Skip to main content
Top
Published in: Cancer Cell International 1/2019

Open Access 01-12-2019 | Breast Cancer | Primary research

PGC-1β cooperating with FOXA2 inhibits proliferation and migration of breast cancer cells

Authors: Jia Cao, Xi Wang, Danni Wang, Rong Ma, Xiaohan Li, Huimin Feng, Jia Wang, Shihai Liu, Libin Wang

Published in: Cancer Cell International | Issue 1/2019

Login to get access

Abstract

Background

Breast cancer is one of the most common malignancy among females from the worldwide cancer incidence statistics. Peroxisome gamma coactivator-1β (PGC-1β) has long been identified to be involved in this type of tumorigenesis. However, the mechanisms of PGC-1β in human breast cancer have not been fully understood and the function requires to be further elucidated.

Methods

mRNA and protein expression of PGC-1β and FOXA2 in breast cancer tissues and cell lines were determined by qRT-PCR and Western Blotting, respectively. To further visualize the expression and localization of PGC-1β and FOXA2, immunochemistry and immunofluorescence staining methods were employed. The effect of PGC-1β and FOXA2 on cell proliferation and migration were evaluated by CCK8, clone formation, transwell and wound-healing assays, which has been done either with stable PGC-1β knockdown or FOXA2 overexpression in vitro. Xenografts model of nude mice were used to evaluate tumor growth in vivo. In addition, proteins expression of the PI3K-AKT-mTOR signaling pathway involved in the regulation of breast cancer were detected by Western Blotting.

Results

Our results showed that PGC-1β was upregulated and FOXA2 was downregulated in breast cancer tissues and cell lines. These two proteins can be interacted with each other to form the complex. Also, we found the combination of PGC-1β interference with FOXA2 overexpression significantly inhibited cell proliferation and migration in vitro as well as tumor growth in vivo. We further identified that PGC-1β and FOXA2 strongly correlated with the PI3K-AKT-mTOR signaling pathway, and they exerted their biological functions by activating this pathway.

Conclusions

We demonstrated that downregulation of PGC-1β combined with overexpression of FOXA2 obviously inhibited the function of breast cancer cells through regulating the PI3K-AKT-mTOR pathway.
Literature
1.
go back to reference Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin D, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.PubMed Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin D, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.PubMed
2.
go back to reference Zeng Y, Sang J. Five zinc finger protein 350 single nucleotide polymorphisms and the risks of breast cancer: a meta-analysis. Oncotarget. 2017;8(63):107273–82.PubMedPubMedCentralCrossRef Zeng Y, Sang J. Five zinc finger protein 350 single nucleotide polymorphisms and the risks of breast cancer: a meta-analysis. Oncotarget. 2017;8(63):107273–82.PubMedPubMedCentralCrossRef
3.
go back to reference Hamurcu Z, Delibaşı N, Geçene S, Şener E, Dönmez-Altuntaş H, Özkul Y, Canatan H, Ozpolat B. Targeting LC3 and Beclin-1 autophagy genes suppresses proliferation, survival, migration and invasion by inhibition of Cyclin-D1 and uPAR/Integrin β1/Src signaling in triple negative breast cancer cells. J Cancer Res Clin Oncol. 2017;144(3):415–30.PubMedCrossRef Hamurcu Z, Delibaşı N, Geçene S, Şener E, Dönmez-Altuntaş H, Özkul Y, Canatan H, Ozpolat B. Targeting LC3 and Beclin-1 autophagy genes suppresses proliferation, survival, migration and invasion by inhibition of Cyclin-D1 and uPAR/Integrin β1/Src signaling in triple negative breast cancer cells. J Cancer Res Clin Oncol. 2017;144(3):415–30.PubMedCrossRef
4.
go back to reference Lin J, Handschin C, Spiegelman B. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1(6):361–70.PubMedCrossRef Lin J, Handschin C, Spiegelman B. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1(6):361–70.PubMedCrossRef
5.
go back to reference Ahmad S, Valli H, Salvage S, Grace A, Jeevaratnam K, Huang C. Age-dependent electrocardiographic changes in Pgc-1β deficient murine hearts. Clin Exp Pharmacol Physiol. 2018;45(2):174–86.PubMedCrossRef Ahmad S, Valli H, Salvage S, Grace A, Jeevaratnam K, Huang C. Age-dependent electrocardiographic changes in Pgc-1β deficient murine hearts. Clin Exp Pharmacol Physiol. 2018;45(2):174–86.PubMedCrossRef
6.
go back to reference Liu C, Lin J. PGC-1 coactivators in the control of energy metabolism. Acta Biochim Biophys Sin (Shanghai). 2011;43(4):248–57.CrossRef Liu C, Lin J. PGC-1 coactivators in the control of energy metabolism. Acta Biochim Biophys Sin (Shanghai). 2011;43(4):248–57.CrossRef
7.
go back to reference Schilling J, Kelly D. The PGC-1 cascade as a therapeutic target for heart failure. J Mol Cell Cardiol. 2011;51(4):578–83.PubMedCrossRef Schilling J, Kelly D. The PGC-1 cascade as a therapeutic target for heart failure. J Mol Cell Cardiol. 2011;51(4):578–83.PubMedCrossRef
8.
go back to reference Riehle C, Wende A, Zaha V, Pires K, Wayment B, Olsen C, Bugger H, Buchanan J, Wang X, Moreira A, et al. PGC-1β deficiency accelerates the transition to heart failure in pressure overload hypertrophy. Circ Res. 2011;109(7):783–93.PubMedPubMedCentralCrossRef Riehle C, Wende A, Zaha V, Pires K, Wayment B, Olsen C, Bugger H, Buchanan J, Wang X, Moreira A, et al. PGC-1β deficiency accelerates the transition to heart failure in pressure overload hypertrophy. Circ Res. 2011;109(7):783–93.PubMedPubMedCentralCrossRef
9.
go back to reference Lehman J, Barger P, Kovacs A, Saffitz J, Medeiros D, Kelly D. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest. 2000;106(7):847–56.PubMedPubMedCentralCrossRef Lehman J, Barger P, Kovacs A, Saffitz J, Medeiros D, Kelly D. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest. 2000;106(7):847–56.PubMedPubMedCentralCrossRef
10.
go back to reference Lin J, Wu H, Tarr P, Zhang C, Wu Z, Boss O, Michael L, Puigserver P, Isotani E, Olson E, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002;418(6899):797–801.PubMedCrossRef Lin J, Wu H, Tarr P, Zhang C, Wu Z, Boss O, Michael L, Puigserver P, Isotani E, Olson E, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002;418(6899):797–801.PubMedCrossRef
11.
go back to reference Lee S, Leone T, Rogosa L, Rumsey J, Ayala J, Coen P, Fitts R, Vega R, Kelly D. Skeletal muscle PGC-1β signaling is sufficient to drive an endurance exercise phenotype and to counteract components of detraining in mice. Am J Physiol Endocrinol Metab. 2017;312(5):E394–406.PubMedPubMedCentralCrossRef Lee S, Leone T, Rogosa L, Rumsey J, Ayala J, Coen P, Fitts R, Vega R, Kelly D. Skeletal muscle PGC-1β signaling is sufficient to drive an endurance exercise phenotype and to counteract components of detraining in mice. Am J Physiol Endocrinol Metab. 2017;312(5):E394–406.PubMedPubMedCentralCrossRef
12.
go back to reference Huss J, Torra I, Staels B, Giguère V, Kelly D. Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol Cell Biol. 2004;24(20):9079–91.PubMedPubMedCentralCrossRef Huss J, Torra I, Staels B, Giguère V, Kelly D. Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol Cell Biol. 2004;24(20):9079–91.PubMedPubMedCentralCrossRef
13.
go back to reference Arany Z, He H, Lin J, Hoyer K, Handschin C, Toka O, Ahmad F, Matsui T, Chin S, Wu P, et al. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab. 2005;1(4):259–71.PubMedCrossRef Arany Z, He H, Lin J, Hoyer K, Handschin C, Toka O, Ahmad F, Matsui T, Chin S, Wu P, et al. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab. 2005;1(4):259–71.PubMedCrossRef
14.
go back to reference Andersen G, Wegner L, Yanagisawa K, Rose C, Lin J, Glümer C, Drivsholm T, Borch-Johnsen K, Jørgensen T, Hansen T, et al. Evidence of an association between genetic variation of the coactivator PGC-1beta and obesity. J Med Genet. 2005;42(5):402–7.PubMedPubMedCentralCrossRef Andersen G, Wegner L, Yanagisawa K, Rose C, Lin J, Glümer C, Drivsholm T, Borch-Johnsen K, Jørgensen T, Hansen T, et al. Evidence of an association between genetic variation of the coactivator PGC-1beta and obesity. J Med Genet. 2005;42(5):402–7.PubMedPubMedCentralCrossRef
15.
go back to reference Enguix N, Pardo R, González A, López V, Simó R, Kralli A, Villena J. Mice lacking PGC-1β in adipose tissues reveal a dissociation between mitochondrial dysfunction and insulin resistance. Mol Metab. 2013;2(3):215–26.PubMedPubMedCentralCrossRef Enguix N, Pardo R, González A, López V, Simó R, Kralli A, Villena J. Mice lacking PGC-1β in adipose tissues reveal a dissociation between mitochondrial dysfunction and insulin resistance. Mol Metab. 2013;2(3):215–26.PubMedPubMedCentralCrossRef
16.
go back to reference Piccinin E, Peres C, Bellafante E, Ducheix S, Pinto C, Villani G, Moschetta A. Hepatic PPARγ coactivator 1β drives mitochondrial and anabolic signatures that contribute to hepatocellular carcinoma progression. Hepatology (Baltimore, MD). 2018;67(3):884–98.CrossRef Piccinin E, Peres C, Bellafante E, Ducheix S, Pinto C, Villani G, Moschetta A. Hepatic PPARγ coactivator 1β drives mitochondrial and anabolic signatures that contribute to hepatocellular carcinoma progression. Hepatology (Baltimore, MD). 2018;67(3):884–98.CrossRef
17.
go back to reference Victorino V, Barroso W, Assunção A, Cury V, Jeremias I, Petroni R, Chausse B, Ariga S, Herrera A, Panis C, et al. PGC-1β regulates HER2-overexpressing breast cancer cells proliferation by metabolic and redox pathways. Tumour Biol. 2016;37(5):6035–44.PubMedCrossRef Victorino V, Barroso W, Assunção A, Cury V, Jeremias I, Petroni R, Chausse B, Ariga S, Herrera A, Panis C, et al. PGC-1β regulates HER2-overexpressing breast cancer cells proliferation by metabolic and redox pathways. Tumour Biol. 2016;37(5):6035–44.PubMedCrossRef
18.
go back to reference Wang L, Liu Q, Li F, Qiu J, Fan H, Ma H, Zhu Y, Wu L, Han X, Yang Z, et al. Apoptosis induced by PGC-1β in breast cancer cells is mediated by the mTOR pathway. Oncol Rep. 2013;30(4):1631–8.PubMedCrossRef Wang L, Liu Q, Li F, Qiu J, Fan H, Ma H, Zhu Y, Wu L, Han X, Yang Z, et al. Apoptosis induced by PGC-1β in breast cancer cells is mediated by the mTOR pathway. Oncol Rep. 2013;30(4):1631–8.PubMedCrossRef
19.
go back to reference Mfopou J, Geeraerts M, Dejene R, Van Langenhoven S, Aberkane A, Van Grunsven L, Bouwens L. Efficient definitive endoderm induction from mouse embryonic stem cell adherent cultures: a rapid screening model for differentiation studies. Stem Cell Res. 2014;12(1):166–77.PubMedCrossRef Mfopou J, Geeraerts M, Dejene R, Van Langenhoven S, Aberkane A, Van Grunsven L, Bouwens L. Efficient definitive endoderm induction from mouse embryonic stem cell adherent cultures: a rapid screening model for differentiation studies. Stem Cell Res. 2014;12(1):166–77.PubMedCrossRef
20.
go back to reference Kaestner K, Knochel W, Martinez D. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 2000;14(2):142–6.PubMed Kaestner K, Knochel W, Martinez D. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 2000;14(2):142–6.PubMed
21.
go back to reference Bonnavion R, Teinturier R, Gherardi S, Leteurtre E, Yu R, Cordier-Bussat M, Du R, Pattou F, Vantyghem M, Bertolino P, et al. Foxa2, a novel protein partner of the tumour suppressor menin, is deregulated in mouse and human MEN1 glucagonomas. J Pathol. 2017;242(1):90–101.PubMedCrossRef Bonnavion R, Teinturier R, Gherardi S, Leteurtre E, Yu R, Cordier-Bussat M, Du R, Pattou F, Vantyghem M, Bertolino P, et al. Foxa2, a novel protein partner of the tumour suppressor menin, is deregulated in mouse and human MEN1 glucagonomas. J Pathol. 2017;242(1):90–101.PubMedCrossRef
22.
go back to reference Ozaki T, Matsubara T, Seo D, Okamoto M, Nagashima K, Sasaki Y, Hayase S, Murata T, Liao X, Hanson J, et al. Thyroid regeneration: characterization of clear cells after partial thyroidectomy. Endocrinology. 2012;153(5):2514–25.PubMedPubMedCentralCrossRef Ozaki T, Matsubara T, Seo D, Okamoto M, Nagashima K, Sasaki Y, Hayase S, Murata T, Liao X, Hanson J, et al. Thyroid regeneration: characterization of clear cells after partial thyroidectomy. Endocrinology. 2012;153(5):2514–25.PubMedPubMedCentralCrossRef
23.
go back to reference Chu G, Zhau H, Wang R, Rogatko A, Feng X, Zayzafoon M, Liu Y, Farach-Carson M, You S, Kim J, et al. RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization. Endocr Relat Cancer. 2014;21(2):311–26.PubMedPubMedCentralCrossRef Chu G, Zhau H, Wang R, Rogatko A, Feng X, Zayzafoon M, Liu Y, Farach-Carson M, You S, Kim J, et al. RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization. Endocr Relat Cancer. 2014;21(2):311–26.PubMedPubMedCentralCrossRef
24.
go back to reference Cao L, Gibson J, Miyamoto S, Sail V, Verma R, Rosenberg D, Nelson C, Giardina C. Intestinal lineage commitment of embryonic stem cells. Differentiation. 2011;81(1):1–10.PubMedCrossRef Cao L, Gibson J, Miyamoto S, Sail V, Verma R, Rosenberg D, Nelson C, Giardina C. Intestinal lineage commitment of embryonic stem cells. Differentiation. 2011;81(1):1–10.PubMedCrossRef
25.
go back to reference Kaestner K. The making of the liver: developmental competence in foregut endoderm and induction of the hepatogenic program. Cell Cycle. 2005;4(9):1146–8.PubMedCrossRef Kaestner K. The making of the liver: developmental competence in foregut endoderm and induction of the hepatogenic program. Cell Cycle. 2005;4(9):1146–8.PubMedCrossRef
26.
go back to reference Gao N, LeLay J, Vatamaniuk M, Rieck S, Friedman J, Kaestner K. Dynamic regulation of Pdx1 enhancers by Foxa1 and Foxa2 is essential for pancreas development. Genes Dev. 2008;22(24):3435–48.PubMedPubMedCentralCrossRef Gao N, LeLay J, Vatamaniuk M, Rieck S, Friedman J, Kaestner K. Dynamic regulation of Pdx1 enhancers by Foxa1 and Foxa2 is essential for pancreas development. Genes Dev. 2008;22(24):3435–48.PubMedPubMedCentralCrossRef
27.
go back to reference Zhang Z, Yang C, Gao W, Chen T, Qian T, Hu J, Tan Y. FOXA2 attenuates the epithelial to mesenchymal transition by regulating the transcription of E-cadherin and ZEB2 in human breast cancer. Cancer Lett. 2015;361(2):240–50.PubMedCrossRef Zhang Z, Yang C, Gao W, Chen T, Qian T, Hu J, Tan Y. FOXA2 attenuates the epithelial to mesenchymal transition by regulating the transcription of E-cadherin and ZEB2 in human breast cancer. Cancer Lett. 2015;361(2):240–50.PubMedCrossRef
28.
go back to reference Perez-Balaguer A, Ortiz-Martínez F, García-Martínez A, Pomares-Navarro C, Lerma E, Peiró G. FOXA2 mRNA expression is associated with relapse in patients with Triple-Negative/Basal-like breast carcinoma. Breast Cancer Res Treat. 2015;153(2):465–74.PubMedCrossRef Perez-Balaguer A, Ortiz-Martínez F, García-Martínez A, Pomares-Navarro C, Lerma E, Peiró G. FOXA2 mRNA expression is associated with relapse in patients with Triple-Negative/Basal-like breast carcinoma. Breast Cancer Res Treat. 2015;153(2):465–74.PubMedCrossRef
29.
go back to reference Myatt S, Lam E. The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer. 2007;7(11):847–59.PubMedCrossRef Myatt S, Lam E. The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer. 2007;7(11):847–59.PubMedCrossRef
30.
go back to reference Friedman J, Kaestner K. The Foxa family of transcription factors in development and metabolism. Cell Mol Life Sci. 2006;63(19–20):2317–28.PubMedCrossRef Friedman J, Kaestner K. The Foxa family of transcription factors in development and metabolism. Cell Mol Life Sci. 2006;63(19–20):2317–28.PubMedCrossRef
32.
go back to reference Song Y, Washington M, Crawford H. Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer. Cancer Res. 2010;70(5):2115–25.PubMedPubMedCentralCrossRef Song Y, Washington M, Crawford H. Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer. Cancer Res. 2010;70(5):2115–25.PubMedPubMedCentralCrossRef
33.
go back to reference Tu M, Pan Y, Qiu J, Kim E, Yu A. MicroRNA-1291 targets the FOXA2-AGR2 pathway to suppress pancreatic cancer cell proliferation and tumorigenesis. Oncotarget. 2016;7(29):45547–61.PubMedPubMedCentralCrossRef Tu M, Pan Y, Qiu J, Kim E, Yu A. MicroRNA-1291 targets the FOXA2-AGR2 pathway to suppress pancreatic cancer cell proliferation and tumorigenesis. Oncotarget. 2016;7(29):45547–61.PubMedPubMedCentralCrossRef
35.
go back to reference Deblois G, St-Pierre J, Giguère V. The PGC-1/ERR signaling axis in cancer. Oncogene. 2013;32(30):3483–90.PubMedCrossRef Deblois G, St-Pierre J, Giguère V. The PGC-1/ERR signaling axis in cancer. Oncogene. 2013;32(30):3483–90.PubMedCrossRef
36.
37.
go back to reference Kumazoe M, Takai M, Hiroi S, Takeuchi C, Kadomatsu M, Nojiri T, Onda H, Bae J, Huang Y, Takamatsu K, et al. The FOXO3/PGC-1beta signaling axis is essential for cancer stem cell properties of pancreatic ductal adenocarcinoma. J Biol Chem. 2017;292(26):10813–23.PubMedPubMedCentralCrossRef Kumazoe M, Takai M, Hiroi S, Takeuchi C, Kadomatsu M, Nojiri T, Onda H, Bae J, Huang Y, Takamatsu K, et al. The FOXO3/PGC-1beta signaling axis is essential for cancer stem cell properties of pancreatic ductal adenocarcinoma. J Biol Chem. 2017;292(26):10813–23.PubMedPubMedCentralCrossRef
38.
go back to reference Bellafante E, Morgano A, Salvatore L, Murzilli S, Di Tullio G, D’Orazio A, Latorre D, Villani G, Moschetta A. PGC-1β promotes enterocyte lifespan and tumorigenesis in the intestine. In: Proceedings of the National Academy of Sciences of the United States of America. 2014;111(42):E4523–31.CrossRef Bellafante E, Morgano A, Salvatore L, Murzilli S, Di Tullio G, D’Orazio A, Latorre D, Villani G, Moschetta A. PGC-1β promotes enterocyte lifespan and tumorigenesis in the intestine. In: Proceedings of the National Academy of Sciences of the United States of America. 2014;111(42):E4523–31.CrossRef
39.
go back to reference Sekiya T, Muthurajan U, Luger K, Tulin A, Zaret K. Nucleosome-binding affinity as a primary determinant of the nuclear mobility of the pioneer transcription factor FoxA. Genes Dev. 2009;23(7):804–9.PubMedPubMedCentralCrossRef Sekiya T, Muthurajan U, Luger K, Tulin A, Zaret K. Nucleosome-binding affinity as a primary determinant of the nuclear mobility of the pioneer transcription factor FoxA. Genes Dev. 2009;23(7):804–9.PubMedPubMedCentralCrossRef
40.
go back to reference Li C, Gocheva V, Oudin M, Bhutkar A, Wang S, Date S, Ng S, Whittaker C, Bronson R, Snyder E, et al. Foxa2 and Cdx2 cooperate with Nkx2-1 to inhibit lung adenocarcinoma metastasis. Genes Dev. 2015;29(17):1850–62.PubMedPubMedCentralCrossRef Li C, Gocheva V, Oudin M, Bhutkar A, Wang S, Date S, Ng S, Whittaker C, Bronson R, Snyder E, et al. Foxa2 and Cdx2 cooperate with Nkx2-1 to inhibit lung adenocarcinoma metastasis. Genes Dev. 2015;29(17):1850–62.PubMedPubMedCentralCrossRef
41.
go back to reference Wolfrum C, Stoffel M. Coactivation of Foxa2 through Pgc-1beta promotes liver fatty acid oxidation and triglyceride/VLDL secretion. Cell Metab. 2006;3(2):99–110.PubMedCrossRef Wolfrum C, Stoffel M. Coactivation of Foxa2 through Pgc-1beta promotes liver fatty acid oxidation and triglyceride/VLDL secretion. Cell Metab. 2006;3(2):99–110.PubMedCrossRef
43.
go back to reference Lau M, Leung P. The PI3K/Akt/mTOR signaling pathway mediates insulin-like growth factor 1-induced E-cadherin down-regulation and cell proliferation in ovarian cancer cells. Cancer Lett. 2012;326(2):191–8.PubMedCrossRef Lau M, Leung P. The PI3K/Akt/mTOR signaling pathway mediates insulin-like growth factor 1-induced E-cadherin down-regulation and cell proliferation in ovarian cancer cells. Cancer Lett. 2012;326(2):191–8.PubMedCrossRef
44.
go back to reference Liu X, Jiang Q, Liu H, Luo S. Vitexin induces apoptosis through mitochondrial pathway and PI3K/Akt/mTOR signaling in human non-small cell lung cancer A549 cells. Biol Res. 2019;52(1):7.PubMedPubMedCentralCrossRef Liu X, Jiang Q, Liu H, Luo S. Vitexin induces apoptosis through mitochondrial pathway and PI3K/Akt/mTOR signaling in human non-small cell lung cancer A549 cells. Biol Res. 2019;52(1):7.PubMedPubMedCentralCrossRef
45.
go back to reference Woodcock HV, Eley JD, Guillotin D, Platé M, Nanthakumar CB, Martufi M, Peace S, Joberty G, Poeckel D, Good RB, et al. The mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis. Nat Commun. 2019;10(1):6.PubMedPubMedCentralCrossRef Woodcock HV, Eley JD, Guillotin D, Platé M, Nanthakumar CB, Martufi M, Peace S, Joberty G, Poeckel D, Good RB, et al. The mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis. Nat Commun. 2019;10(1):6.PubMedPubMedCentralCrossRef
Metadata
Title
PGC-1β cooperating with FOXA2 inhibits proliferation and migration of breast cancer cells
Authors
Jia Cao
Xi Wang
Danni Wang
Rong Ma
Xiaohan Li
Huimin Feng
Jia Wang
Shihai Liu
Libin Wang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2019
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-019-0810-5

Other articles of this Issue 1/2019

Cancer Cell International 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine