Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

Early biting and insecticide resistance in the malaria vector Anopheles might compromise the effectiveness of vector control intervention in Southwestern Uganda

Authors: Patrick Ojuka, Yap Boum II, Lise Denoeud-Ndam, Carolyn Nabasumba, Yolanda Muller, Michael Okia, Juliet Mwanga-Amumpaire, Pierre De Beaudrap, Natacha Protopopoff, Jean-François Etard

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

Southwestern Uganda has high malaria heterogeneity despite moderate vector control and other interventions. Moreover, the early biting transmission and increased resistance to insecticides might compromise strategies relying on vector control. Consequently, monitoring of vector behaviour and insecticide efficacy is needed to assess the effectiveness of strategies aiming at malaria control. This eventually led to an entomological survey in two villages with high malaria prevalence in this region.

Methods

During rainy, 2011 and dry season 2012, mosquitoes were collected in Engari and Kigorogoro, Kazo subcounty, using human landing collection, morning indoor resting collection, pyrethrum spray collection and larval collection. Circumsporozoite protein of Plasmodium falciparum sporozoites in female Anopheles mosquitoes was detected using ELISA assay. Bioassays to monitor Anopheles resistance to insecticides were performed.

Results

Of the 1,021 female Anopheles species captured, 62% (632) were Anopheles funestus and 36% (371) were Anopheles gambiae s.l. The most common species were Anopheles gambiae s.l. in Engari (75%) and A. funestus in Kigorogoro (83%). Overall, P. falciparum prevalence was 2.9% by ELISA. The daily entomological inoculation rates were estimated at 0.17 and 0.58 infected bites/person/night during rainy and dry season respectively in Engari, and 0.81 infected bites/person/night in Kigorogoro during dry season. In both areas and seasons, an unusually early evening biting peak was observed between 6 - 8 p.m. In Engari, insecticide bioassays showed 85%, 34% and 12% resistance to DDT during the rainy season, dry season and to deltamethrin during the dry season, respectively. In Kigorogoro, 13% resistance to DDT and to deltamethrin was recorded. There was no resistance observed to bendiocarb and pirimiphos methyl.

Conclusions

The heterogeneity of mosquito distribution, entomological indicators and resistance to insecticides in villages with high malaria prevalence highlight the need for a long-term vector control programme and monitoring of insecticide resistance in Uganda. The early evening biting habits of Anopheles combined with resistance to DDT and deltamethrin observed in this study suggest that use of impregnated bed nets alone is insufficient as a malaria control strategy, urging the need for additional interventions in this area of high transmission.
Literature
1.
go back to reference Okello PE, Van Bortel W, Byaruhanga AM, Correwyn A, Roelants P, Talisuna A, et al. Variation in malaria transmission intensity in seven sites throughout Uganda. Am J Trop Med Hyg. 2006;75:219–25.PubMed Okello PE, Van Bortel W, Byaruhanga AM, Correwyn A, Roelants P, Talisuna A, et al. Variation in malaria transmission intensity in seven sites throughout Uganda. Am J Trop Med Hyg. 2006;75:219–25.PubMed
2.
go back to reference Hopkins H, Bebell L, Kambale W, Dokomajilar C, Rosenthal PJ, Dorsey G. Rapid diagnostic tests for malaria at sites of varying transmission intensity in Uganda. J Infect Dis. 2008;197:510–8.CrossRefPubMed Hopkins H, Bebell L, Kambale W, Dokomajilar C, Rosenthal PJ, Dorsey G. Rapid diagnostic tests for malaria at sites of varying transmission intensity in Uganda. J Infect Dis. 2008;197:510–8.CrossRefPubMed
3.
go back to reference De Beaudrap P, Nabasumba C, Grandesso F, Turyakira E, Schramm B, Boum 2nd Y, et al. Heterogeneous decrease in malaria prevalence in children over a six-year period in south-western Uganda. Malar J. 2011;10:132.CrossRefPubMedCentralPubMed De Beaudrap P, Nabasumba C, Grandesso F, Turyakira E, Schramm B, Boum 2nd Y, et al. Heterogeneous decrease in malaria prevalence in children over a six-year period in south-western Uganda. Malar J. 2011;10:132.CrossRefPubMedCentralPubMed
4.
go back to reference Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, et al. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet. 2012;379:413–31.CrossRefPubMed Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, et al. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet. 2012;379:413–31.CrossRefPubMed
5.
go back to reference Jagannathan P, Muhindo MK, Kakuru A, Arinaitwe E, Greenhouse B, Tappero J, et al. Increasing incidence of malaria in children despite insecticide-treated bed nets and prompt anti-malarial therapy. Malar J. 2012;11:435.CrossRefPubMedCentralPubMed Jagannathan P, Muhindo MK, Kakuru A, Arinaitwe E, Greenhouse B, Tappero J, et al. Increasing incidence of malaria in children despite insecticide-treated bed nets and prompt anti-malarial therapy. Malar J. 2012;11:435.CrossRefPubMedCentralPubMed
6.
go back to reference Lwetoijera DW, Kiware SS, Mageni ZD, Dongus S, Harris C, Devine GJ, et al. A need for better housing to further reduce indoor malaria transmission in areas with high bed net coverage. Parasit Vectors. 2013;6:57.CrossRefPubMedCentralPubMed Lwetoijera DW, Kiware SS, Mageni ZD, Dongus S, Harris C, Devine GJ, et al. A need for better housing to further reduce indoor malaria transmission in areas with high bed net coverage. Parasit Vectors. 2013;6:57.CrossRefPubMedCentralPubMed
7.
go back to reference Moiroux N, Gomez MB, Pennetier C, Elanga E, Djènontin A, Chandre F, et al. Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis. 2012;206:1622–9.CrossRefPubMed Moiroux N, Gomez MB, Pennetier C, Elanga E, Djènontin A, Chandre F, et al. Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis. 2012;206:1622–9.CrossRefPubMed
8.
go back to reference Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malaria Journal. 2011;10:80.CrossRefPubMedCentralPubMed Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malaria Journal. 2011;10:80.CrossRefPubMedCentralPubMed
9.
go back to reference Braimah N, Drakeley C, Kweka E, Mosha F, Helinski M, Pates H, et al. Tests of bednet traps (Mbita traps) for monitoring mosquito populations and time of biting in Tanzania and possible impact of prolonged insecticide treated net use. Int J Tropical Insect Scie. 2005;25:208–13.CrossRef Braimah N, Drakeley C, Kweka E, Mosha F, Helinski M, Pates H, et al. Tests of bednet traps (Mbita traps) for monitoring mosquito populations and time of biting in Tanzania and possible impact of prolonged insecticide treated net use. Int J Tropical Insect Scie. 2005;25:208–13.CrossRef
10.
go back to reference Kitau J, Oxborough RM, Tungu PK, Matowo J, Malima RC, Magesa SM, et al. Species shifts in the Anopheles gambiae complex: do LLINs successfully control Anopheles arabiensis? PLoS One. 2012;7:e31481.CrossRefPubMedCentralPubMed Kitau J, Oxborough RM, Tungu PK, Matowo J, Malima RC, Magesa SM, et al. Species shifts in the Anopheles gambiae complex: do LLINs successfully control Anopheles arabiensis? PLoS One. 2012;7:e31481.CrossRefPubMedCentralPubMed
11.
go back to reference McCann RS, Ochomo O, Bayoh N, Vulule JM, Gimnig JE, Walker ED. Reemergence of Anopheles funestus as a vector of Plasmodium falciparum in western Kenya after long-term implementation of insecticide-treated bed nets. Am J Trop Med Hyg. 2014;90:597–604.CrossRefPubMedCentralPubMed McCann RS, Ochomo O, Bayoh N, Vulule JM, Gimnig JE, Walker ED. Reemergence of Anopheles funestus as a vector of Plasmodium falciparum in western Kenya after long-term implementation of insecticide-treated bed nets. Am J Trop Med Hyg. 2014;90:597–604.CrossRefPubMedCentralPubMed
12.
go back to reference Okia M, Ndomugyenyi R, Kiruda J, Byaruhanga A, Adibaku S, Lwamafa DK, et al. Bioefficacy of long-lasting insecticidal nets against pyrethroid-resistant populations of Anopheles gambiae s.s. from different malaria transmission zones in Uganda. Parasites Vectors. 2013;6:130.CrossRefPubMedCentralPubMed Okia M, Ndomugyenyi R, Kiruda J, Byaruhanga A, Adibaku S, Lwamafa DK, et al. Bioefficacy of long-lasting insecticidal nets against pyrethroid-resistant populations of Anopheles gambiae s.s. from different malaria transmission zones in Uganda. Parasites Vectors. 2013;6:130.CrossRefPubMedCentralPubMed
13.
go back to reference Echodu R, Okello-Onen J, Lutwama JJ, Enyaru J, Ocan R, Asaba RB, et al. Heterogeneity of Anopheles mosquitoes in Nyabushozi county, Kiruhura district, Uganda. J Parasitol Vector Biol. 2010;2:28–34. Echodu R, Okello-Onen J, Lutwama JJ, Enyaru J, Ocan R, Asaba RB, et al. Heterogeneity of Anopheles mosquitoes in Nyabushozi county, Kiruhura district, Uganda. J Parasitol Vector Biol. 2010;2:28–34.
14.
go back to reference Service MW. Studies on sampling larval populations of the Anopheles gambiae complex. Bull World Health Organ. 1971;45:169–80.PubMedCentralPubMed Service MW. Studies on sampling larval populations of the Anopheles gambiae complex. Bull World Health Organ. 1971;45:169–80.PubMedCentralPubMed
15.
go back to reference Gillies M, Coetzee M. A supplement to the Anophelinae of Africa South of the Sahara (Afrotropical Region). Johannesburg: South African Medical Research Institute; 1987. Gillies M, Coetzee M. A supplement to the Anophelinae of Africa South of the Sahara (Afrotropical Region). Johannesburg: South African Medical Research Institute; 1987.
16.
go back to reference Wirtz RA, Burkot TR, Graves PM, Andre RG. Field evaluation of enzyme-linked immunosorbent assays for Plasmodium falciparum and Plasmodium vivax sporozoites in mosquitoes (Diptera: Culicidae) from Papua New Guinea. J Med Entomol. 1987;24:433–7.CrossRefPubMed Wirtz RA, Burkot TR, Graves PM, Andre RG. Field evaluation of enzyme-linked immunosorbent assays for Plasmodium falciparum and Plasmodium vivax sporozoites in mosquitoes (Diptera: Culicidae) from Papua New Guinea. J Med Entomol. 1987;24:433–7.CrossRefPubMed
17.
go back to reference World Health Organization. Report of the WHO Informal Consultation on Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces. Geneva: WHO; 1998. World Health Organization. Report of the WHO Informal Consultation on Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces. Geneva: WHO; 1998.
18.
go back to reference World Health Organization. Supplies for monitoring insecticide resistance in disease vectors. Geneva: WHO; 2001. World Health Organization. Supplies for monitoring insecticide resistance in disease vectors. Geneva: WHO; 2001.
19.
go back to reference Uganda Bureau of Statistics (UBOS). 2012 Statistical abstract. Uganda Bureau of Statistics. 2012. Uganda Bureau of Statistics (UBOS). 2012 Statistical abstract. Uganda Bureau of Statistics. 2012.
20.
go back to reference Gillies M, De Meillon B. The Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region). Johannesburg: South African Institute of Medical Research; 1968. Gillies M, De Meillon B. The Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region). Johannesburg: South African Institute of Medical Research; 1968.
21.
go back to reference Hay SI, Sinka ME, Okara RM, Kabaria CW, Mbithi PM, Tago CC, et al. Developing global maps of the dominant Anopheles vectors of human malaria. PLoS Med. 2010;7:e1000209.CrossRefPubMedCentralPubMed Hay SI, Sinka ME, Okara RM, Kabaria CW, Mbithi PM, Tago CC, et al. Developing global maps of the dominant Anopheles vectors of human malaria. PLoS Med. 2010;7:e1000209.CrossRefPubMedCentralPubMed
22.
go back to reference Gimnig JE, Ombok M, Kamau L, Hawley WA. Characteristics of larval anopheline (Diptera: Culicidae) habitats in Western Kenya. J Med Entomol. 2001;38:282–8.CrossRefPubMed Gimnig JE, Ombok M, Kamau L, Hawley WA. Characteristics of larval anopheline (Diptera: Culicidae) habitats in Western Kenya. J Med Entomol. 2001;38:282–8.CrossRefPubMed
23.
go back to reference Reddy MR, Overgaard HJ, Abaga S, Reddy VP, Caccone A, Kiszewski AE, et al. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island. Equatorial Guinea Malar J. 2011;10:184.CrossRef Reddy MR, Overgaard HJ, Abaga S, Reddy VP, Caccone A, Kiszewski AE, et al. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island. Equatorial Guinea Malar J. 2011;10:184.CrossRef
24.
go back to reference Kabbale FG, Akol AM, Kaddu JB, Onapa AW. Biting patterns and seasonality of anopheles gambiae senso lato and anopheles funestus mosquitoes in Kamuli District. Uganda Parasites Vectors. 2013;6:340.CrossRef Kabbale FG, Akol AM, Kaddu JB, Onapa AW. Biting patterns and seasonality of anopheles gambiae senso lato and anopheles funestus mosquitoes in Kamuli District. Uganda Parasites Vectors. 2013;6:340.CrossRef
25.
go back to reference Diallo S, Konate L, Faye O, Ndir O, Faye M, Gueye A, et al. Malaria in the southern sanitary district of Dakar (Senegal). 2. Entomologic data. Bull Soc Pathol Exot. 1998;91:259–63.PubMed Diallo S, Konate L, Faye O, Ndir O, Faye M, Gueye A, et al. Malaria in the southern sanitary district of Dakar (Senegal). 2. Entomologic data. Bull Soc Pathol Exot. 1998;91:259–63.PubMed
26.
27.
go back to reference Fontenille D, Lochouarn L, Diatta M, Sokhna C, Dia I, Diagne N, et al. Four years’ entomological study of the transmission of seasonal malaria in Senegal and the bionomics of Anopheles gambiae and A. arabiensis. Trans R Soc Trop Med Hyg. 1997;91:647–52.CrossRefPubMed Fontenille D, Lochouarn L, Diatta M, Sokhna C, Dia I, Diagne N, et al. Four years’ entomological study of the transmission of seasonal malaria in Senegal and the bionomics of Anopheles gambiae and A. arabiensis. Trans R Soc Trop Med Hyg. 1997;91:647–52.CrossRefPubMed
28.
go back to reference Kelly-Hope LA, McKenzie FE. The multiplicity of malaria transmission: a review of entomological inoculation rate measurements and methods across sub-Saharan Africa. Malar J. 2009;8:19.CrossRefPubMedCentralPubMed Kelly-Hope LA, McKenzie FE. The multiplicity of malaria transmission: a review of entomological inoculation rate measurements and methods across sub-Saharan Africa. Malar J. 2009;8:19.CrossRefPubMedCentralPubMed
29.
go back to reference Sinden RE, Gilles HM. The malaria parasites. In: Gilles HM, Warrell DA, editors. Essential Malariology. Fourththth ed. London: Arnold; 2002. p. 8–34. Sinden RE, Gilles HM. The malaria parasites. In: Gilles HM, Warrell DA, editors. Essential Malariology. Fourththth ed. London: Arnold; 2002. p. 8–34.
30.
go back to reference Magris M, Rubio-Palis Y, Menares C, Villegas L. Vector bionomics and malaria transmission in the Upper Orinoco River, Southern Venezuela. Mem Inst Oswaldo Cruz. 2007;102:303–11.CrossRefPubMed Magris M, Rubio-Palis Y, Menares C, Villegas L. Vector bionomics and malaria transmission in the Upper Orinoco River, Southern Venezuela. Mem Inst Oswaldo Cruz. 2007;102:303–11.CrossRefPubMed
31.
go back to reference Moreno JE, Rubio-Palis Y, Páez E, Pérez E, Sánchez V. Abundance, biting behaviour and parous rate of anopheline mosquito species in relation to malaria incidence in gold-mining areas of southern Venezuela. Med Vet Entomol. 2007;21:339–49.CrossRefPubMed Moreno JE, Rubio-Palis Y, Páez E, Pérez E, Sánchez V. Abundance, biting behaviour and parous rate of anopheline mosquito species in relation to malaria incidence in gold-mining areas of southern Venezuela. Med Vet Entomol. 2007;21:339–49.CrossRefPubMed
32.
go back to reference Kilama M, Smith DL, Hutchinson R, Kigozi R, Yeka A, Lavoy G, et al. Estimating the annual entomological inoculation rate for Plasmodium falciparum transmitted by Anopheles gambiae s.l. using three sampling methods in three sites in Uganda. Malar J. 2014;13:111.CrossRefPubMedCentralPubMed Kilama M, Smith DL, Hutchinson R, Kigozi R, Yeka A, Lavoy G, et al. Estimating the annual entomological inoculation rate for Plasmodium falciparum transmitted by Anopheles gambiae s.l. using three sampling methods in three sites in Uganda. Malar J. 2014;13:111.CrossRefPubMedCentralPubMed
Metadata
Title
Early biting and insecticide resistance in the malaria vector Anopheles might compromise the effectiveness of vector control intervention in Southwestern Uganda
Authors
Patrick Ojuka
Yap Boum II
Lise Denoeud-Ndam
Carolyn Nabasumba
Yolanda Muller
Michael Okia
Juliet Mwanga-Amumpaire
Pierre De Beaudrap
Natacha Protopopoff
Jean-François Etard
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0653-z

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue