Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

Splenic CD11c(+) cells derived from semi-immune mice protect naïve mice against experimental cerebral malaria

Authors: Lam Q Bao, Dang M Nhi, Nguyen T Huy, Mihoko Kikuchi, Tetsuo Yanagi, Shinjiro Hamano, Kenji Hirayama

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

Immunity to malaria requires innate, adaptive immune responses and Plasmodium-specific memory cells. Previously, mice semi-immune to malaria was developed. Three cycles of infection and cure (‘three-cure’) were required to protect mice against Plasmodium berghei (ANKA strain) infection.

Methods

C57BL/6 J mice underwent three cycles of P. berghei infection and drug-cure to become semi-immune. The spleens of infected semi-immune mice were collected for flow cytometry analysis. CD11c(+) cells of semi-immune mice were isolated and transferred into naïve mice which were subsequently challenged and followed up by survival and parasitaemia.

Results

The percentages of splenic CD4(+) and CD11c(+) cells were increased in semi-immune mice on day 7 post-infection. The proportion and number of B220(+)CD11c(+)low cells (plasmacytoid dendritic cells, DCs) was higher in semi-immune, three-cure mice than in their naïve littermates on day 7 post-infection (2.6 vs 1.1% and 491,031 vs 149,699, respectively). In adoptive transfer experiment, three months after the third cured P. berghei infection, splenic CD11c(+) DCs of non-infected, semi-immune, three-cure mice slowed Plasmodium proliferation and decreased the death rate due to neurological pathology in recipient mice. In addition, anti-P. berghei IgG1 level was higher in mice transferred with CD11c(+) cells of semi-immune, three-cure mice than mice transferred with CD11c(+) cells of naïve counterparts.

Conclusion

CD11c(+) cells of semi-immune mice protect against experimental cerebral malaria three months after the third cured malaria, potentially through protective plasmacytoid DCs and enhanced production of malaria-specific antibody.
Literature
1.
go back to reference Riley EM, Stewart VA. Immune mechanisms in malaria: new insights in vaccine development. Nat Med. 2013;19:168–78.PubMedCrossRef Riley EM, Stewart VA. Immune mechanisms in malaria: new insights in vaccine development. Nat Med. 2013;19:168–78.PubMedCrossRef
2.
go back to reference CDC Centers for Disease Control and Prevention. Human Factors and Malaria. 2012. CDC Centers for Disease Control and Prevention. Human Factors and Malaria. 2012.
3.
go back to reference Wipasa J, Suphavilai C, Okell LC, Cook J, Corran PH, Thaikla K, et al. Long-lived antibody and B cell memory responses to the human malaria parasites. Plasmodium falciparum and Plasmodium vivax. PLoS Pathog. 2010;6:e1000770.PubMedCentralPubMedCrossRef Wipasa J, Suphavilai C, Okell LC, Cook J, Corran PH, Thaikla K, et al. Long-lived antibody and B cell memory responses to the human malaria parasites. Plasmodium falciparum and Plasmodium vivax. PLoS Pathog. 2010;6:e1000770.PubMedCentralPubMedCrossRef
4.
go back to reference Krzych U, Dalai S, Zarling S, Pichugin A. Memory CD8T cells specific for Plasmodia liver-stage antigens maintain protracted protection against malaria. Front Immunol. 2012;3:370.PubMedCentralPubMedCrossRef Krzych U, Dalai S, Zarling S, Pichugin A. Memory CD8T cells specific for Plasmodia liver-stage antigens maintain protracted protection against malaria. Front Immunol. 2012;3:370.PubMedCentralPubMedCrossRef
6.
go back to reference Ndungu FM, Olotu A, Mwacharo J, Nyonda M, Apfeld J, Mramba LK, et al. Memory B cells are a more reliable archive for historical antimalarial responses than plasma antibodies in no-longer exposed children. Proc Natl Acad Sci U S A. 2012;109:8247–52.PubMedCentralPubMedCrossRef Ndungu FM, Olotu A, Mwacharo J, Nyonda M, Apfeld J, Mramba LK, et al. Memory B cells are a more reliable archive for historical antimalarial responses than plasma antibodies in no-longer exposed children. Proc Natl Acad Sci U S A. 2012;109:8247–52.PubMedCentralPubMedCrossRef
7.
go back to reference Stevenson MM, Ing R, Berretta F, Miu J. Regulating the adaptive immune response to blood-stage malaria: role of dendritic cells and CD4+Foxp3+ regulatory T cells. Int J Biol Sci. 2011;7:311–22. Stevenson MM, Ing R, Berretta F, Miu J. Regulating the adaptive immune response to blood-stage malaria: role of dendritic cells and CD4+Foxp3+ regulatory T cells. Int J Biol Sci. 2011;7:311–22.
8.
go back to reference Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of den-dritic cells. Annu Rev Immunol. 2000;18:767–811.PubMedCrossRef Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of den-dritic cells. Annu Rev Immunol. 2000;18:767–811.PubMedCrossRef
9.
go back to reference Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell. 2001;106:255–8.PubMedCrossRef Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell. 2001;106:255–8.PubMedCrossRef
10.
go back to reference Rescigno M, Borrow P. The host-pathogen interaction: new themes from dendritic cell biology. Cell. 2001;106:267–70.PubMedCrossRef Rescigno M, Borrow P. The host-pathogen interaction: new themes from dendritic cell biology. Cell. 2001;106:267–70.PubMedCrossRef
11.
go back to reference Urban BC, Ing R, Stevenson MM. Early interactions be-tween blood-stage Plasmodium parasites and the immune sys-tem. Curr Top Microbiol Immunol. 2005;297:25–70.PubMed Urban BC, Ing R, Stevenson MM. Early interactions be-tween blood-stage Plasmodium parasites and the immune sys-tem. Curr Top Microbiol Immunol. 2005;297:25–70.PubMed
14.
go back to reference Coquerelle C, Moser M. DC subsets in positive and negative regulation of immunity. Immunol Rev. 2010;234:317–34.PubMedCrossRef Coquerelle C, Moser M. DC subsets in positive and negative regulation of immunity. Immunol Rev. 2010;234:317–34.PubMedCrossRef
15.
go back to reference Urban BC, Ferguson DJ, Pain A, Willcox N, Plebanski M, Austyn JM, et al. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature. 1999;400:73–7.PubMedCrossRef Urban BC, Ferguson DJ, Pain A, Willcox N, Plebanski M, Austyn JM, et al. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature. 1999;400:73–7.PubMedCrossRef
17.
go back to reference Bao LQ, Huy NT, Kikuchi M, Yanagi T, Senba M, Shuaibu MN, et al. CD19(+) B cells confer protection against experimental cerebral malaria in semi-immune rodent model. PLoS One. 2013;8:e64836.PubMedCentralPubMedCrossRef Bao LQ, Huy NT, Kikuchi M, Yanagi T, Senba M, Shuaibu MN, et al. CD19(+) B cells confer protection against experimental cerebral malaria in semi-immune rodent model. PLoS One. 2013;8:e64836.PubMedCentralPubMedCrossRef
18.
go back to reference Evans KJ, Hansen DS, van Rooijen N, Buckingham LA, Schofield L. Severe malarial anemia of low parasite burden in rodent models results from accelerated clearance of uninfected erythrocytes. Blood. 2006;107:1192–9.PubMedCentralPubMedCrossRef Evans KJ, Hansen DS, van Rooijen N, Buckingham LA, Schofield L. Severe malarial anemia of low parasite burden in rodent models results from accelerated clearance of uninfected erythrocytes. Blood. 2006;107:1192–9.PubMedCentralPubMedCrossRef
19.
go back to reference Amani V, Boubou MI, Pied S, Marussig M, Walliker D, Mazier D, et al. Cloned lines of Plasmodium berghei ANKA differ in their abilities to induce experimental cerebral malaria. Infect Immun. 1998;66:4093–9.PubMedCentralPubMed Amani V, Boubou MI, Pied S, Marussig M, Walliker D, Mazier D, et al. Cloned lines of Plasmodium berghei ANKA differ in their abilities to induce experimental cerebral malaria. Infect Immun. 1998;66:4093–9.PubMedCentralPubMed
20.
go back to reference Wykes MN, Kay JG, Manderson A, Liu XQ, Brown DL, Richard DJ, et al. Rodent blood-stage Plasmodium survive in dendritic cells that infect naive mice. Proc Natl Acad Sci U S A. 2011;108:11205–10.PubMedCentralPubMedCrossRef Wykes MN, Kay JG, Manderson A, Liu XQ, Brown DL, Richard DJ, et al. Rodent blood-stage Plasmodium survive in dendritic cells that infect naive mice. Proc Natl Acad Sci U S A. 2011;108:11205–10.PubMedCentralPubMedCrossRef
21.
go back to reference Wu J, Tian L, Yu X, Pattaradilokrat S, Li J, Wang M, et al. Strain-specific innate immune signaling pathways determine malaria parasitemia dynamics and host mortality. Proc Natl Acad Sci U S A. 2014;111:E511–520.PubMedCentralPubMedCrossRef Wu J, Tian L, Yu X, Pattaradilokrat S, Li J, Wang M, et al. Strain-specific innate immune signaling pathways determine malaria parasitemia dynamics and host mortality. Proc Natl Acad Sci U S A. 2014;111:E511–520.PubMedCentralPubMedCrossRef
22.
go back to reference Smit JJ, Rudd BD, Lukacs NW. Plasmacytoid dendritic cells inhibit pulmonary immunopathology and promote clearance of respiratory syncytial virus. J Exp Med. 2006;203:1153–9.PubMedCentralPubMedCrossRef Smit JJ, Rudd BD, Lukacs NW. Plasmacytoid dendritic cells inhibit pulmonary immunopathology and promote clearance of respiratory syncytial virus. J Exp Med. 2006;203:1153–9.PubMedCentralPubMedCrossRef
23.
go back to reference Wykes MN. Are plasmacytoidendritic cells the misguided sentinels of malarial immunity? Trends Parasitol. 2012;28:182–6.PubMedCrossRef Wykes MN. Are plasmacytoidendritic cells the misguided sentinels of malarial immunity? Trends Parasitol. 2012;28:182–6.PubMedCrossRef
24.
go back to reference Sponaas AM, Cadman ET, Voisine C, Harrison V, Boonstra A, O'Garra A, et al. Malaria infection changes the ability of splenic dendritic cell populations to stimulate antigen-specifi c T cells. J Exp Med. 2006;203:1427–33.PubMedCentralPubMedCrossRef Sponaas AM, Cadman ET, Voisine C, Harrison V, Boonstra A, O'Garra A, et al. Malaria infection changes the ability of splenic dendritic cell populations to stimulate antigen-specifi c T cells. J Exp Med. 2006;203:1427–33.PubMedCentralPubMedCrossRef
25.
go back to reference Voisine C, Mastelic B, Sponaas AM, Langhorne J. Classical CD11c + dendritic cells, not plasmacytoid dendritic cells, induce T cell responses to Plasmodium chabaudi malaria. Int J Parasitol. 2010;40:711–9.PubMedCrossRef Voisine C, Mastelic B, Sponaas AM, Langhorne J. Classical CD11c + dendritic cells, not plasmacytoid dendritic cells, induce T cell responses to Plasmodium chabaudi malaria. Int J Parasitol. 2010;40:711–9.PubMedCrossRef
26.
go back to reference Kuwajima S, Sato T, Ishida K, Tada H, Tezuka H, Ohteki T. Interleukin 15–dependent crosstalk between conventional and plasmacytoid dendritic cells is essential for CpG-induced immune activation. Nat Immunol. 2006;7:740–6.PubMedCrossRef Kuwajima S, Sato T, Ishida K, Tada H, Tezuka H, Ohteki T. Interleukin 15–dependent crosstalk between conventional and plasmacytoid dendritic cells is essential for CpG-induced immune activation. Nat Immunol. 2006;7:740–6.PubMedCrossRef
27.
go back to reference Millington OR, Di Lorenzo C, Phillips RS, Garside P, Brewer JM. Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through hemozoin-induced failure of dendritic cell function. J Biol. 2006;5:5.PubMedCentralPubMedCrossRef Millington OR, Di Lorenzo C, Phillips RS, Garside P, Brewer JM. Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through hemozoin-induced failure of dendritic cell function. J Biol. 2006;5:5.PubMedCentralPubMedCrossRef
28.
go back to reference Dumortier H, van Mierlo GJ, Egan D, van Ewijk W, Toes RE, Offringa R, et al. Antigen presentation by an immature myeloid dendritic cell line does not cause CTL deletion in vivo, but generates CD8+ central memory-like T cells that can be rescued for full effector function. J Immunol. 2005;175:855–63.PubMedCrossRef Dumortier H, van Mierlo GJ, Egan D, van Ewijk W, Toes RE, Offringa R, et al. Antigen presentation by an immature myeloid dendritic cell line does not cause CTL deletion in vivo, but generates CD8+ central memory-like T cells that can be rescued for full effector function. J Immunol. 2005;175:855–63.PubMedCrossRef
29.
go back to reference Haque A, Best SE, Unosson K, Amante FH, de Labastida F, Anstey NM, et al. Granzyme B expression by CD8+ T cells is required for the development of experimental cerebral malaria. J Immunol. 2011;186:6148–56.PubMedCrossRef Haque A, Best SE, Unosson K, Amante FH, de Labastida F, Anstey NM, et al. Granzyme B expression by CD8+ T cells is required for the development of experimental cerebral malaria. J Immunol. 2011;186:6148–56.PubMedCrossRef
30.
go back to reference Baptista FG, Pamplona A, Pena AC, Mota MM, Pied S, Vigário AM. Accumulation of Plasmodium berghei-infected red blood cells in the brain is crucial for the development of cerebral malaria in mice. Infect Immun. 2010;78:4033–9.PubMedCentralPubMedCrossRef Baptista FG, Pamplona A, Pena AC, Mota MM, Pied S, Vigário AM. Accumulation of Plasmodium berghei-infected red blood cells in the brain is crucial for the development of cerebral malaria in mice. Infect Immun. 2010;78:4033–9.PubMedCentralPubMedCrossRef
31.
go back to reference McQuillan JA, Mitchell AJ, Ho YF, Combes V, Ball HJ, Golenser J, et al. Coincident parasite and CD8 T cell sequestration is required for development of experimental cerebral malaria. Int J Parasitol. 2011;41:155–63.PubMedCrossRef McQuillan JA, Mitchell AJ, Ho YF, Combes V, Ball HJ, Golenser J, et al. Coincident parasite and CD8 T cell sequestration is required for development of experimental cerebral malaria. Int J Parasitol. 2011;41:155–63.PubMedCrossRef
32.
go back to reference Wykes MN, Good MF. What really happens to dendritic cells during malaria? Nat Rev Microbiol. 2008;6:864–70.PubMed Wykes MN, Good MF. What really happens to dendritic cells during malaria? Nat Rev Microbiol. 2008;6:864–70.PubMed
33.
go back to reference Wykes M, Keighley C, Pinzon-Charry A, Good MF. Dendritic cell biology during malaria. Cell Microbiol. 2007;9:300–5.PubMedCrossRef Wykes M, Keighley C, Pinzon-Charry A, Good MF. Dendritic cell biology during malaria. Cell Microbiol. 2007;9:300–5.PubMedCrossRef
34.
go back to reference Stevenson MM, Ing R, Berretta F, Miu J. Regulating the adaptive immune response to blood-stage malaria: role of dendritic cells and CD4Foxp3 regulatory T cells. Int J Biol Sci. 2011;7:1311–22.PubMedCentralPubMedCrossRef Stevenson MM, Ing R, Berretta F, Miu J. Regulating the adaptive immune response to blood-stage malaria: role of dendritic cells and CD4Foxp3 regulatory T cells. Int J Biol Sci. 2011;7:1311–22.PubMedCentralPubMedCrossRef
35.
go back to reference Lundie RJ. Antigen presentation in immunity to murine malaria. Curr Opin Immunol. 2011;23:119–23.PubMedCrossRef Lundie RJ. Antigen presentation in immunity to murine malaria. Curr Opin Immunol. 2011;23:119–23.PubMedCrossRef
36.
go back to reference Kumar S, Jones TR, Oakley MS, Zheng H, Kuppusamy SP, Taye A, et al. CpG oligodeoxynucleotide and montanide ISA 51 adjuvant combination enhanced the protective efficacy of a subunit malaria vaccine. Infect Immun. 2004;72:949–57.PubMedCentralPubMedCrossRef Kumar S, Jones TR, Oakley MS, Zheng H, Kuppusamy SP, Taye A, et al. CpG oligodeoxynucleotide and montanide ISA 51 adjuvant combination enhanced the protective efficacy of a subunit malaria vaccine. Infect Immun. 2004;72:949–57.PubMedCentralPubMedCrossRef
Metadata
Title
Splenic CD11c(+) cells derived from semi-immune mice protect naïve mice against experimental cerebral malaria
Authors
Lam Q Bao
Dang M Nhi
Nguyen T Huy
Mihoko Kikuchi
Tetsuo Yanagi
Shinjiro Hamano
Kenji Hirayama
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-014-0533-y

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue