilot malaria control program in Equatorial Guinea. J Med Entomol. 1993;30:622–4.CrossRefPubMed
19.
go back to reference Sharp BL, Ridl FC, Govender D, Kuklinski J, Kleinschmidt I. Malaria vector control by indoor residual insecticide spraying on the tropical island of Bioko, Equatorial Guinea. Malar J. 2007;6:52.CrossRefPubMedCentralPubMed Sharp BL, Ridl FC, Govender D, Kuklinski J, Kleinschmidt I. Malaria vector control by indoor residual insecticide spraying on the tropical island of Bioko, Equatorial Guinea. Malar J. 2007;6:52.CrossRefPubMedCentralPubMed
20.
go back to reference Hodges TK, Athrey G, Deitz KC, Overgaard HJ, Matias A, Caccone A, et al. Large fluctuations in the effective population size of the malaria mosquito Anopheles gambiae s.s. during vector control cycle. Evol Appl. 2013;6:1171–83.CrossRefPubMedCentralPubMed Hodges TK, Athrey G, Deitz KC, Overgaard HJ, Matias A, Caccone A, et al. Large fluctuations in the effective population size of the malaria mosquito Anopheles gambiae s.s. during vector control cycle. Evol Appl. 2013;6:1171–83.CrossRefPubMedCentralPubMed
21.
go back to reference Bradley J, Matias A, Schwabe C, Vargas D, Monti F, Nseng G, et al. Increased risks of malaria due to limited residual life of insecticide and outdoor biting versus protection by combined use of nets and indoor residual spraying on Bioko Island, Equatorial Guinea. Malar J. 2012;11:242.CrossRefPubMedCentralPubMed Bradley J, Matias A, Schwabe C, Vargas D, Monti F, Nseng G, et al. Increased risks of malaria due to limited residual life of insecticide and outdoor biting versus protection by combined use of nets and indoor residual spraying on Bioko Island, Equatorial Guinea. Malar J. 2012;11:242.CrossRefPubMedCentralPubMed
22.
go back to reference Kleinschmidt I, Torrez M, Schwabe C, Benavente L, Seocharan I, Jituboh D, et al. Factors influencing the effectiveness of malaria control in Bioko Island, equatorial Guinea. Am J Trop Med Hyg. 2007;76:1027–32.PubMedCentralPubMed Kleinschmidt I, Torrez M, Schwabe C, Benavente L, Seocharan I, Jituboh D, et al. Factors influencing the effectiveness of malaria control in Bioko Island, equatorial Guinea. Am J Trop Med Hyg. 2007;76:1027–32.PubMedCentralPubMed
24.
go back to reference Killeen GF, Kihonda J, Lyimo E, Oketch FR, Kotas ME, Mathenge E, et al. Quantifying behavioural interactions between humans and mosquitoes: evaluating the protective efficacy of insecticidal nets against malaria transmission in rural Tanzania. BMC Infect Dis. 2006;6:161.CrossRefPubMedCentralPubMed Killeen GF, Kihonda J, Lyimo E, Oketch FR, Kotas ME, Mathenge E, et al. Quantifying behavioural interactions between humans and mosquitoes: evaluating the protective efficacy of insecticidal nets against malaria transmission in rural Tanzania. BMC Infect Dis. 2006;6:161.CrossRefPubMedCentralPubMed
25.
go back to reference Cook J, Kleinschmidt I, Schwabe C, Nseng G, Bousema T, Corran PH, et al. xSerological markers suggest heterogeneity of effectiveness of malaria control interventions on Bioko Island, equatorial Guinea. PLoS One. 2011;6, e25137. Cook J, Kleinschmidt I, Schwabe C, Nseng G, Bousema T, Corran PH, et al. xSerological markers suggest heterogeneity of effectiveness of malaria control interventions on Bioko Island, equatorial Guinea. PLoS One. 2011;6, e25137.
26.
go back to reference Bradley J, Monti F, Rehman AM, Schwabe C, Vargas D, Garcia G, et al. Infection importation: a key challenge to malaria elimination on Bioko Island, Equatorial Guinea. Malar J. 2015;14:46.CrossRefPubMedCentralPubMed Bradley J, Monti F, Rehman AM, Schwabe C, Vargas D, Garcia G, et al. Infection importation: a key challenge to malaria elimination on Bioko Island, Equatorial Guinea. Malar J. 2015;14:46.CrossRefPubMedCentralPubMed
27.
go back to reference Stata Press. Stata Survey Data Reference Manual, Release 12. College Station, TX: StataCorp LP; 2011. Stata Press. Stata Survey Data Reference Manual, Release 12. College Station, TX: StataCorp LP; 2011.
28.
go back to reference Rao JN, Scott AJ. A simple method for the analysis of clustered binary data. Biometrics. 1992;48:577–85.CrossRefPubMed Rao JN, Scott AJ. A simple method for the analysis of clustered binary data. Biometrics. 1992;48:577–85.CrossRefPubMed
29.
go back to reference StataCorp. Stata Statistical Software: Release 13. College Station, TX: StataCorp LP; 2013. StataCorp. Stata Statistical Software: Release 13. College Station, TX: StataCorp LP; 2013.
30.
go back to reference Briet OJ, Chitnis N. Effects of changing mosquito host searching behaviour on the cost effectiveness of a mass distribution of long-lasting, insecticidal nets: a modelling study. Malar J. 2013;12:215.CrossRefPubMedCentralPubMed Briet OJ, Chitnis N. Effects of changing mosquito host searching behaviour on the cost effectiveness of a mass distribution of long-lasting, insecticidal nets: a modelling study. Malar J. 2013;12:215.CrossRefPubMedCentralPubMed
31.
go back to reference Molineaux L, Shidrawi GR, Clarke JL, Boulzaguet JR, Ashkar TS. Assessment of insecticidal impact on the malaria mosquito's vectorial capacity, from data on the man-biting rate and age-composition. Bull World Health Organ. 1979;57:265–74.PubMedCentralPubMed Molineaux L, Shidrawi GR, Clarke JL, Boulzaguet JR, Ashkar TS. Assessment of insecticidal impact on the malaria mosquito's vectorial capacity, from data on the man-biting rate and age-composition. Bull World Health Organ. 1979;57:265–74.PubMedCentralPubMed
Metadata
Title
Outdoor biting by Anopheles mosquitoes on Bioko Island does not currently impact on malaria control
Authors
John Bradley
Jo Lines
Godwin Fuseini
Christopher Schwabe
Feliciano Monti
Michel Slotman
Daniel Vargas
Guillermo Garcia
Dianna Hergott
Immo Kleinschmidt
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0679-2

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue