Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

High-resolution metabolomics to discover potential parasite-specific biomarkers in a Plasmodium falciparum erythrocytic stage culture system

Authors: Youngja H Park, Ya Ping Shi, Bill Liang, Carl Angelo D Medriano, Young Ho Jeon, Eucaris Torres, Karan Uppal, Laurence Slutsker, Dean P Jones

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

Current available malaria diagnostic methods each have some limitations to meet the need for real-time and large-scale screening of asymptomatic and low density malaria infection at community level. It was proposed that malaria parasite-specific low molecular-weight metabolites could be used as biomarkers for the development of a malaria diagnostic tool aimed to address this diagnostic challenge. In this study, high resolution metabolomics (HRM) was employed to identify malaria parasite-specific metabolites in Plasmodium falciparum in vitro culture samples.

Methods

Supernatants were collected at 12 hours interval from 3% haematocrit in vitro 48-hour time-course asynchronized culture system of P. falciparum. Liquid chromatography coupled with high resolution mass spectrometry was applied to discover potential parasite-specific metabolites in the cell culture supernatant. A metabolome-wide association study was performed to extract metabolites using Manhattan plot with false discovery rate (FDR) and hierarchical cluster analysis. The significant metabolites based on FDR cutoff were annotated using Metlin database. Standard curves were created using corresponding chemical compounds to accurately quantify potential Plasmodium-specific metabolites in culture supernatants.

Results

The number of significant metabolite features was 1025 in the supernatant of the Plasmodium infected culture based on Manhattan plot with FDR q=0.05. A two way hierarchical cluster analysis showed a clear segregation of the metabolic profile of parasite infected supernatant from non-infected supernatant at four time points during the 48 hour culture. Among the 1025 annotated metabolites, the intensities of four molecules were significantly increased with culture time suggesting a positive association between the quantity of these molecules and level of parasitaemia: i) 3-methylindole, a mosquito attractant, ii) succinylacetone, a haem biosynthesis inhibitor, iii) S-methyl-L-thiocitrulline, a nitric oxide synthase inhibitor, and iv) O-arachidonoyl glycidol, a fatty acid amide hydrolase inhibitor, The highest concentrations of 3-methylindole and succinylacetone were 178 ± 18.7 pmoles at 36 hours and 157±30.5 pmoles at 48 hours respectively in parasite infected supernatant.

Conclusion

HRM with bioinformatics identified four potential parasite-specific metabolite biomarkers using in vitro culture supernatants. Further study in malaria infected human is needed to determine presence of the molecules and its relationship with parasite densities.
Appendix
Available only for authorised users
Literature
2.
go back to reference WHO. World Malaria Reports 2011. Geneva: World Health Organization; 2011. WHO. World Malaria Reports 2011. Geneva: World Health Organization; 2011.
3.
go back to reference Harris I, Sharrock WW, Bain LM, Gray KA, Bobogare A, Boaz L, et al. A large proportion of asymptomatic Plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting. Malar J. 2010;9:254.CrossRefPubMedCentralPubMed Harris I, Sharrock WW, Bain LM, Gray KA, Bobogare A, Boaz L, et al. A large proportion of asymptomatic Plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting. Malar J. 2010;9:254.CrossRefPubMedCentralPubMed
4.
go back to reference Mosha JF, Sturrock HJ, Greenhouse B, Greenwood B, Sutherland CJ, Gadalla N, et al. Epidemiology of subpatent Plasmodium falciparum infection: implications for detection of hotspots with imperfect diagnostics. Malar J. 2013;12:221.CrossRefPubMedCentralPubMed Mosha JF, Sturrock HJ, Greenhouse B, Greenwood B, Sutherland CJ, Gadalla N, et al. Epidemiology of subpatent Plasmodium falciparum infection: implications for detection of hotspots with imperfect diagnostics. Malar J. 2013;12:221.CrossRefPubMedCentralPubMed
5.
go back to reference Dettmer K, Hammock BD. Metabolomics–a new exciting field within the “omics” sciences. Environ Health Perspect. 2004;112:A396–7.PubMedCentralPubMed Dettmer K, Hammock BD. Metabolomics–a new exciting field within the “omics” sciences. Environ Health Perspect. 2004;112:A396–7.PubMedCentralPubMed
6.
7.
go back to reference Park YH, Lee K, Soltow QA, Strobel FH, Brigham KL, Parker RE, et al. High-performance metabolic profiling of plasma from seven mammalian species for simultaneous environmental chemical surveillance and bioeffect monitoring. Toxicology. 2012;295:47–55.CrossRefPubMedCentralPubMed Park YH, Lee K, Soltow QA, Strobel FH, Brigham KL, Parker RE, et al. High-performance metabolic profiling of plasma from seven mammalian species for simultaneous environmental chemical surveillance and bioeffect monitoring. Toxicology. 2012;295:47–55.CrossRefPubMedCentralPubMed
8.
go back to reference Olszewski KL, Morrisey JM, Wilinski D, Burns JM, Vaidya AB, Rabinowitz JD, et al. Host-parasite interactions revealed by Plasmodium falciparum metabolomics. Cell Host Microbe. 2009;5:191–9.CrossRefPubMedCentralPubMed Olszewski KL, Morrisey JM, Wilinski D, Burns JM, Vaidya AB, Rabinowitz JD, et al. Host-parasite interactions revealed by Plasmodium falciparum metabolomics. Cell Host Microbe. 2009;5:191–9.CrossRefPubMedCentralPubMed
9.
go back to reference Tritten L, Keiser J, Godejohann M, Utzinger J, Vargas M, Beckonert O, et al. Metabolic profiling framework for discovery of candidate diagnostic markers of malaria. Sci Rep. 2013;3:2769.CrossRefPubMed Tritten L, Keiser J, Godejohann M, Utzinger J, Vargas M, Beckonert O, et al. Metabolic profiling framework for discovery of candidate diagnostic markers of malaria. Sci Rep. 2013;3:2769.CrossRefPubMed
10.
go back to reference Sengupta A, Ghosh S, Basant A, Malusare S, Johri P, Pathak S, et al. Global host metabolic response to Plasmodium vivax infection: a 1H NMR based urinary metabonomic study. Malar J. 2011;10:384.CrossRefPubMedCentralPubMed Sengupta A, Ghosh S, Basant A, Malusare S, Johri P, Pathak S, et al. Global host metabolic response to Plasmodium vivax infection: a 1H NMR based urinary metabonomic study. Malar J. 2011;10:384.CrossRefPubMedCentralPubMed
11.
go back to reference Teng R, Lehane AM, Winterberg M, Shafik SH, Summers RL, Martin RE, et al. 1H-NMR metabolite profiles of different strains of Plasmodium falciparum. Biosci Rep. 2014;34:e00150.CrossRefPubMedCentralPubMed Teng R, Lehane AM, Winterberg M, Shafik SH, Summers RL, Martin RE, et al. 1H-NMR metabolite profiles of different strains of Plasmodium falciparum. Biosci Rep. 2014;34:e00150.CrossRefPubMedCentralPubMed
12.
go back to reference Sana TR, Gordon DB, Fischer SM, Tichy SE, Kitagawa N, Lai C, et al. Global mass spectrometry based metabolomics profiling of erythrocytes infected with Plasmodium falciparum. PLoS One. 2013;8:e60840.CrossRefPubMedCentralPubMed Sana TR, Gordon DB, Fischer SM, Tichy SE, Kitagawa N, Lai C, et al. Global mass spectrometry based metabolomics profiling of erythrocytes infected with Plasmodium falciparum. PLoS One. 2013;8:e60840.CrossRefPubMedCentralPubMed
13.
go back to reference Lu W, Bennett BD, Rabinowitz JD. Analytical strategies for LC-MS-based targeted metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;871:236–42.CrossRefPubMedCentralPubMed Lu W, Bennett BD, Rabinowitz JD. Analytical strategies for LC-MS-based targeted metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;871:236–42.CrossRefPubMedCentralPubMed
14.
15.
go back to reference Johnson JM, Yu T, Strobel FH, Jones DP. A practical approach to detect unique metabolic patterns for personalized medicine. Analyst. 2010;135:2864–70.CrossRefPubMedCentralPubMed Johnson JM, Yu T, Strobel FH, Jones DP. A practical approach to detect unique metabolic patterns for personalized medicine. Analyst. 2010;135:2864–70.CrossRefPubMedCentralPubMed
18.
go back to reference Kanehisa M. The KEGG database. Novartis Found Symp. 2002;247:91–101. discussion 101-103, 119-128, 244-152.CrossRefPubMed Kanehisa M. The KEGG database. Novartis Found Symp. 2002;247:91–101. discussion 101-103, 119-128, 244-152.CrossRefPubMed
20.
go back to reference Smith CA, O'Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, et al. METLIN: a metabolite mass spectral database. Ther Drug Monit. 2005;27:747–51.CrossRefPubMed Smith CA, O'Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, et al. METLIN: a metabolite mass spectral database. Ther Drug Monit. 2005;27:747–51.CrossRefPubMed
22.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B. 1995;B57:289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B. 1995;B57:289–300.
23.
go back to reference Cribbs SK, Park Y, Guidot DM, Martin GS, Brown LA, Lennox J, et al. Metabolomics of bronchoalveolar lavage differentiate healthy HIV-1-infected subjects from controls. AIDS Res Hum Retroviruses. 2014;30:579–85.CrossRefPubMed Cribbs SK, Park Y, Guidot DM, Martin GS, Brown LA, Lennox J, et al. Metabolomics of bronchoalveolar lavage differentiate healthy HIV-1-infected subjects from controls. AIDS Res Hum Retroviruses. 2014;30:579–85.CrossRefPubMed
24.
go back to reference Neujahr DC, Uppal K, Force SD, Fernandez F, Lawrence C, Pickens A, et al. Bile acid aspiration associated with lung chemical profile linked to other biomarkers of injury after lung transplantation. Am J Transplant. 2014;14:841–8.CrossRefPubMed Neujahr DC, Uppal K, Force SD, Fernandez F, Lawrence C, Pickens A, et al. Bile acid aspiration associated with lung chemical profile linked to other biomarkers of injury after lung transplantation. Am J Transplant. 2014;14:841–8.CrossRefPubMed
25.
go back to reference Istvan ES, Dharia NV, Bopp SE, Gluzman I, Winzeler EA, Goldberg DE. Validation of isoleucine utilization targets in Plasmodium falciparum. Proc Natl Acad Sci U S A. 2011;108:1627–32.CrossRefPubMedCentralPubMed Istvan ES, Dharia NV, Bopp SE, Gluzman I, Winzeler EA, Goldberg DE. Validation of isoleucine utilization targets in Plasmodium falciparum. Proc Natl Acad Sci U S A. 2011;108:1627–32.CrossRefPubMedCentralPubMed
26.
go back to reference Xu P, Leal WS. Probing insect odorant receptors with their cognate ligands: insights into structural features. Biochem Biophys Res Commun. 2013;435:477–82.CrossRefPubMed Xu P, Leal WS. Probing insect odorant receptors with their cognate ligands: insights into structural features. Biochem Biophys Res Commun. 2013;435:477–82.CrossRefPubMed
27.
go back to reference Ebert PS, Hess RA, Frykholm BC, Tschudy DP. Succinylacetone, a potent inhibitor of heme biosynthesis: effect on cell growth, heme content and delta-aminolevulinic acid dehydratase activity of malignant murine erythroleukemia cells. Biochem Biophys Res Commun. 1979;88:1382–90.CrossRefPubMed Ebert PS, Hess RA, Frykholm BC, Tschudy DP. Succinylacetone, a potent inhibitor of heme biosynthesis: effect on cell growth, heme content and delta-aminolevulinic acid dehydratase activity of malignant murine erythroleukemia cells. Biochem Biophys Res Commun. 1979;88:1382–90.CrossRefPubMed
28.
go back to reference Tschudy DP, Hess RA, Frykholm BC. Inhibition of delta-aminolevulinic acid dehydrase by 4,6-dioxoheptanoic acid. J Biol Chem. 1981;256:9915–23.PubMed Tschudy DP, Hess RA, Frykholm BC. Inhibition of delta-aminolevulinic acid dehydrase by 4,6-dioxoheptanoic acid. J Biol Chem. 1981;256:9915–23.PubMed
29.
go back to reference Bradshaw HB, Rimmerman N, Hu SS, Burstein S, Walker JM. Novel endogenous N-acyl glycines identification and characterization. Vitam Horm. 2009;81:191–205.CrossRefPubMed Bradshaw HB, Rimmerman N, Hu SS, Burstein S, Walker JM. Novel endogenous N-acyl glycines identification and characterization. Vitam Horm. 2009;81:191–205.CrossRefPubMed
30.
go back to reference Bradshaw HB, Rimmerman N, Hu SS, Benton VM, Stuart JM, Masuda K, et al. The endocannabinoid anandamide is a precursor for the signaling lipid N-arachidonoyl glycine by two distinct pathways. BMC Biochem. 2009;10:14.CrossRefPubMedCentralPubMed Bradshaw HB, Rimmerman N, Hu SS, Benton VM, Stuart JM, Masuda K, et al. The endocannabinoid anandamide is a precursor for the signaling lipid N-arachidonoyl glycine by two distinct pathways. BMC Biochem. 2009;10:14.CrossRefPubMedCentralPubMed
31.
go back to reference McHugh D, Hu SS, Rimmerman N, Juknat A, Vogel Z, Walker JM, et al. N-arachidonoyl glycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative abnormal cannabidiol receptor. BMC Neurosci. 2010;11:44.CrossRefPubMedCentralPubMed McHugh D, Hu SS, Rimmerman N, Juknat A, Vogel Z, Walker JM, et al. N-arachidonoyl glycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative abnormal cannabidiol receptor. BMC Neurosci. 2010;11:44.CrossRefPubMedCentralPubMed
32.
go back to reference Saen-Oon S, Lee SG, Jez JM, Guallar V. An alternative mechanism for the methylation of phosphoethanolamine catalyzed by Plasmodium falciparum phosphoethanolamine methyltransferase. J Biol Chem. 2014;289:33815–25.CrossRefPubMed Saen-Oon S, Lee SG, Jez JM, Guallar V. An alternative mechanism for the methylation of phosphoethanolamine catalyzed by Plasmodium falciparum phosphoethanolamine methyltransferase. J Biol Chem. 2014;289:33815–25.CrossRefPubMed
34.
go back to reference LeRoux M, Lakshmanan V, Daily JP. Plasmodium falciparum biology: analysis of in vitro versus in vivo growth conditions. Trends Parasitol. 2009;25:474–81.CrossRefPubMed LeRoux M, Lakshmanan V, Daily JP. Plasmodium falciparum biology: analysis of in vitro versus in vivo growth conditions. Trends Parasitol. 2009;25:474–81.CrossRefPubMed
35.
go back to reference Ruangyuttikam W. Metabolism and mechanism of toxicity of 3-methylindole in human and goat tissues. Dissertation: University of Utah, Department of Pharmacology and Toxicology; 1991. Ruangyuttikam W. Metabolism and mechanism of toxicity of 3-methylindole in human and goat tissues. Dissertation: University of Utah, Department of Pharmacology and Toxicology; 1991.
36.
go back to reference Yan Z, Easterwood LM, Maher N, Torres R, Huebert N, Yost GS. Metabolism and bioactivation of 3-methylindole by human liver microsomes. Chem Res Toxicol. 2007;20:140–8.CrossRefPubMed Yan Z, Easterwood LM, Maher N, Torres R, Huebert N, Yost GS. Metabolism and bioactivation of 3-methylindole by human liver microsomes. Chem Res Toxicol. 2007;20:140–8.CrossRefPubMed
37.
go back to reference Srivastava P, Pandey VC. Heme synthesizing enzymes of Plasmodium knowlesi: a simian malaria parasite. Exp Parasitol. 1998;88:60–3.CrossRefPubMed Srivastava P, Pandey VC. Heme synthesizing enzymes of Plasmodium knowlesi: a simian malaria parasite. Exp Parasitol. 1998;88:60–3.CrossRefPubMed
38.
go back to reference Furfine ES, Harmon MF, Paith JE, Knowles RG, Salter M, Kiff RJ, et al. Potent and selective inhibition of human nitric oxide synthases. Selective inhibition of neuronal nitric oxide synthase by S-methyl-L-thiocitrulline and S-ethyl-L-thiocitrulline. J Biol Chem. 1994;269:26677–83.PubMed Furfine ES, Harmon MF, Paith JE, Knowles RG, Salter M, Kiff RJ, et al. Potent and selective inhibition of human nitric oxide synthases. Selective inhibition of neuronal nitric oxide synthase by S-methyl-L-thiocitrulline and S-ethyl-L-thiocitrulline. J Biol Chem. 1994;269:26677–83.PubMed
39.
go back to reference Babbitt SE, Altenhofen L, Cobbold SA, Istvan ES, Fennell C, Doerig C, et al. Plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state. Proc Natl Acad Sci U S A. 2012;109:E3278–87.CrossRefPubMedCentralPubMed Babbitt SE, Altenhofen L, Cobbold SA, Istvan ES, Fennell C, Doerig C, et al. Plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state. Proc Natl Acad Sci U S A. 2012;109:E3278–87.CrossRefPubMedCentralPubMed
40.
go back to reference Liu J, Istvan ES, Gluzman IY, Gross J, Goldberg DE. Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems. Proc Natl Acad Sci U S A. 2006;103:8840–5.CrossRefPubMedCentralPubMed Liu J, Istvan ES, Gluzman IY, Gross J, Goldberg DE. Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems. Proc Natl Acad Sci U S A. 2006;103:8840–5.CrossRefPubMedCentralPubMed
Metadata
Title
High-resolution metabolomics to discover potential parasite-specific biomarkers in a Plasmodium falciparum erythrocytic stage culture system
Authors
Youngja H Park
Ya Ping Shi
Bill Liang
Carl Angelo D Medriano
Young Ho Jeon
Eucaris Torres
Karan Uppal
Laurence Slutsker
Dean P Jones
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0651-1

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue