Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

Plasmodium knowlesi gene expression differs in ex vivo compared to in vitro blood-stage cultures

Authors: Stacey A Lapp, Sachel Mok, Lei Zhu, Hao Wu, Peter R Preiser, Zybnek Bozdech, Mary R Galinski

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

Plasmodium knowlesi is one of five Plasmodium species known to cause malaria in humans and can result in severe illness and death. While a zoonosis in humans, this simian malaria parasite species infects macaque monkeys and serves as an experimental model for in vivo, ex vivo and in vitro studies. It has underpinned malaria discoveries relating to host-pathogen interactions, the immune response and immune evasion strategies. This study investigated differences in P. knowlesi gene expression in samples from ex vivo and in vitro cultures.

Methods

Gene expression profiles were generated using microarrays to compare the stage-specific transcripts detected for a clone of P. knowlesi propagated in the blood of a rhesus macaque host and then grown in an ex-vivo culture, and the same clone adapted to long-term in vitro culture. Parasite samples covering one blood-stage cycle were analysed at four-hour intervals. cDNA was generated and hybridized to an oligoarray representing the P. knowlesi genome. Two replicate experiments were developed from in vitro cultures. Expression values were filtered, normalized, and analysed using R and Perl language and applied to a sine wave model to determine changes in equilibrium and amplitude. Differentially expressed genes from ex vivo and in vitro time points were detected using limma R/Bioconductor and gene set enrichment analysis (GSEA).

Results

Major differences were noted between the ex vivo and in vitro time courses in overall gene expression and the length of the cycle (25.5 hours ex vivo; 33.5 hours in vitro). GSEA of genes up-regulated ex vivo showed an enrichment of various genes including SICAvar, ribosomal- associated and histone acetylation pathway genes. In contrast, certain genes involved in metabolism and cell growth, such as porphobilinogen deaminase and tyrosine phosphatase, and one SICAvar gene, were significantly up-regulated in vitro.

Conclusions

This study demonstrates how gene expression in P. knowlesi blood-stage parasites can differ dramatically depending on whether the parasites are grown in vivo, with only one cycle of development ex vivo, or as an adapted isolate in long-term in vitro culture. These data bring emphasis to the importance of studying the parasite, its biology and disease manifestations in the context of the host.
Appendix
Available only for authorised users
Literature
1.
go back to reference Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, et al. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res. 2009;37:D539–43.CrossRefPubMedCentralPubMed Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, et al. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res. 2009;37:D539–43.CrossRefPubMedCentralPubMed
2.
go back to reference Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 2003;1:E5.CrossRefPubMedCentralPubMed Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 2003;1:E5.CrossRefPubMedCentralPubMed
3.
go back to reference Llinas M, Bozdech Z, Wong ED, Adai AT, DeRisi JL. Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains. Nucleic Acids Res. 2006;34:1166–73.CrossRefPubMedCentralPubMed Llinas M, Bozdech Z, Wong ED, Adai AT, DeRisi JL. Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains. Nucleic Acids Res. 2006;34:1166–73.CrossRefPubMedCentralPubMed
4.
go back to reference Le Roch KG, Johnson JR, Florens L, Zhou Y, Santrosyan A, Grainger M, et al. Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. Genome Res. 2004;14:2308–18.CrossRefPubMedCentralPubMed Le Roch KG, Johnson JR, Florens L, Zhou Y, Santrosyan A, Grainger M, et al. Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. Genome Res. 2004;14:2308–18.CrossRefPubMedCentralPubMed
5.
go back to reference Galinski MR, Meyer EV, Barnwell JW. Plasmodium vivax: modern strategies to study a persistent parasite’s life cycle. Adv Parasitol. 2013;81:1–26.CrossRefPubMed Galinski MR, Meyer EV, Barnwell JW. Plasmodium vivax: modern strategies to study a persistent parasite’s life cycle. Adv Parasitol. 2013;81:1–26.CrossRefPubMed
6.
go back to reference Le Roch KG, Chung DW, Ponts N. Genomics and integrated systems biology in Plasmodium falciparum: a path to malaria control and eradication. Parasit Immunol. 2012;34:50–60.CrossRef Le Roch KG, Chung DW, Ponts N. Genomics and integrated systems biology in Plasmodium falciparum: a path to malaria control and eradication. Parasit Immunol. 2012;34:50–60.CrossRef
7.
go back to reference Mwangi JM, Ranford-Cartwright LC. Genetic and genomic approaches for the discovery of parasite genes involved in antimalarial drug resistance. Parasitology. 2013;140:1455–67.CrossRefPubMed Mwangi JM, Ranford-Cartwright LC. Genetic and genomic approaches for the discovery of parasite genes involved in antimalarial drug resistance. Parasitology. 2013;140:1455–67.CrossRefPubMed
8.
9.
go back to reference Zeeman AM, der Wel AV, Kocken CH. Ex vivo culture of Plasmodium vivax and Plasmodium cynomolgi and in vitro culture of Plasmodium knowlesi blood stages. Methods Mol Biol. 2013;923:35–49.CrossRefPubMed Zeeman AM, der Wel AV, Kocken CH. Ex vivo culture of Plasmodium vivax and Plasmodium cynomolgi and in vitro culture of Plasmodium knowlesi blood stages. Methods Mol Biol. 2013;923:35–49.CrossRefPubMed
10.
go back to reference Moon RW, Hall J, Rangkuti F, Ho YS, Almond N, Mitchell GH, et al. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes. Proc Natl Acad Sci U S A. 2013;110:531–6.CrossRefPubMedCentralPubMed Moon RW, Hall J, Rangkuti F, Ho YS, Almond N, Mitchell GH, et al. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes. Proc Natl Acad Sci U S A. 2013;110:531–6.CrossRefPubMedCentralPubMed
11.
12.
go back to reference Nguyen-Dinh P, Gardner AL, Campbell CC, Skinner JC, Collins WE. Cultivation in vitro of the vivax-type malaria parasite Plasmodium cynomolgi. Science. 1981;212:1146–8.CrossRefPubMed Nguyen-Dinh P, Gardner AL, Campbell CC, Skinner JC, Collins WE. Cultivation in vitro of the vivax-type malaria parasite Plasmodium cynomolgi. Science. 1981;212:1146–8.CrossRefPubMed
13.
go back to reference Noulin F, Borlon C, Van Den Abbeele J, D’Alessandro U, Erhart A. 1912–2012: a century of research on Plasmodium vivax in vitro culture. Trends Parasitol. 2013;29:286–94.CrossRefPubMed Noulin F, Borlon C, Van Den Abbeele J, D’Alessandro U, Erhart A. 1912–2012: a century of research on Plasmodium vivax in vitro culture. Trends Parasitol. 2013;29:286–94.CrossRefPubMed
14.
go back to reference Udomsangpetch R, Kaneko O, Chotivanich K, Sattabongkot J. Cultivation of Plasmodium vivax. Trends Parasitol. 2008;24:85–8.CrossRefPubMed Udomsangpetch R, Kaneko O, Chotivanich K, Sattabongkot J. Cultivation of Plasmodium vivax. Trends Parasitol. 2008;24:85–8.CrossRefPubMed
16.
go back to reference Pologe LG, Ravetch JV. Large deletions result from breakage and healing of P. falciparum chromosomes. Cel. 1988;55:869–74.CrossRef Pologe LG, Ravetch JV. Large deletions result from breakage and healing of P. falciparum chromosomes. Cel. 1988;55:869–74.CrossRef
17.
go back to reference LeRoux M, Lakshmanan V, Daily JP. Plasmodium falciparum biology: analysis of in vitro versus in vivo growth conditions. Trends Parasitol. 2009;25:474–81.CrossRefPubMed LeRoux M, Lakshmanan V, Daily JP. Plasmodium falciparum biology: analysis of in vitro versus in vivo growth conditions. Trends Parasitol. 2009;25:474–81.CrossRefPubMed
18.
go back to reference Peters JM, Fowler EV, Krause DR, Cheng Q, Gatton ML. Differential changes in Plasmodium falciparum var transcription during adaptation to culture. J Infect Dis. 2007;195:748–55.CrossRefPubMedCentralPubMed Peters JM, Fowler EV, Krause DR, Cheng Q, Gatton ML. Differential changes in Plasmodium falciparum var transcription during adaptation to culture. J Infect Dis. 2007;195:748–55.CrossRefPubMedCentralPubMed
19.
go back to reference Zhang Q, Zhang Y, Huang Y, Xue X, Yan H, Sun X, et al. From in vivo to in vitro: dynamic analysis of Plasmodium falciparum var gene expression patterns of patient isolates during adaptation to culture. PLoS One. 2011;6:e20591.CrossRefPubMedCentralPubMed Zhang Q, Zhang Y, Huang Y, Xue X, Yan H, Sun X, et al. From in vivo to in vitro: dynamic analysis of Plasmodium falciparum var gene expression patterns of patient isolates during adaptation to culture. PLoS One. 2011;6:e20591.CrossRefPubMedCentralPubMed
20.
go back to reference Fang J, Zhou H, Rathore D, Sullivan M, Su XZ, McCutchan TF. Ambient glucose concentration and gene expression in Plasmodium falciparum. Mol Biochem Parasitol. 2004;133:125–9.CrossRefPubMed Fang J, Zhou H, Rathore D, Sullivan M, Su XZ, McCutchan TF. Ambient glucose concentration and gene expression in Plasmodium falciparum. Mol Biochem Parasitol. 2004;133:125–9.CrossRefPubMed
21.
go back to reference Singh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsul SS, Cox-Singh J, et al. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet. 2004;363:1017–24.CrossRefPubMed Singh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsul SS, Cox-Singh J, et al. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet. 2004;363:1017–24.CrossRefPubMed
22.
23.
24.
go back to reference Bannister LH, Butcher GA, Dennis ED, Mitchell GH. Studies on the structure and invasive behaviour of merozoites of Plasmodium knowlesi. Trans R Soc Trop Med Hyg. 1975;69:5.PubMed Bannister LH, Butcher GA, Dennis ED, Mitchell GH. Studies on the structure and invasive behaviour of merozoites of Plasmodium knowlesi. Trans R Soc Trop Med Hyg. 1975;69:5.PubMed
25.
go back to reference Aikawa M, Miller LH, Johnson J, Rabbege J. Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J Cell Biol. 1978;77:72–82.CrossRefPubMed Aikawa M, Miller LH, Johnson J, Rabbege J. Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J Cell Biol. 1978;77:72–82.CrossRefPubMed
26.
go back to reference Brown KN, Brown IN. Immunity to malaria: antigenic variation in chronic infections of Plasmodium knowlesi. Nature. 1965;208:1286–8.CrossRefPubMed Brown KN, Brown IN. Immunity to malaria: antigenic variation in chronic infections of Plasmodium knowlesi. Nature. 1965;208:1286–8.CrossRefPubMed
27.
go back to reference Howard RJ, Barnwell JW, Kao V. Antigenic variation of Plasmodium knowlesi malaria: identification of the variant antigen on infected erythrocytes. Proc Natl Acad Sci U S A. 1983;80:4129–33.CrossRefPubMedCentralPubMed Howard RJ, Barnwell JW, Kao V. Antigenic variation of Plasmodium knowlesi malaria: identification of the variant antigen on infected erythrocytes. Proc Natl Acad Sci U S A. 1983;80:4129–33.CrossRefPubMedCentralPubMed
28.
go back to reference Al-Khedery B, Barnwell JW, Galinski MR. Antigenic variation in malaria: a 3’ genomic alteration associated with the expression of a P. knowlesi variant antigen. Mol Cell. 1999;3:131–41.CrossRefPubMed Al-Khedery B, Barnwell JW, Galinski MR. Antigenic variation in malaria: a 3’ genomic alteration associated with the expression of a P. knowlesi variant antigen. Mol Cell. 1999;3:131–41.CrossRefPubMed
29.
go back to reference Corredor V, Meyer EV, Lapp S, Corredor-Medina C, Huber CS, Evans AG, et al. A SICAvar switching event in Plasmodium knowlesi is associated with the DNA rearrangement of conserved 3’ non-coding sequences. Mol Biochem Parasitol. 2004;138:37–49.CrossRefPubMed Corredor V, Meyer EV, Lapp S, Corredor-Medina C, Huber CS, Evans AG, et al. A SICAvar switching event in Plasmodium knowlesi is associated with the DNA rearrangement of conserved 3’ non-coding sequences. Mol Biochem Parasitol. 2004;138:37–49.CrossRefPubMed
30.
go back to reference Lapp SA, Korir-Morrison C, Jiang J, Bai Y, Corredor V, Galinski MR. Spleen-dependent regulation of antigenic variation in malaria parasites: Plasmodium knowlesi SICAvar expression profiles in splenic and asplenic hosts. PLoS One. 2013;8:e78014.CrossRefPubMedCentralPubMed Lapp SA, Korir-Morrison C, Jiang J, Bai Y, Corredor V, Galinski MR. Spleen-dependent regulation of antigenic variation in malaria parasites: Plasmodium knowlesi SICAvar expression profiles in splenic and asplenic hosts. PLoS One. 2013;8:e78014.CrossRefPubMedCentralPubMed
31.
go back to reference Korir CC, Galinski MR. Proteomic studies of Plasmodium knowlesi SICA variant antigens demonstrate their relationship with P. falciparum EMP1. Infect Genet Evol. 2006;6:75–9.CrossRefPubMed Korir CC, Galinski MR. Proteomic studies of Plasmodium knowlesi SICA variant antigens demonstrate their relationship with P. falciparum EMP1. Infect Genet Evol. 2006;6:75–9.CrossRefPubMed
32.
go back to reference Frech C, Chen N. Variant surface antigens of malaria parasites: functional and evolutionary insights from comparative gene family classification and analysis. BMC Genomics. 2013;14:427.CrossRefPubMedCentralPubMed Frech C, Chen N. Variant surface antigens of malaria parasites: functional and evolutionary insights from comparative gene family classification and analysis. BMC Genomics. 2013;14:427.CrossRefPubMedCentralPubMed
33.
go back to reference Kyes S, Pinches R, Newbold C. A simple RNA analysis method shows var and rif multigene family expression patterns in Plasmodium falciparum. Mol Biochem Parasitol. 2000;105:311–5.CrossRefPubMed Kyes S, Pinches R, Newbold C. A simple RNA analysis method shows var and rif multigene family expression patterns in Plasmodium falciparum. Mol Biochem Parasitol. 2000;105:311–5.CrossRefPubMed
34.
go back to reference Barnwell JW, Howard RJ, Coon HG, Miller LH. Splenic requirement for antigenic variation and expression of the variant antigen on the erythrocyte membrane in cloned Plasmodium knowlesi malaria. Infect Immun. 1983;40:985–94.PubMedCentralPubMed Barnwell JW, Howard RJ, Coon HG, Miller LH. Splenic requirement for antigenic variation and expression of the variant antigen on the erythrocyte membrane in cloned Plasmodium knowlesi malaria. Infect Immun. 1983;40:985–94.PubMedCentralPubMed
35.
go back to reference Pain A, Bohme U, Berry AE, Mungall K, Finn RD, Jackson AP, et al. The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature. 2008;455:799–803.CrossRefPubMedCentralPubMed Pain A, Bohme U, Berry AE, Mungall K, Finn RD, Jackson AP, et al. The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature. 2008;455:799–803.CrossRefPubMedCentralPubMed
36.
go back to reference Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979;65:418–20.CrossRefPubMed Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979;65:418–20.CrossRefPubMed
37.
go back to reference Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res. 2003;2:43–50.CrossRefPubMed Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res. 2003;2:43–50.CrossRefPubMed
38.
go back to reference Mok S, Imwong M, Mackinnon MJ, Sim J, Ramadoss R, Yi P, et al. Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription. BMC Genomics. 2011;12:391.CrossRefPubMedCentralPubMed Mok S, Imwong M, Mackinnon MJ, Sim J, Ramadoss R, Yi P, et al. Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription. BMC Genomics. 2011;12:391.CrossRefPubMedCentralPubMed
39.
go back to reference Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.CrossRefPubMedCentralPubMed Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.CrossRefPubMedCentralPubMed
40.
go back to reference Tachibana SI, Sullivan SA, Kawai S, Nakamura S, Kim HR, Goto N, et al. Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade. Nat Genet. 2012;44:1051–5.CrossRefPubMedCentralPubMed Tachibana SI, Sullivan SA, Kawai S, Nakamura S, Kim HR, Goto N, et al. Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade. Nat Genet. 2012;44:1051–5.CrossRefPubMedCentralPubMed
41.
go back to reference Smyth GK. limma: Linear Models for Microarray Data. In: Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S, editors. Bioinformatics and Computational Biology Solutions Using R and Bioconductor. New York: Springer; 2005. p. 397–420. Statistics for Biology and Health.CrossRef Smyth GK. limma: Linear Models for Microarray Data. In: Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S, editors. Bioinformatics and Computational Biology Solutions Using R and Bioconductor. New York: Springer; 2005. p. 397–420. Statistics for Biology and Health.CrossRef
42.
go back to reference Coffey N, Hinde J. Analyzing time-course microarray data using functional data analysis - a review. Stat Appl Genet Mol Biol. 2011;10:10–32. Coffey N, Hinde J. Analyzing time-course microarray data using functional data analysis - a review. Stat Appl Genet Mol Biol. 2011;10:10–32.
45.
go back to reference Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.CrossRefPubMedCentralPubMed Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.CrossRefPubMedCentralPubMed
46.
go back to reference Nagaraj VA, Arumugam R, Gopalakrishnan B, Jyothsna YS, Rangarajan PN, Padmanaban G. Unique properties of Plasmodium falciparum porphobilinogen deaminase. J Biol Chem. 2008;283:437–44.CrossRefPubMed Nagaraj VA, Arumugam R, Gopalakrishnan B, Jyothsna YS, Rangarajan PN, Padmanaban G. Unique properties of Plasmodium falciparum porphobilinogen deaminase. J Biol Chem. 2008;283:437–44.CrossRefPubMed
48.
go back to reference Nagaraj VA, Sundaram B, Varadarajan NM, Subramani PA, Kalappa DM, Ghosh SK, et al. Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection. PLoS Pathog. 2013;9:e1003522.CrossRefPubMedCentralPubMed Nagaraj VA, Sundaram B, Varadarajan NM, Subramani PA, Kalappa DM, Ghosh SK, et al. Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection. PLoS Pathog. 2013;9:e1003522.CrossRefPubMedCentralPubMed
49.
go back to reference Thomas AW, Narum D, Waters AP, Trape JF, Rogier C, Goncalves A, et al. Aspects of immunity for the AMA-1 family of molecules in humans and non-human primates malarias. Mem Inst Oswaldo Cruz. 1994;89 Suppl 2:67–70.CrossRefPubMed Thomas AW, Narum D, Waters AP, Trape JF, Rogier C, Goncalves A, et al. Aspects of immunity for the AMA-1 family of molecules in humans and non-human primates malarias. Mem Inst Oswaldo Cruz. 1994;89 Suppl 2:67–70.CrossRefPubMed
50.
go back to reference Hudson DE, Miller LH, Richards RL, David PH, Alving CR, Gitler C. The malaria merozoite surface: a 140,000 m.w. protein antigenically unrelated to other surface components on Plasmodium knowlesi merozoites. J Immunol. 1983;130:2886–90.PubMed Hudson DE, Miller LH, Richards RL, David PH, Alving CR, Gitler C. The malaria merozoite surface: a 140,000 m.w. protein antigenically unrelated to other surface components on Plasmodium knowlesi merozoites. J Immunol. 1983;130:2886–90.PubMed
51.
go back to reference Jiang J, Barnwell JW, Meyer EV, Galinski MR. Plasmodium vivax merozoite surface protein-3 (PvMSP3): expression of an 11 member multigene family in blood-stage parasites. PLoS One. 2013;8:e63888.CrossRefPubMedCentralPubMed Jiang J, Barnwell JW, Meyer EV, Galinski MR. Plasmodium vivax merozoite surface protein-3 (PvMSP3): expression of an 11 member multigene family in blood-stage parasites. PLoS One. 2013;8:e63888.CrossRefPubMedCentralPubMed
52.
go back to reference Counihan NA, Kalanon M, Coppel RL, de Koning-Ward TF. Plasmodium rhoptry proteins: why order is important. Trends Parasitol. 2013;29:228–36.CrossRefPubMed Counihan NA, Kalanon M, Coppel RL, de Koning-Ward TF. Plasmodium rhoptry proteins: why order is important. Trends Parasitol. 2013;29:228–36.CrossRefPubMed
53.
go back to reference Meyer EV, Semenya AA, Okenu DM, Dluzewski AR, Bannister LH, Barnwell JW, et al. The reticulocyte binding-like proteins of P. knowlesi locate to the micronemes of merozoites and define two new members of this invasion ligand family. Mol Biochem Parasitol. 2009;165:111–21.CrossRefPubMedCentralPubMed Meyer EV, Semenya AA, Okenu DM, Dluzewski AR, Bannister LH, Barnwell JW, et al. The reticulocyte binding-like proteins of P. knowlesi locate to the micronemes of merozoites and define two new members of this invasion ligand family. Mol Biochem Parasitol. 2009;165:111–21.CrossRefPubMedCentralPubMed
54.
go back to reference Semenya AA, Tran TM, Meyer EV, Barnwell JW, Galinski MR. Two functional reticulocyte binding-like (RBL) invasion ligands of zoonotic Plasmodium knowlesi exhibit differential adhesion to monkey and human erythrocytes. Malar J. 2012;11:228.CrossRefPubMedCentralPubMed Semenya AA, Tran TM, Meyer EV, Barnwell JW, Galinski MR. Two functional reticulocyte binding-like (RBL) invasion ligands of zoonotic Plasmodium knowlesi exhibit differential adhesion to monkey and human erythrocytes. Malar J. 2012;11:228.CrossRefPubMedCentralPubMed
55.
go back to reference Duffy MF, Selvarajah SA, Josling GA, Petter M. Epigenetic regulation of the Plasmodium falciparum genome. Brief Funct Genomics. 2014;13:203–16.CrossRefPubMed Duffy MF, Selvarajah SA, Josling GA, Petter M. Epigenetic regulation of the Plasmodium falciparum genome. Brief Funct Genomics. 2014;13:203–16.CrossRefPubMed
56.
go back to reference Gupta AP, Chin WH, Zhu L, Mok S, Luah YH, Lim EH, et al. Dynamic epigenetic regulation of gene expression during the life cycle of malaria parasite Plasmodium falciparum. PLoS Pathog. 2013;9:e1003170.CrossRefPubMedCentralPubMed Gupta AP, Chin WH, Zhu L, Mok S, Luah YH, Lim EH, et al. Dynamic epigenetic regulation of gene expression during the life cycle of malaria parasite Plasmodium falciparum. PLoS Pathog. 2013;9:e1003170.CrossRefPubMedCentralPubMed
58.
go back to reference Hoeijmakers WA, Salcedo-Amaya AM, Smits AH, Francoijs KJ, Treeck M, Gilberger TW, et al. H2A.Z/H2B.Z double-variant nucleosomes inhabit the AT-rich promoter regions of the Plasmodium falciparum genome. Mol Microbiol. 2013;87:1061–73.CrossRefPubMedCentralPubMed Hoeijmakers WA, Salcedo-Amaya AM, Smits AH, Francoijs KJ, Treeck M, Gilberger TW, et al. H2A.Z/H2B.Z double-variant nucleosomes inhabit the AT-rich promoter regions of the Plasmodium falciparum genome. Mol Microbiol. 2013;87:1061–73.CrossRefPubMedCentralPubMed
59.
go back to reference Cortes A, Carret C, Kaneko O, Yim Lim BY, Ivens A, Holder AA. Epigenetic silencing of Plasmodium falciparum genes linked to erythrocyte invasion. PLoS Pathog. 2007;3:e107.CrossRefPubMedCentralPubMed Cortes A, Carret C, Kaneko O, Yim Lim BY, Ivens A, Holder AA. Epigenetic silencing of Plasmodium falciparum genes linked to erythrocyte invasion. PLoS Pathog. 2007;3:e107.CrossRefPubMedCentralPubMed
60.
go back to reference Voss TS, Tonkin CJ, Marty AJ, Thompson JK, Healer J, Crabb BS, et al. Alterations in local chromatin environment are involved in silencing and activation of subtelomeric var genes in Plasmodium falciparum. Mol Microbiol. 2007;66:139–50.CrossRefPubMedCentralPubMed Voss TS, Tonkin CJ, Marty AJ, Thompson JK, Healer J, Crabb BS, et al. Alterations in local chromatin environment are involved in silencing and activation of subtelomeric var genes in Plasmodium falciparum. Mol Microbiol. 2007;66:139–50.CrossRefPubMedCentralPubMed
61.
go back to reference Petter M, Lee CC, Byrne TJ, Boysen KE, Volz J, Ralph SA, et al. Expression of P. falciparum var genes involves exchange of the histone variant H2A.Z at the promoter. PLoS Pathog. 2011;7:e1001292.CrossRefPubMedCentralPubMed Petter M, Lee CC, Byrne TJ, Boysen KE, Volz J, Ralph SA, et al. Expression of P. falciparum var genes involves exchange of the histone variant H2A.Z at the promoter. PLoS Pathog. 2011;7:e1001292.CrossRefPubMedCentralPubMed
62.
go back to reference Hommel M, David PH, Oligino LD. Surface alterations of erythrocytes in Plasmodium falciparum malaria. Antigenic variation, antigenic diversity, and the role of the spleen. J Exp Med. 1983;157:1137–48.CrossRefPubMed Hommel M, David PH, Oligino LD. Surface alterations of erythrocytes in Plasmodium falciparum malaria. Antigenic variation, antigenic diversity, and the role of the spleen. J Exp Med. 1983;157:1137–48.CrossRefPubMed
63.
go back to reference Munasinghe A, Ileperuma M, Premawansa G, Handunnetti S, Premawansa S. Spleen modulation of cytoadherence properties of Plasmodium falciparum. Scand J Infect Dis. 2009;41:538–9.CrossRefPubMed Munasinghe A, Ileperuma M, Premawansa G, Handunnetti S, Premawansa S. Spleen modulation of cytoadherence properties of Plasmodium falciparum. Scand J Infect Dis. 2009;41:538–9.CrossRefPubMed
64.
go back to reference Pongponratn E, Viriyavejakul P, Wilairatana P, Ferguson D, Chaisri U, Turner G, et al. Absence of knobs on parasitized red blood cells in a splenectomized patient in fatal falciparum malaria. Southeast Asian J Trop Med Public Health. 2000;31:829–35.PubMed Pongponratn E, Viriyavejakul P, Wilairatana P, Ferguson D, Chaisri U, Turner G, et al. Absence of knobs on parasitized red blood cells in a splenectomized patient in fatal falciparum malaria. Southeast Asian J Trop Med Public Health. 2000;31:829–35.PubMed
65.
go back to reference Galinski MR, Corredor V. Variant antigen expression in malaria infections: posttranscriptional gene silencing, virulence and severe pathology. Mol Biochem Parasitol. 2004;134:17–25.CrossRefPubMed Galinski MR, Corredor V. Variant antigen expression in malaria infections: posttranscriptional gene silencing, virulence and severe pathology. Mol Biochem Parasitol. 2004;134:17–25.CrossRefPubMed
66.
go back to reference Barnwell JW, Howard RJ, Miller LH. Altered expression of Plasmodium knowlesi variant antigen on the erythrocyte membrane in splenectomized rhesus monkeys. J Immunol. 1982;128:224–6.PubMed Barnwell JW, Howard RJ, Miller LH. Altered expression of Plasmodium knowlesi variant antigen on the erythrocyte membrane in splenectomized rhesus monkeys. J Immunol. 1982;128:224–6.PubMed
Metadata
Title
Plasmodium knowlesi gene expression differs in ex vivo compared to in vitro blood-stage cultures
Authors
Stacey A Lapp
Sachel Mok
Lei Zhu
Hao Wu
Peter R Preiser
Zybnek Bozdech
Mary R Galinski
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0612-8

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue