Skip to main content
Top
Published in: Cancer Cell International 1/2018

Open Access 01-12-2018 | Hypothesis

Cancer cells arise from bacteria

Authors: Qing-lin Dong, Xiang-ying Xing

Published in: Cancer Cell International | Issue 1/2018

Login to get access

Abstract

Background

The origin of cancer cells is the most fundamental yet unresolved problem in cancer research. Cancer cells are thought to be transformed from the normal cells. However, recent studies reveal that the primary cancer cells (PCCs) for cancer initiation and secondary cancer cells (SCCs) for cancer progression are formed in but not transformed from the senescent normal and cancer cells, respectively. Nevertheless, the cellular mechanism of PCCs/SCCs formation is unclear. Here, based on the evidences (1) the nascent PCCs/SCCs are small and organelle-less resembling bacteria; (2) our finding that the cyanobacterium TDX16 acquires its algal host DNA and turns into a new alga TDX16-DE by de novo organelle biogenesis, and (3) PCCs/SCCs formations share striking similarities with TDX16 development and transition, we propose the bacterial origin of cancer cells (BOCC).

Presentation of the hypothesis

The intracellular bacteria take up the DNAs of the senescent/necrotic normal cells/PCCs and then develop into PCCs/SCCs by hybridizing the acquired DNAs with their own ones and expressing the hybrid genomes.

Testing the hypothesis

BOCC can be confirmed by testing BOCC-based predictions, such as normal cells with no intracellular bacteria can not “transform” into cancer cells in any conditions.

Implications of the hypothesis

According to BOCC theory: (1) cancer cells are new single-celled eukaryotes, which is why the hallmarks of cancer are mostly the characteristics of protists; (2) genetic changes and instabilities are not the causes, but the consequences of cancer cell formation; and (3) the common role of carcinogens, infectious agents and relating factors is inducing or related to cellular senescence rather than mutations. Therefore, BOCC theory provides new rationale and direction for cancer research, prevention and therapy.
Literature
1.
go back to reference Weinberg RA. Coming full circle-from endless complexity to simplicity and back again. Cell. 2014;157:267–71.PubMedCrossRef Weinberg RA. Coming full circle-from endless complexity to simplicity and back again. Cell. 2014;157:267–71.PubMedCrossRef
2.
go back to reference Dong QL, Xing XY, Wu HX, Han Y, Wei XL, Zhang S. Transition of a prokaryotic endosymbiotic cyanobacterium into a eukaryotic green alga. Chem Eng. (China) 2016;44:1–6. Dong QL, Xing XY, Wu HX, Han Y, Wei XL, Zhang S. Transition of a prokaryotic endosymbiotic cyanobacterium into a eukaryotic green alga. Chem Eng. (China) 2016;44:1–6.
4.
go back to reference Earle WR, Schilling EL, Stark TH, Straus NR, Brown MF, Shelton E. Production of malignancy in vitro. IV. The mouse fibroblast cultures and changes seen in the living cells. J Natl Cancer Inst. 1943;4:165–212. Earle WR, Schilling EL, Stark TH, Straus NR, Brown MF, Shelton E. Production of malignancy in vitro. IV. The mouse fibroblast cultures and changes seen in the living cells. J Natl Cancer Inst. 1943;4:165–212.
5.
go back to reference Earle WR, Nettleship RA, Schilling EL, Stark TH, Straus NR, Brown MF, Shelton E. Production of malignancy in vitro. V. Results of injections of cultures into mice. J Natl Cancer Inst. 1943;4:213–27. Earle WR, Nettleship RA, Schilling EL, Stark TH, Straus NR, Brown MF, Shelton E. Production of malignancy in vitro. V. Results of injections of cultures into mice. J Natl Cancer Inst. 1943;4:213–27.
7.
go back to reference Leighton J, Kline I, Orr HC. Transformation of normal human fibroblasts into histologically malignant tissue in vitro. Science. 1956;123:502–3.PubMedCrossRef Leighton J, Kline I, Orr HC. Transformation of normal human fibroblasts into histologically malignant tissue in vitro. Science. 1956;123:502–3.PubMedCrossRef
8.
go back to reference Barrett JC. A preneoplastic stage in the spontaneous neoplastic transformation of Syrian Hamster embryo cells in culture. Cancer Res. 1980;40:91–4.PubMed Barrett JC. A preneoplastic stage in the spontaneous neoplastic transformation of Syrian Hamster embryo cells in culture. Cancer Res. 1980;40:91–4.PubMed
9.
go back to reference Cram LS, Bartholdi MF, Ray FA, Travis GL, Kraemer PM. Spontaneous neoplastic evolution of Chinese hamster cells in culture: multistep progression of karyotype. Cancer Res. 1983;43:4828–37.PubMed Cram LS, Bartholdi MF, Ray FA, Travis GL, Kraemer PM. Spontaneous neoplastic evolution of Chinese hamster cells in culture: multistep progression of karyotype. Cancer Res. 1983;43:4828–37.PubMed
10.
go back to reference Borek C. X-ray-induced in vitro neoplastic transformation of human diploid cells. Nature. 1980;288:776–8.CrossRef Borek C. X-ray-induced in vitro neoplastic transformation of human diploid cells. Nature. 1980;288:776–8.CrossRef
11.
go back to reference Milo G, DiPaolo JA. Neoplastic transformation of human diploid cells in vitro after chemical carcinogen treatment. Nature. 1978;275:130–2.PubMedCrossRef Milo G, DiPaolo JA. Neoplastic transformation of human diploid cells in vitro after chemical carcinogen treatment. Nature. 1978;275:130–2.PubMedCrossRef
12.
go back to reference Stampfer MR, Bartley JC. Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo[a] pyrcne. Proc Natl Acad Sci USA. 1984;82:2394–8.CrossRef Stampfer MR, Bartley JC. Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo[a] pyrcne. Proc Natl Acad Sci USA. 1984;82:2394–8.CrossRef
13.
go back to reference Sachs L, Medina D. In vitro transformation of normal cells by polyoma virus. Nature. 1961;189:457–8.PubMedCrossRef Sachs L, Medina D. In vitro transformation of normal cells by polyoma virus. Nature. 1961;189:457–8.PubMedCrossRef
14.
go back to reference Shein HM, Enders JF. Transformation induced by simian virus 40 in human renal cell cultures, I. Morphology and growth characteristics. Proc Natl Acad Sci USA. 1962;48:1164–72.PubMedCrossRefPubMedCentral Shein HM, Enders JF. Transformation induced by simian virus 40 in human renal cell cultures, I. Morphology and growth characteristics. Proc Natl Acad Sci USA. 1962;48:1164–72.PubMedCrossRefPubMedCentral
15.
go back to reference Todaro GJ, Green H, Swift MR. Susceptibility of human diploid fibroblast strains to transformation by SV40 virus. Science. 1966;253:1252–4.CrossRef Todaro GJ, Green H, Swift MR. Susceptibility of human diploid fibroblast strains to transformation by SV40 virus. Science. 1966;253:1252–4.CrossRef
16.
go back to reference Defendi V. Transformation in vitro of mammalian cells by polyoma and simian 40 viruses. Progr Exp Tumor Res. 1966;8:125–88.PubMedCrossRef Defendi V. Transformation in vitro of mammalian cells by polyoma and simian 40 viruses. Progr Exp Tumor Res. 1966;8:125–88.PubMedCrossRef
17.
go back to reference Rhim JS, Jay G, Arnstein P, Price FM, Sanford KK, Aaronson SA. Neoplastic transformation of human epidermal keratinocytes by ADI2-SV40 and Kirsten sarcoma virus. Science. 1985;227:1250–2.PubMedCrossRef Rhim JS, Jay G, Arnstein P, Price FM, Sanford KK, Aaronson SA. Neoplastic transformation of human epidermal keratinocytes by ADI2-SV40 and Kirsten sarcoma virus. Science. 1985;227:1250–2.PubMedCrossRef
18.
go back to reference Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37:614–36.PubMedCrossRef Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37:614–36.PubMedCrossRef
19.
go back to reference Girardi AJ, Jensen FC, Koprowski H. SV40-induced transformation of human diploid cells: crisis and recovery. J Cell Comp Physiol. 1965;65:69–84.PubMedCrossRef Girardi AJ, Jensen FC, Koprowski H. SV40-induced transformation of human diploid cells: crisis and recovery. J Cell Comp Physiol. 1965;65:69–84.PubMedCrossRef
20.
go back to reference Todaro GJ, Green H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol. 1963;17:299–313.PubMedPubMedCentralCrossRef Todaro GJ, Green H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol. 1963;17:299–313.PubMedPubMedCentralCrossRef
21.
go back to reference Moorhead PS, Saksela E. The sequence of chromosome aberrations during SV40 transformation of a human diploid cell strain. Hereditas. 1965;52:271–84.PubMedCrossRef Moorhead PS, Saksela E. The sequence of chromosome aberrations during SV40 transformation of a human diploid cell strain. Hereditas. 1965;52:271–84.PubMedCrossRef
22.
go back to reference Terzi M, Hawkins TSC. Chromosomal variation and the establishment of somatic cell lines in vitro. Nature. 1975;253:361–2.PubMedCrossRef Terzi M, Hawkins TSC. Chromosomal variation and the establishment of somatic cell lines in vitro. Nature. 1975;253:361–2.PubMedCrossRef
23.
go back to reference Kaighn ME, Narayan KS, Ohnuki Y, Jones LW, Lechner JF. Differential properties among clones of simian virus 40-transformed human epithelial cells. Carcinogenesis. 1980;1:635–45.PubMedCrossRef Kaighn ME, Narayan KS, Ohnuki Y, Jones LW, Lechner JF. Differential properties among clones of simian virus 40-transformed human epithelial cells. Carcinogenesis. 1980;1:635–45.PubMedCrossRef
24.
go back to reference Huschtscha LI, Holliday R. Limited and unlimited growth of SV40-transformed cells from human diploid MRC-5 fibroblasts. J Cell Sci. 1983;63:77–99.PubMed Huschtscha LI, Holliday R. Limited and unlimited growth of SV40-transformed cells from human diploid MRC-5 fibroblasts. J Cell Sci. 1983;63:77–99.PubMed
25.
go back to reference Zitcer EM, Dunnebacke TH. Transformation of cells from the normal human amnion into established strains. Cancer Res. 1957;17:1047–53.PubMed Zitcer EM, Dunnebacke TH. Transformation of cells from the normal human amnion into established strains. Cancer Res. 1957;17:1047–53.PubMed
26.
go back to reference Pulvertaft RJV, Davies JR, Weiss L, Wilkinson JH. Studies on tissue cultures of human pathological thyroids. J Path Bact. 1959;77:19–32.PubMedCrossRef Pulvertaft RJV, Davies JR, Weiss L, Wilkinson JH. Studies on tissue cultures of human pathological thyroids. J Path Bact. 1959;77:19–32.PubMedCrossRef
27.
go back to reference Pontén J, Jensen F, Koprowski H. Morphological and virological investigation of human tissue cultures transformed with SV40. J Cell Comp Physiol. 1963;61:145–63.PubMedCrossRef Pontén J, Jensen F, Koprowski H. Morphological and virological investigation of human tissue cultures transformed with SV40. J Cell Comp Physiol. 1963;61:145–63.PubMedCrossRef
28.
go back to reference Walen KH. The origin of transformed cells: studies of spontaneous and induced in cell cultures from marsupials, a snail and human amniocytes. Cancer Genet Cytogenet. 2002;133:45–54.PubMedCrossRef Walen KH. The origin of transformed cells: studies of spontaneous and induced in cell cultures from marsupials, a snail and human amniocytes. Cancer Genet Cytogenet. 2002;133:45–54.PubMedCrossRef
29.
go back to reference Walen KH. Spontaneous cell transformation: karyoplasts derived from multinucleated cells produce new cell growth in senescent human epithelial cell cultures. Vitro Cell Dev Biol Anim. 2004;40:150–8.CrossRef Walen KH. Spontaneous cell transformation: karyoplasts derived from multinucleated cells produce new cell growth in senescent human epithelial cell cultures. Vitro Cell Dev Biol Anim. 2004;40:150–8.CrossRef
30.
go back to reference Walen KH. Budded karyoplasts from multinucleated fibroblast ceils contain centrosomes and change their morphology to mitotic cells. Cell Biol Int. 2005;29:1057–65.PubMedCrossRef Walen KH. Budded karyoplasts from multinucleated fibroblast ceils contain centrosomes and change their morphology to mitotic cells. Cell Biol Int. 2005;29:1057–65.PubMedCrossRef
31.
go back to reference Walen KH. Normal human cell conversion to 3-D cancer-like growth: genome damage, endopolyploidy, senescence escape and cell polarity change/loss. J. Cancer Ther. 2011;2:181–9.CrossRef Walen KH. Normal human cell conversion to 3-D cancer-like growth: genome damage, endopolyploidy, senescence escape and cell polarity change/loss. J. Cancer Ther. 2011;2:181–9.CrossRef
32.
go back to reference Sundaram M, Guerrnsey DL, Rajaraman MM, Rajaraman RR. Neosis: a novel type of cell division in cancer. Cancer Biol Therap. 2004;3:207–18.CrossRef Sundaram M, Guerrnsey DL, Rajaraman MM, Rajaraman RR. Neosis: a novel type of cell division in cancer. Cancer Biol Therap. 2004;3:207–18.CrossRef
34.
go back to reference Zhang S, Mercado-Uribe I, Sood A, Bast RC, Liu J. Coevolution of neoplastic epithelial cells and multilineage stroma via polyploid giant cells during immortalization and transformation of mullerian epithelial cells. Genes Cancer. 2016;7:60–72.PubMedPubMedCentral Zhang S, Mercado-Uribe I, Sood A, Bast RC, Liu J. Coevolution of neoplastic epithelial cells and multilineage stroma via polyploid giant cells during immortalization and transformation of mullerian epithelial cells. Genes Cancer. 2016;7:60–72.PubMedPubMedCentral
36.
go back to reference Erenpreisa J, Cragg M, Fringes B, Sharakhov I, Illidge T. Release of mitotic descendents by giant cells from irradiated Burkitt’s lymphoma cell line. Cell Biol Int. 2000;24:635–48.PubMedCrossRef Erenpreisa J, Cragg M, Fringes B, Sharakhov I, Illidge T. Release of mitotic descendents by giant cells from irradiated Burkitt’s lymphoma cell line. Cell Biol Int. 2000;24:635–48.PubMedCrossRef
37.
go back to reference Erenpreisa J, Salmina K, Huna A, Kosmacek EA, Cragg MS, Ianzini F, Anisimov AP. Polyploid tumour cells elicit paradiploid progeny through depolyploidizing divisions and regulated autophagic degradation. Cell Biol Int. 2011;35:687–95.PubMedCrossRef Erenpreisa J, Salmina K, Huna A, Kosmacek EA, Cragg MS, Ianzini F, Anisimov AP. Polyploid tumour cells elicit paradiploid progeny through depolyploidizing divisions and regulated autophagic degradation. Cell Biol Int. 2011;35:687–95.PubMedCrossRef
38.
go back to reference Puig PE, Guilly MN, Bouchot A, Droin N, Cathelin D, Bouyer F, et al. Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol Int. 2008;32:1031–43.PubMedCrossRef Puig PE, Guilly MN, Bouchot A, Droin N, Cathelin D, Bouyer F, et al. Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol Int. 2008;32:1031–43.PubMedCrossRef
39.
go back to reference Ianzini F, Kosmacek EA, Nelson ES, Napoli E, Erenpreisa J, Kalejs M, Mackey MA. Activation of meiosis-specific genes is associated with depolyploidization of human tumor cells following radiation-induced mitotic catastrophe. Cancer Res. 2009;69:2296–304.PubMedPubMedCentralCrossRef Ianzini F, Kosmacek EA, Nelson ES, Napoli E, Erenpreisa J, Kalejs M, Mackey MA. Activation of meiosis-specific genes is associated with depolyploidization of human tumor cells following radiation-induced mitotic catastrophe. Cancer Res. 2009;69:2296–304.PubMedPubMedCentralCrossRef
40.
go back to reference Weihua Z, Lin Q, Ramoth AJ, Fan D, Fidler IJ. Formation of solid tumors by a single multinucleated cancer cell. Cancer. 2011;117:4092–9.PubMedCrossRef Weihua Z, Lin Q, Ramoth AJ, Fan D, Fidler IJ. Formation of solid tumors by a single multinucleated cancer cell. Cancer. 2011;117:4092–9.PubMedCrossRef
41.
42.
go back to reference Zhang S, Mercado-Uribe I, Xing Z, Sun B, Kuang J, Liu J. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene. 2014;33:116–28.PubMedCrossRef Zhang S, Mercado-Uribe I, Xing Z, Sun B, Kuang J, Liu J. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene. 2014;33:116–28.PubMedCrossRef
43.
go back to reference Zhang S, Mercado-Uribe I, Liu J. Tumor stroma and differentiated cancer cells can be originated directly from polyploid giant cancer cells induced by paclitaxel. Int J Cancer. 2014;134:508–18.PubMedCrossRef Zhang S, Mercado-Uribe I, Liu J. Tumor stroma and differentiated cancer cells can be originated directly from polyploid giant cancer cells induced by paclitaxel. Int J Cancer. 2014;134:508–18.PubMedCrossRef
44.
go back to reference Zhang D, Yang XY, Yang ZD, et al. Daughter cells and erythroid cells budding from pgccs and their clinicopathological significances in colorectal cancer. J Cancer. 2017;8:469–78.PubMedPubMedCentralCrossRef Zhang D, Yang XY, Yang ZD, et al. Daughter cells and erythroid cells budding from pgccs and their clinicopathological significances in colorectal cancer. J Cancer. 2017;8:469–78.PubMedPubMedCentralCrossRef
46.
go back to reference Niu N, Mercado-Uribe I, Liu J. Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells. Oncogene. 2017;36:4887–900.PubMedPubMedCentralCrossRef Niu N, Mercado-Uribe I, Liu J. Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells. Oncogene. 2017;36:4887–900.PubMedPubMedCentralCrossRef
47.
go back to reference Bernhard W, Granboulan N. The fine structure of the cancer cell nucleus. Exp Cell Res. 1963;9(Suppl. 1):19–53.CrossRef Bernhard W, Granboulan N. The fine structure of the cancer cell nucleus. Exp Cell Res. 1963;9(Suppl. 1):19–53.CrossRef
49.
go back to reference Reissig M, Howes DW, Melnick JL. Sequence of morphological changes in epithelial cell cultures infected with polio virus. J Exp Med. 1956;104:289–304.PubMedPubMedCentralCrossRef Reissig M, Howes DW, Melnick JL. Sequence of morphological changes in epithelial cell cultures infected with polio virus. J Exp Med. 1956;104:289–304.PubMedPubMedCentralCrossRef
50.
go back to reference Moyer AW, Wallace R, Cox HR. Limited growth period of human lung cell lines transformed by simian virus 40. J Nat Cancer Inst. 1964;33:227–36.PubMed Moyer AW, Wallace R, Cox HR. Limited growth period of human lung cell lines transformed by simian virus 40. J Nat Cancer Inst. 1964;33:227–36.PubMed
51.
53.
go back to reference Wuerthele-Caspé V, Alexander-Jackson E, Anderson JA, Hillier J. Cultural properties and pathogenicity of certain microorganisms obtained from various proliferative and neoplastic diseases. Am J Med Sci. 1950;220:638–46.PubMedCrossRef Wuerthele-Caspé V, Alexander-Jackson E, Anderson JA, Hillier J. Cultural properties and pathogenicity of certain microorganisms obtained from various proliferative and neoplastic diseases. Am J Med Sci. 1950;220:638–46.PubMedCrossRef
54.
go back to reference Edward GA, Fogh J. Fine structure of pleuropneumonia-like organisms in pure culture and in infected tissue culture cells. J Bacteriol. 1960;79:267–76. Edward GA, Fogh J. Fine structure of pleuropneumonia-like organisms in pure culture and in infected tissue culture cells. J Bacteriol. 1960;79:267–76.
55.
go back to reference Hummeler K, Armstrong D, Tomassini N. Cytopathogenic mycoplasmas associated with two human tumors. II. Morphological aspects. J Bacteriol. 1965;90:511–6.PubMedPubMedCentral Hummeler K, Armstrong D, Tomassini N. Cytopathogenic mycoplasmas associated with two human tumors. II. Morphological aspects. J Bacteriol. 1965;90:511–6.PubMedPubMedCentral
56.
go back to reference Hummeler K, Armstrong D. Observations on mycoplasma strains in tissue culture. Ann N Y Acad Sci. 1967;143:622–5.PubMedCrossRef Hummeler K, Armstrong D. Observations on mycoplasma strains in tissue culture. Ann N Y Acad Sci. 1967;143:622–5.PubMedCrossRef
57.
go back to reference Taylor-Robinson D, Davies HA, Sarathchandra P, Furr PM. Intracellular location of mycoplasmas in cultured cells demonstrated by immunocytochemistry and electron microscopy. Int J Exp Pathol. 1991;72:705–14.PubMedPubMedCentral Taylor-Robinson D, Davies HA, Sarathchandra P, Furr PM. Intracellular location of mycoplasmas in cultured cells demonstrated by immunocytochemistry and electron microscopy. Int J Exp Pathol. 1991;72:705–14.PubMedPubMedCentral
58.
go back to reference Lo SC, Hayes MM, Tully JG, Wang RY, Kotani H, Pierce PF, Rose DL, Shih JW. Mycoplasma penetrans sp. nov., from the urogenital tract of patients with AIDS. Int J Syst Bacteriol. 1992;42:357–64.PubMedCrossRef Lo SC, Hayes MM, Tully JG, Wang RY, Kotani H, Pierce PF, Rose DL, Shih JW. Mycoplasma penetrans sp. nov., from the urogenital tract of patients with AIDS. Int J Syst Bacteriol. 1992;42:357–64.PubMedCrossRef
59.
go back to reference Jensen JS, Biom J, Lind K. Intracellular location of Mycoplasma genitalium in cultured Vero cells as demonstrated by electron microscopy. Int J Exp Pathol. 1994;75:91–8.PubMedPubMedCentral Jensen JS, Biom J, Lind K. Intracellular location of Mycoplasma genitalium in cultured Vero cells as demonstrated by electron microscopy. Int J Exp Pathol. 1994;75:91–8.PubMedPubMedCentral
60.
go back to reference Ueno PM, Timenetsky J, Centonze VE, Wewer JJ, Cagle M, Stein MA, Krishnan M, Baseman JB. Interaction of Mycoplasma genitalium with host cells: evidence for nuclear localization. Microbiology. 2008;154:3033–41.PubMedCrossRef Ueno PM, Timenetsky J, Centonze VE, Wewer JJ, Cagle M, Stein MA, Krishnan M, Baseman JB. Interaction of Mycoplasma genitalium with host cells: evidence for nuclear localization. Microbiology. 2008;154:3033–41.PubMedCrossRef
62.
go back to reference Dong QL, Zhao XM. In situ carbon dioxide fixation in the process of natural astaxanthin production by a mixed culture of Haematococcus pluvialis and Phaffia rhodozyma. Catal Today. 2004;98:537–44.CrossRef Dong QL, Zhao XM. In situ carbon dioxide fixation in the process of natural astaxanthin production by a mixed culture of Haematococcus pluvialis and Phaffia rhodozyma. Catal Today. 2004;98:537–44.CrossRef
63.
go back to reference Dong QL, Zhao XM, Xing XY, Hu JZ, Gong JX. Concomitant NH4 + secretion during astaxanthin synthesis in Haematococcus pluvialis under high irradiance and nitrogen deficient conditions. Chin J Chem Eng. 2007;15:162–6.CrossRef Dong QL, Zhao XM, Xing XY, Hu JZ, Gong JX. Concomitant NH4 + secretion during astaxanthin synthesis in Haematococcus pluvialis under high irradiance and nitrogen deficient conditions. Chin J Chem Eng. 2007;15:162–6.CrossRef
64.
go back to reference Dong QL, Li ZW, Xing XY, Chen B. Discovery of an endophytic cyanobacterium in Haematococcus pluvialis. J Hebei Univ Technol. 2011;40:1–5. Dong QL, Li ZW, Xing XY, Chen B. Discovery of an endophytic cyanobacterium in Haematococcus pluvialis. J Hebei Univ Technol. 2011;40:1–5.
65.
go back to reference Woodworth CD, Bowden PE, Doninger J, Pirisi L, Barnes W, Lancaster WD, DiPaolo JA. Characterization of normal human exocervical epithelial cells immortalized in vitro by papillomavirus types 16 and 18 DNA. Cancer Res. 1988;48:4620–8.PubMed Woodworth CD, Bowden PE, Doninger J, Pirisi L, Barnes W, Lancaster WD, DiPaolo JA. Characterization of normal human exocervical epithelial cells immortalized in vitro by papillomavirus types 16 and 18 DNA. Cancer Res. 1988;48:4620–8.PubMed
66.
go back to reference Romanov SR, Kozakiewics BK, Hoist CR, Stampfei MR, Haupt LM, Tlsty TD. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature. 2001;409:633–7.PubMedCrossRef Romanov SR, Kozakiewics BK, Hoist CR, Stampfei MR, Haupt LM, Tlsty TD. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature. 2001;409:633–7.PubMedCrossRef
67.
go back to reference Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, Pleasance ED, Lau KW, Beare D, Stebbings LA, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144:27–40.PubMedPubMedCentralCrossRef Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, Pleasance ED, Lau KW, Beare D, Stebbings LA, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144:27–40.PubMedPubMedCentralCrossRef
68.
go back to reference Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.CrossRefPubMed Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.CrossRefPubMed
69.
70.
go back to reference Kuper H, Adami HO, Trichopoulos D. Infections as a major preventable cause of human cancer. J Intern Med. 2000;248:171–83.PubMedCrossRef Kuper H, Adami HO, Trichopoulos D. Infections as a major preventable cause of human cancer. J Intern Med. 2000;248:171–83.PubMedCrossRef
71.
go back to reference Dutta U, Garg PK, Kumar R, Tandon RK. Typhoid carriers among patients with gallstones are at increased risk for carcinoma of the gallbladder. Am J Gastroenterol. 2000;95:784–7.PubMedCrossRef Dutta U, Garg PK, Kumar R, Tandon RK. Typhoid carriers among patients with gallstones are at increased risk for carcinoma of the gallbladder. Am J Gastroenterol. 2000;95:784–7.PubMedCrossRef
72.
go back to reference Laurila AL, Anttila T, Laara E, Bloigu A, Virtamo J, Albanes D, Leinonen M, Saikku P. Serological evidence of an association between Chlamydia pneumoniae infection and lung cancer. Int J Cancer. 1997;74:31–4.PubMedCrossRef Laurila AL, Anttila T, Laara E, Bloigu A, Virtamo J, Albanes D, Leinonen M, Saikku P. Serological evidence of an association between Chlamydia pneumoniae infection and lung cancer. Int J Cancer. 1997;74:31–4.PubMedCrossRef
73.
go back to reference Barykova YA, Logunov DU, Shmarov MM, Vinarov AZ, Fiev DN, Vinarova NA, Rakovskaya IV, Baker PS, Shyshynova I, Stephenson AJ, Klein EA, Naroditsky BS, Gintsburg AL, Gudkov AV. Association of Mycoplasma hominis infection with prostate cancer. Oncotarget. 2011;2:289–97.PubMedPubMedCentralCrossRef Barykova YA, Logunov DU, Shmarov MM, Vinarov AZ, Fiev DN, Vinarova NA, Rakovskaya IV, Baker PS, Shyshynova I, Stephenson AJ, Klein EA, Naroditsky BS, Gintsburg AL, Gudkov AV. Association of Mycoplasma hominis infection with prostate cancer. Oncotarget. 2011;2:289–97.PubMedPubMedCentralCrossRef
75.
go back to reference Biarc J, Nguyen IS, Pini A, Gosse F, Richert S, Thierse D, et al. Carcinogenic properties of proteins with pro-inflammatory activity from Streptococcus infantarius (formerly S. bovis). Carcinogenesis. 2004;25:1477–84.PubMedCrossRef Biarc J, Nguyen IS, Pini A, Gosse F, Richert S, Thierse D, et al. Carcinogenic properties of proteins with pro-inflammatory activity from Streptococcus infantarius (formerly S. bovis). Carcinogenesis. 2004;25:1477–84.PubMedCrossRef
76.
go back to reference Martin HM, Campbell BJ, Hart CA, Mpofu C, Nayar M, Singh R, Englyst H, Williams HF, Rhodes JM. Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterol. 2004;127:80–93.CrossRef Martin HM, Campbell BJ, Hart CA, Mpofu C, Nayar M, Singh R, Englyst H, Williams HF, Rhodes JM. Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterol. 2004;127:80–93.CrossRef
77.
go back to reference Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14:195–206.PubMedPubMedCentralCrossRef Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14:195–206.PubMedPubMedCentralCrossRef
78.
go back to reference Caini S, et al. Sexually transmitted infections and prostate cancer risk: a systematic review and meta-analysis. Cancer Epidemiol. 2014;38:329–38.PubMedCrossRef Caini S, et al. Sexually transmitted infections and prostate cancer risk: a systematic review and meta-analysis. Cancer Epidemiol. 2014;38:329–38.PubMedCrossRef
79.
go back to reference Macpherson I, Montagnier L. Agar suspension culture for the selective assay of cells transformed by polyoma virus. Virology. 1964;23:291–4.PubMedCrossRef Macpherson I, Montagnier L. Agar suspension culture for the selective assay of cells transformed by polyoma virus. Virology. 1964;23:291–4.PubMedCrossRef
80.
go back to reference Shin S, Freedman VH, Risser R, Pollack R. Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc Natl Acad Sci USA. 1975;72:4435–9.PubMedCrossRefPubMedCentral Shin S, Freedman VH, Risser R, Pollack R. Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc Natl Acad Sci USA. 1975;72:4435–9.PubMedCrossRefPubMedCentral
84.
go back to reference Al-Abbas MJA, Abdul-Ridha LA. Practical genetic study confirming and identifying the horizontal gene transfer (HGT) of bacterial DNA (16SrDNA gene) integrated in the DNA of cancer patients. Merit Res J Med Med Sci. 2017;5(2):60–71. Al-Abbas MJA, Abdul-Ridha LA. Practical genetic study confirming and identifying the horizontal gene transfer (HGT) of bacterial DNA (16SrDNA gene) integrated in the DNA of cancer patients. Merit Res J Med Med Sci. 2017;5(2):60–71.
85.
go back to reference Wu A, Zhang Q, Lambert G, Khin Z, Gatenby RA, Kim HJ, Pourmand N, Bussey K, Davies PC, Sturm JC, Austin RH. Ancient hot and cold genes and chemotherapy resistance emergence. Proc Natl Acad Sci USA. 2015;112(33):10467–72.PubMedCrossRefPubMedCentral Wu A, Zhang Q, Lambert G, Khin Z, Gatenby RA, Kim HJ, Pourmand N, Bussey K, Davies PC, Sturm JC, Austin RH. Ancient hot and cold genes and chemotherapy resistance emergence. Proc Natl Acad Sci USA. 2015;112(33):10467–72.PubMedCrossRefPubMedCentral
86.
go back to reference Trigos AS, Pearson RB, Papenfuss AT, Goode DL. Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors. Proc Natl Acad Sci USA. 2017;114:6406–11.PubMedCrossRefPubMedCentral Trigos AS, Pearson RB, Papenfuss AT, Goode DL. Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors. Proc Natl Acad Sci USA. 2017;114:6406–11.PubMedCrossRefPubMedCentral
87.
go back to reference Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature. 2012;482:53–8.PubMedPubMedCentralCrossRef Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature. 2012;482:53–8.PubMedPubMedCentralCrossRef
91.
92.
94.
go back to reference Harris CC. Chemical and physical carcinogenesis: advances and perspectives for the 1990s. Cancer Res. 1991;51:5023–44. Harris CC. Chemical and physical carcinogenesis: advances and perspectives for the 1990s. Cancer Res. 1991;51:5023–44.
95.
go back to reference De Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, Plummer M. Global burden of cancers attributable to infections in a review and synthetic analysis. Lancet Oncol. 2008;2012(13):607–15. De Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, Plummer M. Global burden of cancers attributable to infections in a review and synthetic analysis. Lancet Oncol. 2008;2012(13):607–15.
97.
98.
100.
go back to reference Elinav E, Nowarsk R, Thaiss CA, Hu B, Jin CC, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13:759–71.PubMedCrossRef Elinav E, Nowarsk R, Thaiss CA, Hu B, Jin CC, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13:759–71.PubMedCrossRef
Metadata
Title
Cancer cells arise from bacteria
Authors
Qing-lin Dong
Xiang-ying Xing
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2018
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-018-0699-4

Other articles of this Issue 1/2018

Cancer Cell International 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine