Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

Evaluation of a protocol for remote identification of mosquito vector species reveals BG-Sentinel trap as an efficient tool for Anopheles gambiae outdoor collection in Burkina Faso

Authors: Marco Pombi, Wamdaogo M Guelbeogo, Maria Calzetta, N’Fale Sagnon, Vincenzo Petrarca, Vincenzo La Gioia, Alessandra della Torre

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

Feasibility and costs of monitoring efforts aimed to monitor mosquito species are strictly dependent on the presence of skilled entomologists directly in the field. However, in several contexts this is not possible or easy to organize, thus limiting the possibility to obtain crucial information on presence/abundance of potential disease vectors and of new invasive species. Digital imaging approaches could be extremely useful in the frame of medical entomology to overcome this limit. This work describes a surveillance approach to collect and morphologically identify host-seeking malaria vectors based on remote transmission of digital images of specimens collected with ad hoc modified traps.

Methods

CDC light trap (CDC) and the BG-Sentinel trap (BG), both baited with BG-lure and CO2, were modified in order to have collected mosquitoes immobilized on a bi-dimensional surface. The performance of the two traps in the field was comparatively tested by Latin-square experiments in two villages of Burkina Faso under low and high mosquito densities. The efficiency of identifications based the inspection of digital images versus microscopic identifications of collected specimens was compared.

Results

A total of 1,519 mosquitoes belonging to 16 species were collected, of which 88.5% were microscopically identified as Anopheles gambiae s.l. (mainly Anopheles coluzzii, 85.7%). During dry season BG collected 15 times more females than CDC outdoors, whereas indoors the BG collected 0.4 times less than CDC. During rainy season the ratio BG/CDC was 6.4 and 0.7 outdoors and indoors, respectively. The efficiency of digital images versus microscopic identifications of collected specimens was 97.9%, 95.6% and 81.5% for Culicidae, Anophelinae and An. gambiae s.l., respectively.

Conclusions

Results strongly encourage the use of BG-trap for collecting host-seeking An. gambiae particularly in the outdoor environment, providing new perspectives to the challenge of collecting this fraction of the biting population, whose epidemiological relevance is increasing due to the success of large-scale implementation of indoor malaria vector control strategies. Moreover, results show that the transmission of digital images of specimens collected by the ad hoc modified host-seeking traps efficiently allows identification of malaria vectors, thus opening the perspective to easily carry out mosquito monitoring also in the absence of entomologists directly in the field.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mallard F, Le Bourlot V, Tully T. An automated image analysis system to measure and count organisms in laboratory microcosms. PLoS One. 2013;8, e64387.CrossRefPubMedCentralPubMed Mallard F, Le Bourlot V, Tully T. An automated image analysis system to measure and count organisms in laboratory microcosms. PLoS One. 2013;8, e64387.CrossRefPubMedCentralPubMed
2.
go back to reference Green JM, Appel H, Rehrig EM, Harnsomburana J, Chang J-F, Balint-Kurti P, et al. PhenoPhyte: a flexible affordable method to quantify 2D phenotypes from imagery. Plant Methods. 2012;8:45.CrossRefPubMedCentralPubMed Green JM, Appel H, Rehrig EM, Harnsomburana J, Chang J-F, Balint-Kurti P, et al. PhenoPhyte: a flexible affordable method to quantify 2D phenotypes from imagery. Plant Methods. 2012;8:45.CrossRefPubMedCentralPubMed
3.
go back to reference Dietrich C, Hart J, Raila D, Ravaioli U, Sobh N, Sobh O, et al. InvertNet: a new paradigm for digital access to invertebrate collections. Zookeys. 2012;209:165–81.CrossRefPubMed Dietrich C, Hart J, Raila D, Ravaioli U, Sobh N, Sobh O, et al. InvertNet: a new paradigm for digital access to invertebrate collections. Zookeys. 2012;209:165–81.CrossRefPubMed
4.
go back to reference Mantle BL, Salle JL, Fisher N. Whole-drawer imaging for digital management and curation of a large entomological collection. Zookeys. 2012;209:147–63.CrossRefPubMed Mantle BL, Salle JL, Fisher N. Whole-drawer imaging for digital management and curation of a large entomological collection. Zookeys. 2012;209:147–63.CrossRefPubMed
5.
go back to reference Schmidt S, Balke M, Lafogler S. DScan - a high-performance digital scanning system for entomological collections. Zookeys. 2012;209:183–91.CrossRefPubMed Schmidt S, Balke M, Lafogler S. DScan - a high-performance digital scanning system for entomological collections. Zookeys. 2012;209:183–91.CrossRefPubMed
6.
go back to reference Wheeler Q, Bourgoin T, Coddington J, Gostony T, Hamilton A, Larimer R, et al. Nomenclatural benchmarking: the roles of digital typification and telemicroscopy. Zookeys. 2012;209:193–202.CrossRefPubMed Wheeler Q, Bourgoin T, Coddington J, Gostony T, Hamilton A, Larimer R, et al. Nomenclatural benchmarking: the roles of digital typification and telemicroscopy. Zookeys. 2012;209:193–202.CrossRefPubMed
7.
go back to reference Facchinelli L, Valerio L, Pombi M, Reiter P, Costantini C, Della Torre A. Development of a novel sticky trap for container-breeding mosquitoes and evaluation of its sampling properties to monitor urban populations of Aedes albopictus. Med Vet Entomol. 2007;21:183–95.CrossRefPubMed Facchinelli L, Valerio L, Pombi M, Reiter P, Costantini C, Della Torre A. Development of a novel sticky trap for container-breeding mosquitoes and evaluation of its sampling properties to monitor urban populations of Aedes albopictus. Med Vet Entomol. 2007;21:183–95.CrossRefPubMed
8.
go back to reference Eiras AE, Buhagiar TS, Ritchie SA. Development of the gravid Aedes trap for the capture of adult female container-exploiting mosquitoes (Diptera: Culicidae). J Med Entomol. 2014;51:200–9.CrossRefPubMed Eiras AE, Buhagiar TS, Ritchie SA. Development of the gravid Aedes trap for the capture of adult female container-exploiting mosquitoes (Diptera: Culicidae). J Med Entomol. 2014;51:200–9.CrossRefPubMed
9.
10.
go back to reference Resende M, Ázara T. Field optimisation of MosquiTRAP sampling for monitoring Aedes aegypti Linnaeus (Diptera: Culicidae). Mem Inst Oswaldo Cruz. 2012;107:294–302.CrossRefPubMed Resende M, Ázara T. Field optimisation of MosquiTRAP sampling for monitoring Aedes aegypti Linnaeus (Diptera: Culicidae). Mem Inst Oswaldo Cruz. 2012;107:294–302.CrossRefPubMed
11.
go back to reference Ritchie SA, Long S, Hart A, Webb CE, Russell RC. An adulticidal sticky ovitrap for sampling container-breeding mosquitoes. J Am Mosq Control Assoc. 2003;19:235–42.PubMed Ritchie SA, Long S, Hart A, Webb CE, Russell RC. An adulticidal sticky ovitrap for sampling container-breeding mosquitoes. J Am Mosq Control Assoc. 2003;19:235–42.PubMed
12.
go back to reference Leon N. The use of sticky ovitraps to estimate dispersal of Aedes aegypti in Northeastern Mexico. J Am Mosq Control Assoc. 2001;17:93–7. Leon N. The use of sticky ovitraps to estimate dispersal of Aedes aegypti in Northeastern Mexico. J Am Mosq Control Assoc. 2001;17:93–7.
13.
go back to reference Kay BH, Sutton KA, Russell BM. A sticky entry-exit trap for sampling mosquitoes in subterranean habitats. J Am Mosq Control Assoc. 2000;16:262–5.PubMed Kay BH, Sutton KA, Russell BM. A sticky entry-exit trap for sampling mosquitoes in subterranean habitats. J Am Mosq Control Assoc. 2000;16:262–5.PubMed
14.
go back to reference De Santos EMM, de Melo-Santos MAV, de Oliveira CMF, Correia JC, de Albuquerque CMR. Evaluation of a sticky trap (AedesTraP), made from disposable plastic bottles, as a monitoring tool for Aedes aegypti populations. Parasit Vectors. 2012;5:195.CrossRefPubMedCentralPubMed De Santos EMM, de Melo-Santos MAV, de Oliveira CMF, Correia JC, de Albuquerque CMR. Evaluation of a sticky trap (AedesTraP), made from disposable plastic bottles, as a monitoring tool for Aedes aegypti populations. Parasit Vectors. 2012;5:195.CrossRefPubMedCentralPubMed
15.
go back to reference Zhang L-Y, Lei C-L. Evaluation of sticky ovitraps for the surveillance of Aedes (Stegomyia) albopictus (Skuse) and the screening of oviposition attractants from organic infusions. Ann Trop Med Parasitol. 2008;102:399–407.CrossRefPubMed Zhang L-Y, Lei C-L. Evaluation of sticky ovitraps for the surveillance of Aedes (Stegomyia) albopictus (Skuse) and the screening of oviposition attractants from organic infusions. Ann Trop Med Parasitol. 2008;102:399–407.CrossRefPubMed
16.
go back to reference Pombi M, Guelbeogo WM, Kreppel K, Calzetta M, Traoré A, Sanou A, et al. The sticky resting Box, a new tool for studying resting behaviour of afrotropical malaria vectors. Parasit Vectors. 2014;7:247.CrossRefPubMedCentralPubMed Pombi M, Guelbeogo WM, Kreppel K, Calzetta M, Traoré A, Sanou A, et al. The sticky resting Box, a new tool for studying resting behaviour of afrotropical malaria vectors. Parasit Vectors. 2014;7:247.CrossRefPubMedCentralPubMed
17.
go back to reference Harris C, Kihonda J, Lwetoijera D, Dongus S, Devine G, Majambere S. A simple and efficient tool for trapping gravid Anopheles at breeding sites. Parasit Vectors. 2011;4:125.CrossRefPubMedCentralPubMed Harris C, Kihonda J, Lwetoijera D, Dongus S, Devine G, Majambere S. A simple and efficient tool for trapping gravid Anopheles at breeding sites. Parasit Vectors. 2011;4:125.CrossRefPubMedCentralPubMed
18.
go back to reference Müller GC, Beier JC, Traore SF, Toure MB, Traore MM, Bah S, et al. Field experiments of Anopheles gambiae attraction to local fruits/seedpods and flowering plants in Mali to optimize strategies for malaria vector control in Africa using attractive toxic sugar bait methods. Malar J. 2010;9:262.CrossRefPubMedCentralPubMed Müller GC, Beier JC, Traore SF, Toure MB, Traore MM, Bah S, et al. Field experiments of Anopheles gambiae attraction to local fruits/seedpods and flowering plants in Mali to optimize strategies for malaria vector control in Africa using attractive toxic sugar bait methods. Malar J. 2010;9:262.CrossRefPubMedCentralPubMed
19.
go back to reference Smallegange RC, Schmied WH, van Roey KJ, Verhulst NO, Spitzen J, Mukabana WR, et al. Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae. Malar J. 2010;9:292.CrossRefPubMedCentralPubMed Smallegange RC, Schmied WH, van Roey KJ, Verhulst NO, Spitzen J, Mukabana WR, et al. Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae. Malar J. 2010;9:292.CrossRefPubMedCentralPubMed
20.
go back to reference Gillies M, Coetzee M. A Supplement to the Anophelinae of Africa South of the Sahara. Publ South African Inst Med Res. 1987;55:63. Gillies M, Coetzee M. A Supplement to the Anophelinae of Africa South of the Sahara. Publ South African Inst Med Res. 1987;55:63.
21.
go back to reference Santolamazza F, Mancini E, Simard F, Qi Y, Tu Z, della Torre A. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar J. 2008;7:163.CrossRefPubMedCentralPubMed Santolamazza F, Mancini E, Simard F, Qi Y, Tu Z, della Torre A. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar J. 2008;7:163.CrossRefPubMedCentralPubMed
22.
go back to reference Crawley M. The R Book. London: John Wiley & Sons, Inc; 2013. p. 1051. Crawley M. The R Book. London: John Wiley & Sons, Inc; 2013. p. 1051.
23.
go back to reference R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013. R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013.
26.
go back to reference Facchinelli L, Koenraadt CJM, Fanello C, Kijchalao U, Valerio L, Jones JW, et al. Evaluation of a sticky trap for collecting Aedes (Stegomyia) adults in a Dengue-endemic area in Thailand. Am J Trop Med Hyg. 2008;78:904–9.PubMed Facchinelli L, Koenraadt CJM, Fanello C, Kijchalao U, Valerio L, Jones JW, et al. Evaluation of a sticky trap for collecting Aedes (Stegomyia) adults in a Dengue-endemic area in Thailand. Am J Trop Med Hyg. 2008;78:904–9.PubMed
27.
go back to reference Marini F, Caputo B, Pombi M, Tarsitani G, della Torre A. Study of Aedes albopictus dispersal in Rome, Italy, using sticky traps in mark-release-recapture experiments. Med Vet Entomol. 2010;24:361–8.CrossRefPubMed Marini F, Caputo B, Pombi M, Tarsitani G, della Torre A. Study of Aedes albopictus dispersal in Rome, Italy, using sticky traps in mark-release-recapture experiments. Med Vet Entomol. 2010;24:361–8.CrossRefPubMed
28.
go back to reference Valerio L, Marini F, Bongiorno G, Facchinelli L, Pombi M, Caputo B, et al. Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in urban and rural contexts within Rome province, Italy. Vector Borne Zoonotic Dis. 2010;10:291–4.CrossRefPubMed Valerio L, Marini F, Bongiorno G, Facchinelli L, Pombi M, Caputo B, et al. Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in urban and rural contexts within Rome province, Italy. Vector Borne Zoonotic Dis. 2010;10:291–4.CrossRefPubMed
29.
go back to reference Silver JB. Mosquito Ecology: Field Sampling Methods. Thirdth ed. London: Springer; 2008. p. 1498.CrossRef Silver JB. Mosquito Ecology: Field Sampling Methods. Thirdth ed. London: Springer; 2008. p. 1498.CrossRef
30.
go back to reference Schmied WH, Takken W, Killeen GF, Knols BGJ, Smallegange RC. Evaluation of two counterflow traps for testing behaviour-mediating compounds for the malaria vector Anopheles gambiae s.s. Under semi-field conditions in Tanzania. Malar J. 2008;7:230.CrossRefPubMedCentralPubMed Schmied WH, Takken W, Killeen GF, Knols BGJ, Smallegange RC. Evaluation of two counterflow traps for testing behaviour-mediating compounds for the malaria vector Anopheles gambiae s.s. Under semi-field conditions in Tanzania. Malar J. 2008;7:230.CrossRefPubMedCentralPubMed
31.
go back to reference Hiscox A, Otieno B, Kibet A, Mweresa CK, Omusula P, Geier M, et al. Development and optimization of the Suna trap as a tool for mosquito monitoring and control. Malar J. 2014;13:257.CrossRefPubMedCentralPubMed Hiscox A, Otieno B, Kibet A, Mweresa CK, Omusula P, Geier M, et al. Development and optimization of the Suna trap as a tool for mosquito monitoring and control. Malar J. 2014;13:257.CrossRefPubMedCentralPubMed
32.
go back to reference Nyasembe VO, Tchouassi DP, Kirwa HK, Foster WA, Teal PEA, Borgemeister C, et al. Development and assessment of plant-based synthetic odor baits for surveillance and control of malaria vectors. PLoS One. 2014;9, e89818.CrossRefPubMedCentralPubMed Nyasembe VO, Tchouassi DP, Kirwa HK, Foster WA, Teal PEA, Borgemeister C, et al. Development and assessment of plant-based synthetic odor baits for surveillance and control of malaria vectors. PLoS One. 2014;9, e89818.CrossRefPubMedCentralPubMed
33.
go back to reference World Health Organization. World Malaria Report 2013. Geneva, Switzerland: World Health Organization; 2013. p. 284. World Health Organization. World Malaria Report 2013. Geneva, Switzerland: World Health Organization; 2013. p. 284.
Metadata
Title
Evaluation of a protocol for remote identification of mosquito vector species reveals BG-Sentinel trap as an efficient tool for Anopheles gambiae outdoor collection in Burkina Faso
Authors
Marco Pombi
Wamdaogo M Guelbeogo
Maria Calzetta
N’Fale Sagnon
Vincenzo Petrarca
Vincenzo La Gioia
Alessandra della Torre
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0674-7

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue