Skip to main content
Top
Published in: Cancer Cell International 1/2019

Open Access 01-12-2019 | Breast Cancer | Primary research

RETRACTED ARTICLE: TMED3 promotes cell proliferation and motility in breast cancer and is negatively modulated by miR-188-3p

Authors: Jing Pei, Jing Zhang, Xiaowei Yang, Zhengsheng Wu, Chenyun Sun, Zhaorui Wang, Benzhong Wang

Published in: Cancer Cell International | Issue 1/2019

Login to get access

Abstract

Background

The role of TMED3 involved in cancers has been seldom described, let alone in breast cancer. To explore the clinicopathological significance of TMED3 expression and the biological roles involved in breast cancer cells, we undertook the study.

Methods

Immunohistochemistry was performed to observe the pattern of TMED3 expression in breast cancer tissues, totaling 224 cases; followed by detailed statistical analysis between TMED3 expression versus clinicopathological information available. To explore the role of TMED3 involved in the malignant behaviors of breast cancer cells, wound-healing and Transwell assays were conducted to evaluate the variation of migration and invasion of MCF-7 and MDA-MB-231 cells whose TMED3 has been stably silenced using lenti-viral based short hairpin RNA (shRNA) vectors. MTT, clonogenic assay and xenograft nude mice model were undertaken to observe the variation of proliferation both in vitro and in vivo.

Results

It was shown that elevated TMED3 markedly correlated with ER, PR, Her-2 status, and lymph nodes metastases in addition to significant association with poor overall prognosis. In vitro, TMED3 was shown to promote proliferation, migration and invasion of breast cancer cells. Moreover, miR-188-3p was identified as a novel negative regulator of TMED3 in breast cancer, which can slow down the proliferation, migration and invasion of MCF-7 cells. Results from in vivo xenograft nude mice models showed that lenti-viral based miR-188-3p re-expression can markedly impair the tumor growth.

Conclusions

Our data define and bolster the oncogenic role of TMED3 in breast cancer.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Wang L, Zhang Y, Shi JF, et al. Disease burden of female breast cancer in China. Zhonghua Liu Xing Bing Xue Za Zhi. 2016;37(7):970–6.PubMed Wang L, Zhang Y, Shi JF, et al. Disease burden of female breast cancer in China. Zhonghua Liu Xing Bing Xue Za Zhi. 2016;37(7):970–6.PubMed
4.
go back to reference Connolly DJ, O’Neill LA, McGettrick AF. The GOLD domain-containing protein TMED1 is involved in interleukin-33 signaling. J Biol Chem. 2013;288(8):5616–23.CrossRefPubMedPubMedCentral Connolly DJ, O’Neill LA, McGettrick AF. The GOLD domain-containing protein TMED1 is involved in interleukin-33 signaling. J Biol Chem. 2013;288(8):5616–23.CrossRefPubMedPubMedCentral
5.
go back to reference Strating JR, Hafmans TG, Martens GJ. Functional diversity among p24 subfamily members. Biol Cell. 2009;101(4):207–19.CrossRefPubMed Strating JR, Hafmans TG, Martens GJ. Functional diversity among p24 subfamily members. Biol Cell. 2009;101(4):207–19.CrossRefPubMed
6.
go back to reference Hou W, Jerome-Majewska LA. TMED2/emp24 is required in both the chorion and the allantois for placental labyrinth layer development. Dev Biol. 2018;444(1):20–32.CrossRefPubMed Hou W, Jerome-Majewska LA. TMED2/emp24 is required in both the chorion and the allantois for placental labyrinth layer development. Dev Biol. 2018;444(1):20–32.CrossRefPubMed
7.
go back to reference Liaunardy-Jopeace A, Bryant CE, Gay NJ. The COP II adaptor protein TMED7 is required to initiate and mediate the delivery of TLR4 to the plasma membrane. Sci Signal. 2014;7(336):ra70.CrossRefPubMedPubMedCentral Liaunardy-Jopeace A, Bryant CE, Gay NJ. The COP II adaptor protein TMED7 is required to initiate and mediate the delivery of TLR4 to the plasma membrane. Sci Signal. 2014;7(336):ra70.CrossRefPubMedPubMedCentral
8.
go back to reference Zakariyah A, Hou W, Slim R, et al. TMED2/p24beta1 is expressed in all gestational stages of human placentas and in choriocarcinoma cell lines. Placenta. 2012;33(3):214–9.CrossRefPubMed Zakariyah A, Hou W, Slim R, et al. TMED2/p24beta1 is expressed in all gestational stages of human placentas and in choriocarcinoma cell lines. Placenta. 2012;33(3):214–9.CrossRefPubMed
9.
go back to reference Chen F, Hasegawa H, Schmitt-Ulms G, et al. TMP21 is a presenilin complex component that modulates gamma-secretase but not epsilon-secretase activity. Nature. 2006;440(7088):1208–12.CrossRefPubMed Chen F, Hasegawa H, Schmitt-Ulms G, et al. TMP21 is a presenilin complex component that modulates gamma-secretase but not epsilon-secretase activity. Nature. 2006;440(7088):1208–12.CrossRefPubMed
10.
go back to reference Vainio P, Mpindi JP, Kohonen P, et al. High-throughput transcriptomic and RNAi analysis identifies AIM1, ERGIC1, TMED3 and TPX2 as potential drug targets in prostate cancer. PLoS ONE. 2012;7(6):e39801.CrossRefPubMedPubMedCentral Vainio P, Mpindi JP, Kohonen P, et al. High-throughput transcriptomic and RNAi analysis identifies AIM1, ERGIC1, TMED3 and TPX2 as potential drug targets in prostate cancer. PLoS ONE. 2012;7(6):e39801.CrossRefPubMedPubMedCentral
11.
go back to reference Duquet A, Melotti A, Mishra S, et al. A novel genome-wide in vivo screen for metastatic suppressors in human colon cancer identifies the positive WNT-TCF pathway modulators TMED3 and SOX12. EMBO Mol Med. 2014;6(7):882–901.CrossRefPubMedPubMedCentral Duquet A, Melotti A, Mishra S, et al. A novel genome-wide in vivo screen for metastatic suppressors in human colon cancer identifies the positive WNT-TCF pathway modulators TMED3 and SOX12. EMBO Mol Med. 2014;6(7):882–901.CrossRefPubMedPubMedCentral
13.
go back to reference Jenne N, Frey K, Brugger B, et al. Oligomeric state and stoichiometry of p24 proteins in the early secretory pathway. J Biol Chem. 2002;277(48):46504–11.CrossRefPubMed Jenne N, Frey K, Brugger B, et al. Oligomeric state and stoichiometry of p24 proteins in the early secretory pathway. J Biol Chem. 2002;277(48):46504–11.CrossRefPubMed
14.
go back to reference Pichler M, Stiegelbauer V, Vychytilova-Faltejskova P, et al. Genome-wide miRNA analysis identifies miR-188-3p as a novel prognostic marker and molecular factor involved in colorectal carcinogenesis. Clin Cancer Res. 2017;23(5):1323–33.CrossRefPubMed Pichler M, Stiegelbauer V, Vychytilova-Faltejskova P, et al. Genome-wide miRNA analysis identifies miR-188-3p as a novel prognostic marker and molecular factor involved in colorectal carcinogenesis. Clin Cancer Res. 2017;23(5):1323–33.CrossRefPubMed
15.
go back to reference Peng Y, Shen X, Jiang H, et al. miR-188-5p suppresses gastric cancer cell proliferation and invasion via targeting ZFP91. Oncol Res. 2018;27(1):65–71.CrossRefPubMedPubMedCentral Peng Y, Shen X, Jiang H, et al. miR-188-5p suppresses gastric cancer cell proliferation and invasion via targeting ZFP91. Oncol Res. 2018;27(1):65–71.CrossRefPubMedPubMedCentral
16.
go back to reference Zhang H, Qi S, Zhang T, et al. miR-188-5p inhibits tumour growth and metastasis in prostate cancer by repressing LAPTM4B expression. Oncotarget. 2015;6(8):6092–104.CrossRefPubMedPubMedCentral Zhang H, Qi S, Zhang T, et al. miR-188-5p inhibits tumour growth and metastasis in prostate cancer by repressing LAPTM4B expression. Oncotarget. 2015;6(8):6092–104.CrossRefPubMedPubMedCentral
17.
go back to reference Fang F, Chang RM, Yu L, et al. MicroRNA-188-5p suppresses tumor cell proliferation and metastasis by directly targeting FGF5 in hepatocellular carcinoma. J Hepatol. 2015;63(4):874–85.CrossRefPubMed Fang F, Chang RM, Yu L, et al. MicroRNA-188-5p suppresses tumor cell proliferation and metastasis by directly targeting FGF5 in hepatocellular carcinoma. J Hepatol. 2015;63(4):874–85.CrossRefPubMed
Metadata
Title
RETRACTED ARTICLE: TMED3 promotes cell proliferation and motility in breast cancer and is negatively modulated by miR-188-3p
Authors
Jing Pei
Jing Zhang
Xiaowei Yang
Zhengsheng Wu
Chenyun Sun
Zhaorui Wang
Benzhong Wang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2019
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-019-0791-4

Other articles of this Issue 1/2019

Cancer Cell International 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine