Skip to main content
Top
Published in: Cancer Cell International 1/2019

Open Access 01-12-2019 | Hepatocellular Carcinoma | Primary research

miR-450b-5p loss mediated KIF26B activation promoted hepatocellular carcinoma progression by activating PI3K/AKT pathway

Authors: Hua Li, Shen Shen, Xiaolong Chen, Zhigang Ren, Zhiqin Li, Zujiang Yu

Published in: Cancer Cell International | Issue 1/2019

Login to get access

Abstract

Background

Kinesin family member 26B (KIF26B) is unveiled acted as important role in many solid tumors, however, the function of KIF26B in hepatocellular carcinoma (HCC) is unclear.

Methods

The expression of KIF26B in HCC tissues and cell lines were measured with immunochemistry, real-time PCR and western blotting. The correlation between KIF26B expression and clinicopathological characteristics were analyzed by SPSS19.0. Functional experiments of KIF26B was conducted by CCK-8, transwell, EDU, colony formation in vitro and tumorigenesis in vivo. The gene set enrichment analysis was used to search the downstream pathway, luciferase reporter experiment was used to find the upstream regulatory factor of KIF26B.

Results

In this study, we found that KIF26B was overexpressed both in HCC tissues and cell lines. High expression of KIF26B was associated with poor overall survival (OS), late TNM stage and poor differentiation. Loss of function experiments showed that suppression of KIF26B could inhibit cell viability, proliferation rate and invasion ability of HCC cells. KEGG and GO analysis showed that expression of KIF26B was highly relevant with PI3K/AKT signal pathway, and suppression of KIF26B could decrease the expression of m-TOR, p-PI3K and p-AKT. Further study demonstrated that expression of KIF26B was negative correlated with miR-450b-5p level in HCC tissues, and miR-450b-5p could inhibit cell viability, proliferation rate and invasion ability of HCC cells via targeted inhibiting KIF26B.

Conclusion

Our study demonstrated that miR-450-5p/KIF26B/AKT axis is critical for progression of HCC, and might provide novel prognostic biomarker and therapeutic target for HCC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Llovet JM, Montal R, Sia D, Finn RS. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018;15(10):599–616.CrossRef Llovet JM, Montal R, Sia D, Finn RS. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018;15(10):599–616.CrossRef
2.
go back to reference Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–2.CrossRef Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–2.CrossRef
3.
go back to reference Bertuccio P, Tuarti F, Carioli G, Rodriguez T, La Vecchia C, Malvezzi M, Negri E. Global trends and predictions in hepatocellular carcinoma mortality. J Hepatol. 2017;67(2):302–9.CrossRef Bertuccio P, Tuarti F, Carioli G, Rodriguez T, La Vecchia C, Malvezzi M, Negri E. Global trends and predictions in hepatocellular carcinoma mortality. J Hepatol. 2017;67(2):302–9.CrossRef
4.
go back to reference Uchiyama Y, et al. Kif26b, a kinesin family gene, regulates adhesion of the embryonic kidney mesenchyme. Proc Natl Acad Sci USA. 2010;107(20):9240–5.CrossRef Uchiyama Y, et al. Kif26b, a kinesin family gene, regulates adhesion of the embryonic kidney mesenchyme. Proc Natl Acad Sci USA. 2010;107(20):9240–5.CrossRef
5.
go back to reference Teng Y, et al. KIF26B promotes cell proliferation and migration through the FGF2/ERK signaling pathway in breast cancer. Biomed Pharmacother. 2018;108:766–73.CrossRef Teng Y, et al. KIF26B promotes cell proliferation and migration through the FGF2/ERK signaling pathway in breast cancer. Biomed Pharmacother. 2018;108:766–73.CrossRef
6.
go back to reference Wang Q, et al. High expression of KIF26B in breast cancer associates with poor prognosis. PLoS ONE. 2013;8(4):e61640.CrossRef Wang Q, et al. High expression of KIF26B in breast cancer associates with poor prognosis. PLoS ONE. 2013;8(4):e61640.CrossRef
7.
go back to reference Zhang H, Ma R, Wang XJ, Su ZX, Chen X, Shi DB, Guo XY, Liu HT, Gao P. KIF26B, a novel oncogene, promotes proliferation and metastasis by activating the VEGF pathway in gastric cancer. Oncogene. 2017;36(40):5609–19.CrossRef Zhang H, Ma R, Wang XJ, Su ZX, Chen X, Shi DB, Guo XY, Liu HT, Gao P. KIF26B, a novel oncogene, promotes proliferation and metastasis by activating the VEGF pathway in gastric cancer. Oncogene. 2017;36(40):5609–19.CrossRef
8.
go back to reference Wang J, et al. Elevated kinesin family member 26B is a prognostic biomarker and a potential therapeutic target for colorectal cancer. J Exp Clin Cancer Res. 2015;34(1):13.CrossRef Wang J, et al. Elevated kinesin family member 26B is a prognostic biomarker and a potential therapeutic target for colorectal cancer. J Exp Clin Cancer Res. 2015;34(1):13.CrossRef
9.
go back to reference Pu Y, et al. MiR-20a-5p represses multi-drug resistance in osteosarcoma by targeting the KIF26B gene. Cancer Cell Int. 2016;16:64.CrossRef Pu Y, et al. MiR-20a-5p represses multi-drug resistance in osteosarcoma by targeting the KIF26B gene. Cancer Cell Int. 2016;16:64.CrossRef
10.
go back to reference Bao J, et al. MiR-126 negatively regulates PLK-4 to impact the development of hepatocellular carcinoma via ATR/CHEK1 pathway. Cell Death Dis. 2018;9(10):1045.CrossRef Bao J, et al. MiR-126 negatively regulates PLK-4 to impact the development of hepatocellular carcinoma via ATR/CHEK1 pathway. Cell Death Dis. 2018;9(10):1045.CrossRef
11.
go back to reference Chen J, et al. MiR-139-5p is associated with poor prognosis and regulates glycolysis by repressing PKM2 in gallbladder carcinoma. Cell Prolif. 2018;51:e12510.CrossRef Chen J, et al. MiR-139-5p is associated with poor prognosis and regulates glycolysis by repressing PKM2 in gallbladder carcinoma. Cell Prolif. 2018;51:e12510.CrossRef
12.
go back to reference Zhang J, et al. Upregulation of miR-374a promotes tumor metastasis and progression by downregulating LACTB and predicts unfavorable prognosis in breast cancer. Cancer Med. 2018;7(7):3351–62.CrossRef Zhang J, et al. Upregulation of miR-374a promotes tumor metastasis and progression by downregulating LACTB and predicts unfavorable prognosis in breast cancer. Cancer Med. 2018;7(7):3351–62.CrossRef
13.
go back to reference Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRef Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRef
14.
go back to reference Miki H, Setou M, Kaneshiro K, Hirokawa N. All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci USA. 2001;98:7004–11.CrossRef Miki H, Setou M, Kaneshiro K, Hirokawa N. All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci USA. 2001;98:7004–11.CrossRef
15.
go back to reference Heinrich J, Propper C, Schmidt T, Linta L, Liebau S, Boeckers TM. The postsynaptic density protein Abelson interactor protein 1 interacts with the motor protein Kinesin family member 26B in hippocampal neurons. Neuroscience. 2015;221:86–95.CrossRef Heinrich J, Propper C, Schmidt T, Linta L, Liebau S, Boeckers TM. The postsynaptic density protein Abelson interactor protein 1 interacts with the motor protein Kinesin family member 26B in hippocampal neurons. Neuroscience. 2015;221:86–95.CrossRef
16.
go back to reference Gu S, et al. Knockdown of KIF26B inhibits breast cancer cell proliferation, migration, and invasion. OncoTargets Ther. 2018;11:3195–203.CrossRef Gu S, et al. Knockdown of KIF26B inhibits breast cancer cell proliferation, migration, and invasion. OncoTargets Ther. 2018;11:3195–203.CrossRef
17.
go back to reference Yang X, Zhang L, Xie L. Upregulation of KIF26B, cell migration and proliferation of human ovarian cancer cell lines in vitro, and patient outcomes from human bioinformatic analysis. Med Sci Monit. 2018;24:3863–72.CrossRef Yang X, Zhang L, Xie L. Upregulation of KIF26B, cell migration and proliferation of human ovarian cancer cell lines in vitro, and patient outcomes from human bioinformatic analysis. Med Sci Monit. 2018;24:3863–72.CrossRef
18.
go back to reference Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene. 2010;29(36):4989–5005.CrossRef Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene. 2010;29(36):4989–5005.CrossRef
19.
go back to reference Di Leva G, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2014;9:287–314.CrossRef Di Leva G, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2014;9:287–314.CrossRef
20.
go back to reference Jin Y, Jiang Z, Guan X, Chen Y, Tang Q, Wang G, Wang X. miR-450b-5p suppresses stemness and the development of chemoresistance by targeting SOX2 in colorectal cancer. DNA Cell Biol. 2016;35(5):249–56.CrossRef Jin Y, Jiang Z, Guan X, Chen Y, Tang Q, Wang G, Wang X. miR-450b-5p suppresses stemness and the development of chemoresistance by targeting SOX2 in colorectal cancer. DNA Cell Biol. 2016;35(5):249–56.CrossRef
21.
go back to reference Zhang ZW, Xia SH, Zhao H, Yang JB, Zhang H, He B, Jiao J, Zhan BT, Sun CC. Long intergenic non-protein coding RNA 319 aggravates lung adenocarcinoma carcinogenesis by modulating miR-450b-5p/EZH2. Gene. 2018;650:60–7.CrossRef Zhang ZW, Xia SH, Zhao H, Yang JB, Zhang H, He B, Jiao J, Zhan BT, Sun CC. Long intergenic non-protein coding RNA 319 aggravates lung adenocarcinoma carcinogenesis by modulating miR-450b-5p/EZH2. Gene. 2018;650:60–7.CrossRef
22.
go back to reference Svoboda M, Fabian P, Kocakova I, Gombosova J, Nekvindova J, Radova L, Vyzula R, Slaby O. MicroRNA expression profile associated with response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients. Radiat Oncol J. 2012;7:195.CrossRef Svoboda M, Fabian P, Kocakova I, Gombosova J, Nekvindova J, Radova L, Vyzula R, Slaby O. MicroRNA expression profile associated with response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients. Radiat Oncol J. 2012;7:195.CrossRef
23.
go back to reference McDonald AC, Shen J, Sanda M, Raman JD, Liao J, Patil D, Taioli E. Circulating microRNAs in plasma as potential biomarkers for the early detection of prostate cancer. Prostate. 2018;78(6):411–8.CrossRef McDonald AC, Shen J, Sanda M, Raman JD, Liao J, Patil D, Taioli E. Circulating microRNAs in plasma as potential biomarkers for the early detection of prostate cancer. Prostate. 2018;78(6):411–8.CrossRef
24.
go back to reference Sun MM, Guo LL, Xiao HT, Dong L, Wang F, Huang FB, Cao D, Qin T, Yin XH, Li JM, Wang SL. TGF-β1 suppression of microRNA-450b-5p expression: a novel mechanism for blocking myogenic differentiation of rhabdomyosarcoma. Oncogene. 2014;33(16):2075–86.CrossRef Sun MM, Guo LL, Xiao HT, Dong L, Wang F, Huang FB, Cao D, Qin T, Yin XH, Li JM, Wang SL. TGF-β1 suppression of microRNA-450b-5p expression: a novel mechanism for blocking myogenic differentiation of rhabdomyosarcoma. Oncogene. 2014;33(16):2075–86.CrossRef
Metadata
Title
miR-450b-5p loss mediated KIF26B activation promoted hepatocellular carcinoma progression by activating PI3K/AKT pathway
Authors
Hua Li
Shen Shen
Xiaolong Chen
Zhigang Ren
Zhiqin Li
Zujiang Yu
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2019
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-019-0923-x

Other articles of this Issue 1/2019

Cancer Cell International 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine