Skip to main content
Top
Published in: Cancer Cell International 1/2019

Open Access 01-12-2019 | Hepatocellular Carcinoma | Primary research

miR-96 exerts carcinogenic effect by activating AKT/GSK-3β/β-catenin signaling pathway through targeting inhibition of FOXO1 in hepatocellular carcinoma

Authors: Nanmu Yang, Jinxue Zhou, Qingjun Li, Feng Han, Zujiang Yu

Published in: Cancer Cell International | Issue 1/2019

Login to get access

Abstract

Background

The aim of this research was to investigate the mechanism of miR-96 affecting hepatocellular carcinoma (HCC).

Methods

mRNA and protein expression was detected by qRT-PCR and Western blot, respectively. HepG2 cells were transfected and grouped as follows: miR-NC group, miR-mimics group, NC + Vector group, mimics + Vector group, mimics + FOXO1 group. Luciferase reporter assay was performed. MTT and Transwell assay was conducted. In vivo studies by nude mice were performed. Immunohistochemistry and immunofluorescence was executed.

Results

Up-regulated miR-96 and down-regulated FOXO1 was found in tumor tissues and HepG2 cells (P < 0.01). FOXO1 was directly suppressed by miR-96. Compared with NC + Vector group, mimics + Vector group has higher OD495 value (P < 0.05), higher migration and invasion cells (P < 0.01), larger transplanted tumor volume (P < 0.01), lower FOXO1 positive cell numbers (P < 0.01), higher p-AKT and p-GSK-3β expression (P < 0.01), lower p-β-catenin expression (P < 0.01), more β-catenin expression in the nucleus (P < 0.01). Compared with mimics + Vector group, mimics + FOXO1 group has lower OD495 value (P < 0.05), lower migration and invasion cells (P < 0.01), smaller transplanted tumor volume (P < 0.01), higher FOXO1 positive cells (P < 0.01), lower p-AKT and p-GSK-3β expression (P < 0.01), higher p-β-catenin expression (P < 0.01), less β-catenin expression in the nucleus (P < 0.01).

Conclusion

miR-96 exerts carcinogenic effect by activating AKT/GSK-3β/β-catenin signaling pathway through targeting inhibition of FOXO1 in HCC.
Literature
2.
go back to reference Zhuang L, et al. MicroRNA-23b functions as an oncogene and activates AKT/GSK3β/β-catenin signaling by targeting ST7L in hepatocellular carcinoma. Cell Death Dis. 2017;8(5):e2804.PubMedPubMedCentralCrossRef Zhuang L, et al. MicroRNA-23b functions as an oncogene and activates AKT/GSK3β/β-catenin signaling by targeting ST7L in hepatocellular carcinoma. Cell Death Dis. 2017;8(5):e2804.PubMedPubMedCentralCrossRef
3.
go back to reference Best J, et al. Novel implications in the treatment of hepatocellular carcinoma. Ann Gastroenterol. 2017;30(1):23–32.PubMed Best J, et al. Novel implications in the treatment of hepatocellular carcinoma. Ann Gastroenterol. 2017;30(1):23–32.PubMed
4.
go back to reference Song HM, et al. MicroRNA-96 plays an oncogenic role by targeting FOXO1 and regulating AKT/FOXO1/Bim pathway in papillary thyroid carcinoma cells. Int J Clin Exp Pathol. 2015;8(9):9889.PubMedPubMedCentral Song HM, et al. MicroRNA-96 plays an oncogenic role by targeting FOXO1 and regulating AKT/FOXO1/Bim pathway in papillary thyroid carcinoma cells. Int J Clin Exp Pathol. 2015;8(9):9889.PubMedPubMedCentral
5.
go back to reference Lian R, et al. MiR-132 plays an oncogenic role in laryngeal squamous cell carcinoma by targeting FOXO1 and activating the PI3K/AKT pathway. Eur J Pharmacol. 2016;792:1–6.PubMedCrossRef Lian R, et al. MiR-132 plays an oncogenic role in laryngeal squamous cell carcinoma by targeting FOXO1 and activating the PI3K/AKT pathway. Eur J Pharmacol. 2016;792:1–6.PubMedCrossRef
6.
go back to reference Ress AL, et al. MiR-96-5p influences cellular growth and is associated with poor survival in colorectal cancer patients. Mol Carcinog. 2015;54(11):1442–50.PubMedCrossRef Ress AL, et al. MiR-96-5p influences cellular growth and is associated with poor survival in colorectal cancer patients. Mol Carcinog. 2015;54(11):1442–50.PubMedCrossRef
7.
go back to reference Yao Q, et al. microRNA-96 acts as a tumor suppressor gene in human osteosarcoma via target regulation of EZRIN. Life Sci. 2018;203:1.PubMedCrossRef Yao Q, et al. microRNA-96 acts as a tumor suppressor gene in human osteosarcoma via target regulation of EZRIN. Life Sci. 2018;203:1.PubMedCrossRef
8.
go back to reference Bao YH, et al. MiR-96 expression in prostate cancer and its effect on the target gene regulation. Eur Rev Med Pharmacol Sci. 2017;21:4548–56.PubMed Bao YH, et al. MiR-96 expression in prostate cancer and its effect on the target gene regulation. Eur Rev Med Pharmacol Sci. 2017;21:4548–56.PubMed
9.
go back to reference Fei X, et al. miR-96 promotes invasion and metastasis by targeting GPC3 in non-small cell lung cancer cells. Oncol Lett. 2018;15:9081–6.PubMedPubMedCentral Fei X, et al. miR-96 promotes invasion and metastasis by targeting GPC3 in non-small cell lung cancer cells. Oncol Lett. 2018;15:9081–6.PubMedPubMedCentral
10.
go back to reference Wang TH, et al. OncomiR miR-96 and miR-182 promote cell proliferation and invasion through targeting ephrinA5 in hepatocellular carcinoma. Mol Carcinog. 2016;55(4):366–75.PubMedCrossRef Wang TH, et al. OncomiR miR-96 and miR-182 promote cell proliferation and invasion through targeting ephrinA5 in hepatocellular carcinoma. Mol Carcinog. 2016;55(4):366–75.PubMedCrossRef
11.
go back to reference Baik SH, et al. ANT2 shRNA downregulates miR-19a and miR-96 through the PI3K/Akt pathway and suppresses tumor growth in hepatocellular carcinoma cells. Exp Mol Med. 2016;48(3):e222.PubMedPubMedCentralCrossRef Baik SH, et al. ANT2 shRNA downregulates miR-19a and miR-96 through the PI3K/Akt pathway and suppresses tumor growth in hepatocellular carcinoma cells. Exp Mol Med. 2016;48(3):e222.PubMedPubMedCentralCrossRef
12.
go back to reference Chen Y, et al. Serum miR-96 is a promising biomarker for hepatocellular carcinoma in patients with chronic hepatitis B virus infection. Int J Clin Exp Med. 2015;8(10):18462–8.PubMedPubMedCentral Chen Y, et al. Serum miR-96 is a promising biomarker for hepatocellular carcinoma in patients with chronic hepatitis B virus infection. Int J Clin Exp Med. 2015;8(10):18462–8.PubMedPubMedCentral
13.
go back to reference Dong T, et al. FOXO1 inhibits the invasion and metastasis of hepatocellular carcinoma by reversing ZEB2-induced epithelial–mesenchymal transition. Oncotarget. 2016;8(1):1703.PubMedCentral Dong T, et al. FOXO1 inhibits the invasion and metastasis of hepatocellular carcinoma by reversing ZEB2-induced epithelial–mesenchymal transition. Oncotarget. 2016;8(1):1703.PubMedCentral
14.
go back to reference Jiang J, et al. Trifluoperazine activates FOXO1-related signals to inhibit tumor growth in hepatocellular carcinoma. DNA Cell Biol. 2017;36(10):813–21.PubMedCrossRef Jiang J, et al. Trifluoperazine activates FOXO1-related signals to inhibit tumor growth in hepatocellular carcinoma. DNA Cell Biol. 2017;36(10):813–21.PubMedCrossRef
15.
16.
go back to reference Lou K, et al. MicroRNA-142-5p overexpression inhibits cell growth and induces apoptosis by regulating FOXO in hepatocellular carcinoma cells. Oncol Res. 2017;25(1):65.PubMedCrossRef Lou K, et al. MicroRNA-142-5p overexpression inhibits cell growth and induces apoptosis by regulating FOXO in hepatocellular carcinoma cells. Oncol Res. 2017;25(1):65.PubMedCrossRef
17.
go back to reference Kappel BA, et al. Posttranslational modulation of FoxO1 contributes to cardiac remodeling in post-ischemic heart failure. Atherosclerosis. 2016;249:148–56.PubMedCrossRef Kappel BA, et al. Posttranslational modulation of FoxO1 contributes to cardiac remodeling in post-ischemic heart failure. Atherosclerosis. 2016;249:148–56.PubMedCrossRef
18.
go back to reference Yang L, et al. Downregulation of microRNA-196a inhibits human liver cancer cell proliferation and invasion by targeting FOXO1. Oncol Rep. 2017;38(4):2148–54.PubMedPubMedCentralCrossRef Yang L, et al. Downregulation of microRNA-196a inhibits human liver cancer cell proliferation and invasion by targeting FOXO1. Oncol Rep. 2017;38(4):2148–54.PubMedPubMedCentralCrossRef
19.
go back to reference Yang Y, et al. Loss of FOXO1 cooperates with TMPRSS2-ERG overexpression to promote prostate tumorigenesis and cell invasion. Cancer Res. 2017;77(23):canres.0686.2017. Yang Y, et al. Loss of FOXO1 cooperates with TMPRSS2-ERG overexpression to promote prostate tumorigenesis and cell invasion. Cancer Res. 2017;77(23):canres.0686.2017.
20.
go back to reference Budzinska M, et al. miR-96, miR-145 and miR-9 expression increases, and IGF-1R and FOXO1 expression decreases in peripheral blood mononuclear cells of aging humans. BMC Geriatr. 2016;16(1):200.PubMedPubMedCentralCrossRef Budzinska M, et al. miR-96, miR-145 and miR-9 expression increases, and IGF-1R and FOXO1 expression decreases in peripheral blood mononuclear cells of aging humans. BMC Geriatr. 2016;16(1):200.PubMedPubMedCentralCrossRef
21.
go back to reference Myatt SS, et al. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Can Res. 2010;70(1):367.CrossRef Myatt SS, et al. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Can Res. 2010;70(1):367.CrossRef
22.
go back to reference Carbajo-Pescador S, et al. FoxO proteins: regulation and molecular targets in liver cancer. Curr Med Chem. 2014;21(10):1231–46.PubMedCrossRef Carbajo-Pescador S, et al. FoxO proteins: regulation and molecular targets in liver cancer. Curr Med Chem. 2014;21(10):1231–46.PubMedCrossRef
23.
go back to reference Zhao M, et al. miR-3188 regulates nasopharyngeal carcinoma proliferation and chemosensitivity through a FOXO1-modulated positive feedback loop with mTOR-p-PI3K/AKT-c-JUN. Nat Commun. 2016;7:11309.PubMedPubMedCentralCrossRef Zhao M, et al. miR-3188 regulates nasopharyngeal carcinoma proliferation and chemosensitivity through a FOXO1-modulated positive feedback loop with mTOR-p-PI3K/AKT-c-JUN. Nat Commun. 2016;7:11309.PubMedPubMedCentralCrossRef
24.
go back to reference Zhao Z, Qin L, Li S. miR-411 contributes the cell proliferation of lung cancer by targeting FOXO1. Tumor Biol. 2016;37(4):5551–60.CrossRef Zhao Z, Qin L, Li S. miR-411 contributes the cell proliferation of lung cancer by targeting FOXO1. Tumor Biol. 2016;37(4):5551–60.CrossRef
26.
27.
go back to reference Costa B, et al. Synthetic sulfoglycolipids targeting the serine–threonine protein kinase Akt. Bioorg Med Chem. 2016;24(16):3396–405.PubMedCrossRef Costa B, et al. Synthetic sulfoglycolipids targeting the serine–threonine protein kinase Akt. Bioorg Med Chem. 2016;24(16):3396–405.PubMedCrossRef
28.
go back to reference Jg K, et al. Wnt3A induces GSK-3β phosphorylation and β-catenin accumulation through RhoA/ROCK. J Cell Physiol. 2017;232(5):1104.CrossRef Jg K, et al. Wnt3A induces GSK-3β phosphorylation and β-catenin accumulation through RhoA/ROCK. J Cell Physiol. 2017;232(5):1104.CrossRef
29.
go back to reference Rong H, Liang Y, Niu Y. Rosmarinic acid attenuates β-amyloid-induced oxidative stress via Akt/GSK-3β/Fyn-mediated Nrf2 activation in PC12 cells. Free Radic Biol Med. 2018;120:114–23.PubMedCrossRef Rong H, Liang Y, Niu Y. Rosmarinic acid attenuates β-amyloid-induced oxidative stress via Akt/GSK-3β/Fyn-mediated Nrf2 activation in PC12 cells. Free Radic Biol Med. 2018;120:114–23.PubMedCrossRef
30.
go back to reference Sagredo AI, et al. TRPM4 regulates Akt/GSK3-β activity and enhances β-catenin signaling and cell proliferation in prostate cancer cells. Mol Oncol. 2017;12(2):151–65.PubMedPubMedCentralCrossRef Sagredo AI, et al. TRPM4 regulates Akt/GSK3-β activity and enhances β-catenin signaling and cell proliferation in prostate cancer cells. Mol Oncol. 2017;12(2):151–65.PubMedPubMedCentralCrossRef
31.
go back to reference Xu Q, et al. Growth differentiation factor 15 induces growth and metastasis of human liver cancer stem-like cells via AKT/GSK-3β/β-catenin signaling. Oncotarget. 2017;8(10):16972–87.PubMedPubMedCentralCrossRef Xu Q, et al. Growth differentiation factor 15 induces growth and metastasis of human liver cancer stem-like cells via AKT/GSK-3β/β-catenin signaling. Oncotarget. 2017;8(10):16972–87.PubMedPubMedCentralCrossRef
32.
go back to reference Ma ZG, et al. Human urokinase-type plasminogen activator gene-modified bone marrow-derived mesenchymal stem cells attenuate liver fibrosis in rats by down-regulating the Wnt signaling pathway. World J Gastroenterol. 2016;22(6):2092–103.PubMedPubMedCentralCrossRef Ma ZG, et al. Human urokinase-type plasminogen activator gene-modified bone marrow-derived mesenchymal stem cells attenuate liver fibrosis in rats by down-regulating the Wnt signaling pathway. World J Gastroenterol. 2016;22(6):2092–103.PubMedPubMedCentralCrossRef
33.
go back to reference Huang C, et al. Wnt2 promotes non-small cell lung cancer progression by activating WNT/β-catenin pathway. Am J Cancer Res. 2014;5(3):1032–46. Huang C, et al. Wnt2 promotes non-small cell lung cancer progression by activating WNT/β-catenin pathway. Am J Cancer Res. 2014;5(3):1032–46.
34.
go back to reference Eshelman MA, Yochum GS. The Wnt/β-catenin pathway is activated by miR-1246 in liver cancer stem cells. Transl Cancer Res. 2016;5(S7):S1457–60.CrossRef Eshelman MA, Yochum GS. The Wnt/β-catenin pathway is activated by miR-1246 in liver cancer stem cells. Transl Cancer Res. 2016;5(S7):S1457–60.CrossRef
35.
go back to reference Annika F, et al. The antiapoptotic function of miR-96 in prostate cancer by inhibition of FOXO1. PLoS ONE. 2013;8(11):e80807.CrossRef Annika F, et al. The antiapoptotic function of miR-96 in prostate cancer by inhibition of FOXO1. PLoS ONE. 2013;8(11):e80807.CrossRef
Metadata
Title
miR-96 exerts carcinogenic effect by activating AKT/GSK-3β/β-catenin signaling pathway through targeting inhibition of FOXO1 in hepatocellular carcinoma
Authors
Nanmu Yang
Jinxue Zhou
Qingjun Li
Feng Han
Zujiang Yu
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2019
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-019-0756-7

Other articles of this Issue 1/2019

Cancer Cell International 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine