Skip to main content
Top
Published in: Cancer Cell International 1/2018

Open Access 01-12-2018 | Primary Research

Unique CD44 intronic SNP is associated with tumor grade in breast cancer: a case control study and in silico analysis

Authors: Rezvan Esmaeili, Nasrin Abdoli, Fatemeh Yadegari, Mohamadreza Neishaboury, Leila Farahmand, Ahmad Kaviani, Keivan Majidzadeh-A

Published in: Cancer Cell International | Issue 1/2018

Login to get access

Abstract

Background

CD44 encoded by a single gene is a cell surface transmembrane glycoprotein. Exon 2 is one of the important exons to bind CD44 protein to hyaluronan. Experimental evidences show that hyaluronan–CD44 interaction intensifies the proliferation, migration, and invasion of breast cancer cells. Therefore, the current study aimed at investigating the association between specific polymorphisms in exon 2 and its flanking region of CD44 with predisposition to breast cancer.

Methods

In the current study, 175 Iranian female patients with breast cancer and 175 age-matched healthy controls were recruited in biobank, Breast Cancer Research Center, Tehran, Iran. Single nucleotide polymorphisms of CD44 exon 2 and its flanking were analyzed via polymerase chain reaction and gene sequencing techniques. Association between the observed variation with breast cancer risk and clinico-pathological characteristics were studied. Subsequently, bioinformatics analysis was conducted to predict potential exonic splicing enhancer (ESE) motifs changed as the result of a mutation.

Results

A unique polymorphism of the gene encoding CD44 was identified at position 14 nucleotide upstream of exon 2 (A37692→G) by the sequencing method. The A > G polymorphism exhibited a significant association with higher-grades of breast cancer, although no significant relation was found between this polymorphism and breast cancer risk. Finally, computational analysis revealed that the intronic mutation generated a new consensus-binding motif for the splicing factor, SC35, within intron 1.

Conclusions

The current study results indicated that A > G polymorphism was associated with breast cancer development; in addition, in silico analysis with ESE finder prediction software showed that the change created a new SC35 binding site.
Literature
1.
go back to reference Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;24(14):2137–50.CrossRefPubMed Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;24(14):2137–50.CrossRefPubMed
2.
go back to reference Sellers TA. Genetic factors in the pathogenesis of breast cancer: their role and relative importance. J Nutr. 1997;127(5):929S–32S.CrossRefPubMed Sellers TA. Genetic factors in the pathogenesis of breast cancer: their role and relative importance. J Nutr. 1997;127(5):929S–32S.CrossRefPubMed
3.
go back to reference Oskouee MA, Shahmahmoudi S, Nategh R, Esmaeili H-A, Safaeyan F, Moghaddam MZ. Three common TP53 polymorphisms and the risk of breast cancer among groups of Iranian women. Arch Breast Cancer. 2015;2(4):114–9. Oskouee MA, Shahmahmoudi S, Nategh R, Esmaeili H-A, Safaeyan F, Moghaddam MZ. Three common TP53 polymorphisms and the risk of breast cancer among groups of Iranian women. Arch Breast Cancer. 2015;2(4):114–9.
4.
go back to reference Antoniou A, Easton D. Models of genetic susceptibility to breast cancer. Oncogene. 2006;25(43):5898–905.CrossRefPubMed Antoniou A, Easton D. Models of genetic susceptibility to breast cancer. Oncogene. 2006;25(43):5898–905.CrossRefPubMed
5.
go back to reference King M-C, Marks JH, Mandell JB. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302(5645):643–6.CrossRefPubMed King M-C, Marks JH, Mandell JB. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302(5645):643–6.CrossRefPubMed
6.
go back to reference Thompson D, Easton D. The genetic epidemiology of breast cancer genes. J Mammary Gland Biol Neoplasia. 2004;9(3):221–36.CrossRefPubMed Thompson D, Easton D. The genetic epidemiology of breast cancer genes. J Mammary Gland Biol Neoplasia. 2004;9(3):221–36.CrossRefPubMed
7.
go back to reference Goodfellow PN, Banting G, Wiles MV, Tunnacliffe A, Parkar M, Solomon E, et al. The gene, MIC4, which controls expression of the antigen defined by monoclonal antibody F10. 44.2, is on human chromosome 11. Eur J Immunol. 1982;12(8):659–63.CrossRefPubMed Goodfellow PN, Banting G, Wiles MV, Tunnacliffe A, Parkar M, Solomon E, et al. The gene, MIC4, which controls expression of the antigen defined by monoclonal antibody F10. 44.2, is on human chromosome 11. Eur J Immunol. 1982;12(8):659–63.CrossRefPubMed
8.
go back to reference Bell MV, Cowper AE, Lefranc M-P, Bell JI, Screaton GR. Influence of intron length on alternative splicing of CD44. Mol Cell Biol. 1998;18(10):5930–41.CrossRefPubMedPubMedCentral Bell MV, Cowper AE, Lefranc M-P, Bell JI, Screaton GR. Influence of intron length on alternative splicing of CD44. Mol Cell Biol. 1998;18(10):5930–41.CrossRefPubMedPubMedCentral
9.
go back to reference Screaton GR, Bell MV, Jackson DG, Cornelis FB, Gerth U, Bell JI. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci. 1992;89(24):12160–4.CrossRefPubMedPubMedCentral Screaton GR, Bell MV, Jackson DG, Cornelis FB, Gerth U, Bell JI. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci. 1992;89(24):12160–4.CrossRefPubMedPubMedCentral
10.
go back to reference Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci. 2003;100(7):3983–8.CrossRefPubMedPubMedCentral Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci. 2003;100(7):3983–8.CrossRefPubMedPubMedCentral
11.
go back to reference Bourguignon L, Zhu D, Zhu H. CD44 isoform–cytoskeleton interaction in oncogenic signaling and tumor progression. Front Biosci. 1998;1998(3):d637–49.CrossRef Bourguignon L, Zhu D, Zhu H. CD44 isoform–cytoskeleton interaction in oncogenic signaling and tumor progression. Front Biosci. 1998;1998(3):d637–49.CrossRef
12.
go back to reference Chen D, McKallip RJ, Zeytun A, Do Y, Lombard C, Robertson JL, et al. CD44-deficient mice exhibit enhanced hepatitis after concanavalin A injection: evidence for involvement of CD44 in activation-induced cell death. J Immunol. 2001;166(10):5889–97.CrossRefPubMed Chen D, McKallip RJ, Zeytun A, Do Y, Lombard C, Robertson JL, et al. CD44-deficient mice exhibit enhanced hepatitis after concanavalin A injection: evidence for involvement of CD44 in activation-induced cell death. J Immunol. 2001;166(10):5889–97.CrossRefPubMed
13.
go back to reference McKallip RJ, Fisher M, Do Y, Szakal AK, Gunthert U, Nagarkatti PS, et al. Targeted deletion of CD44v7 exon leads to decreased endothelial cell injury but not tumor cell killing mediated by interleukin-2-activated cytolytic lymphocytes. J Biol Chem. 2003;278(44):43818–30.CrossRefPubMed McKallip RJ, Fisher M, Do Y, Szakal AK, Gunthert U, Nagarkatti PS, et al. Targeted deletion of CD44v7 exon leads to decreased endothelial cell injury but not tumor cell killing mediated by interleukin-2-activated cytolytic lymphocytes. J Biol Chem. 2003;278(44):43818–30.CrossRefPubMed
14.
go back to reference McKallip RJ, Fisher M, Gunthert U, Szakal AK, Nagarkatti PS, Nagarkatti M. Role of CD44 and its v7 isoform in staphylococcal enterotoxin B-induced toxic shock: CD44 deficiency on hepatic mononuclear cells leads to reduced activation-induced apoptosis that results in increased liver damage. Infect Immun. 2005;73(1):50–61.CrossRefPubMedPubMedCentral McKallip RJ, Fisher M, Gunthert U, Szakal AK, Nagarkatti PS, Nagarkatti M. Role of CD44 and its v7 isoform in staphylococcal enterotoxin B-induced toxic shock: CD44 deficiency on hepatic mononuclear cells leads to reduced activation-induced apoptosis that results in increased liver damage. Infect Immun. 2005;73(1):50–61.CrossRefPubMedPubMedCentral
15.
go back to reference Rafi A, Nagarkatti M, Nagarkatti PS. Hyaluronate–CD44 interactions can induce murine B-cell activation. Blood. 1997;89(8):2901–8.PubMed Rafi A, Nagarkatti M, Nagarkatti PS. Hyaluronate–CD44 interactions can induce murine B-cell activation. Blood. 1997;89(8):2901–8.PubMed
16.
go back to reference Sales KM, Winslet MC, Seifalian AM. Stem cells and cancer: an overview. Stem Cell Rev. 2007;3(4):249–55.CrossRefPubMed Sales KM, Winslet MC, Seifalian AM. Stem cells and cancer: an overview. Stem Cell Rev. 2007;3(4):249–55.CrossRefPubMed
17.
go back to reference Bankfalvi A, Terpe HJ, Breukelmann D, Bier B, Rempe D, Pschadka G, et al. Gains and losses of CD44 expression during breast carcinogenesis and tumour progression. Histopathology. 1998;33(2):107–16.CrossRefPubMed Bankfalvi A, Terpe HJ, Breukelmann D, Bier B, Rempe D, Pschadka G, et al. Gains and losses of CD44 expression during breast carcinogenesis and tumour progression. Histopathology. 1998;33(2):107–16.CrossRefPubMed
18.
go back to reference Kaufmann M, von Minckwitz G, Heider K, Ponta H, Herrlich P, Sinn H. CD44 variant exon epitopes in primary breast cancer and length of survival. Lancet. 1995;345(8950):615–9.CrossRefPubMed Kaufmann M, von Minckwitz G, Heider K, Ponta H, Herrlich P, Sinn H. CD44 variant exon epitopes in primary breast cancer and length of survival. Lancet. 1995;345(8950):615–9.CrossRefPubMed
19.
go back to reference Dall P, Heider KH, Sinn HP, Skroch-Angel P, Adolf G, Kaufmann M, et al. Comparison of immunohistochemistry and RT-PCR for detection of CD44v-expression, a new prognostic factor in human breast cancer. Int J Cancer. 1995;60(4):471–7.CrossRefPubMed Dall P, Heider KH, Sinn HP, Skroch-Angel P, Adolf G, Kaufmann M, et al. Comparison of immunohistochemistry and RT-PCR for detection of CD44v-expression, a new prognostic factor in human breast cancer. Int J Cancer. 1995;60(4):471–7.CrossRefPubMed
20.
go back to reference Srebrow A, Kornblihtt AR. The connection between splicing and cancer. J Cell Sci. 2006;119(13):2635–41.CrossRefPubMed Srebrow A, Kornblihtt AR. The connection between splicing and cancer. J Cell Sci. 2006;119(13):2635–41.CrossRefPubMed
21.
go back to reference Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet. 2002;3(4):285–98.CrossRefPubMed Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet. 2002;3(4):285–98.CrossRefPubMed
22.
go back to reference Stickeler E, Kittrell F, Medina D, Berget SM. Stage-specific changes in SR splicing factors and alternative splicing in mammary tumorigenesis. Oncogene. 1999;18(24):3574–82.CrossRefPubMed Stickeler E, Kittrell F, Medina D, Berget SM. Stage-specific changes in SR splicing factors and alternative splicing in mammary tumorigenesis. Oncogene. 1999;18(24):3574–82.CrossRefPubMed
23.
go back to reference Günthert U, Hofmann M, Rudy W, Reber S, Zöller M, Haußmann I, et al. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell. 1991;65(1):13–24.CrossRefPubMed Günthert U, Hofmann M, Rudy W, Reber S, Zöller M, Haußmann I, et al. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell. 1991;65(1):13–24.CrossRefPubMed
24.
go back to reference Telen MJ, Udani M, Washington MK, Levesque MC, Lloyd E, Rao N. A blood group-related polymorphism of CD44 abolishes a hyaluronan-binding consensus sequence without preventing hyaluronan binding. J Biol Chem. 1996;271(12):7147–53.CrossRefPubMed Telen MJ, Udani M, Washington MK, Levesque MC, Lloyd E, Rao N. A blood group-related polymorphism of CD44 abolishes a hyaluronan-binding consensus sequence without preventing hyaluronan binding. J Biol Chem. 1996;271(12):7147–53.CrossRefPubMed
25.
go back to reference Zhou J, Nagarkatti PS, Zhong Y, Creek K, Zhang J, Nagarkatti M. Unique SNP in CD44 intron 1 and its role in breast cancer development. Anticancer Res. 2010;30(4):1263–72.PubMedPubMedCentral Zhou J, Nagarkatti PS, Zhong Y, Creek K, Zhang J, Nagarkatti M. Unique SNP in CD44 intron 1 and its role in breast cancer development. Anticancer Res. 2010;30(4):1263–72.PubMedPubMedCentral
27.
go back to reference Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR. ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003;31(13):3568–71.CrossRefPubMedPubMedCentral Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR. ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003;31(13):3568–71.CrossRefPubMedPubMedCentral
28.
go back to reference Desmet F-O, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37(9):e67.CrossRefPubMedPubMedCentral Desmet F-O, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37(9):e67.CrossRefPubMedPubMedCentral
29.
go back to reference Catterall JBGM, Turner GA. Hyaluronic acid, cell adhesion and metastasis. Cancer J. 1995;8:320–30. Catterall JBGM, Turner GA. Hyaluronic acid, cell adhesion and metastasis. Cancer J. 1995;8:320–30.
30.
go back to reference Knudson CB, Knudson W. Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J. 1993;7(13):1233–41.CrossRefPubMed Knudson CB, Knudson W. Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J. 1993;7(13):1233–41.CrossRefPubMed
31.
go back to reference Kosaki R, Watanabe K, Yamaguchi Y. Overproduction of hyaluronan by expression of the hyaluronan synthase Has2 enhances anchorage-independent growth and tumorigenicity. Cancer Res. 1999;59(5):1141–5.PubMed Kosaki R, Watanabe K, Yamaguchi Y. Overproduction of hyaluronan by expression of the hyaluronan synthase Has2 enhances anchorage-independent growth and tumorigenicity. Cancer Res. 1999;59(5):1141–5.PubMed
32.
go back to reference Naor D, Sionov RV, Ish-Shalom D. CD44: structure, function and association with the malignant process. Adv Cancer Res. 1997;71:241–319.CrossRefPubMed Naor D, Sionov RV, Ish-Shalom D. CD44: structure, function and association with the malignant process. Adv Cancer Res. 1997;71:241–319.CrossRefPubMed
33.
go back to reference So JY, Lee HJ, Smolarek AK, Paul S, Wang C-X, Maehr H, et al. A novel Gemini vitamin D analog represses the expression of a stem cell marker CD44 in breast cancer. Mol Pharmacol. 2011;79(3):360–7.CrossRefPubMedPubMedCentral So JY, Lee HJ, Smolarek AK, Paul S, Wang C-X, Maehr H, et al. A novel Gemini vitamin D analog represses the expression of a stem cell marker CD44 in breast cancer. Mol Pharmacol. 2011;79(3):360–7.CrossRefPubMedPubMedCentral
34.
go back to reference Jiang L, Deng J, Zhu X, Zheng J, You Y, Li N, et al. CD44 rs13347 C > T polymorphism predicts breast cancer risk and prognosis in Chinese populations. Breast Cancer Res. 2012;14(4):R105.CrossRefPubMedPubMedCentral Jiang L, Deng J, Zhu X, Zheng J, You Y, Li N, et al. CD44 rs13347 C > T polymorphism predicts breast cancer risk and prognosis in Chinese populations. Breast Cancer Res. 2012;14(4):R105.CrossRefPubMedPubMedCentral
35.
go back to reference Zhou X, Wu C. Association of CD44 polymorphisms with chemosensitivity to anthracycline-based chemotherapy in breast cancer. J Jilin Univ. 2012;38:110–4. Zhou X, Wu C. Association of CD44 polymorphisms with chemosensitivity to anthracycline-based chemotherapy in breast cancer. J Jilin Univ. 2012;38:110–4.
36.
go back to reference Tulsyan S, Agarwal G, Lal P, Agrawal S, Mittal RD, Mittal B. CD44 gene polymorphisms in breast cancer risk and prognosis: a study in North Indian population. PLoS ONE. 2013;8(8):e71073.CrossRefPubMedPubMedCentral Tulsyan S, Agarwal G, Lal P, Agrawal S, Mittal RD, Mittal B. CD44 gene polymorphisms in breast cancer risk and prognosis: a study in North Indian population. PLoS ONE. 2013;8(8):e71073.CrossRefPubMedPubMedCentral
37.
go back to reference Zhou J, Nagarkatti PS, Zhong Y, Zhang J, Nagarkatti M. Implications of single nucleotide polymorphisms in CD44 exon 2 in risk for breast cancer. Eur J Cancer Prev Off J Eur Cancer Prev Org (ECP). 2011;20(5):396.CrossRef Zhou J, Nagarkatti PS, Zhong Y, Zhang J, Nagarkatti M. Implications of single nucleotide polymorphisms in CD44 exon 2 in risk for breast cancer. Eur J Cancer Prev Off J Eur Cancer Prev Org (ECP). 2011;20(5):396.CrossRef
38.
go back to reference Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.CrossRefPubMed Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.CrossRefPubMed
39.
go back to reference Krawczak M, Reiss J, Cooper DN. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet. 1992;90(1–2):41–54.PubMed Krawczak M, Reiss J, Cooper DN. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet. 1992;90(1–2):41–54.PubMed
40.
go back to reference Götte M, Yip GW. Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res. 2006;66(21):10233–7.CrossRefPubMed Götte M, Yip GW. Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res. 2006;66(21):10233–7.CrossRefPubMed
41.
go back to reference Miné M, Brivet M, Touati G, Grabowski P, Abitbol M, Marsac C. Splicing error in E1α pyruvate dehydrogenase mRNA caused by novel intronic mutation responsible for lactic acidosis and mental retardation. J Biol Chem. 2003;278(14):11768–72.CrossRefPubMed Miné M, Brivet M, Touati G, Grabowski P, Abitbol M, Marsac C. Splicing error in E1α pyruvate dehydrogenase mRNA caused by novel intronic mutation responsible for lactic acidosis and mental retardation. J Biol Chem. 2003;278(14):11768–72.CrossRefPubMed
Metadata
Title
Unique CD44 intronic SNP is associated with tumor grade in breast cancer: a case control study and in silico analysis
Authors
Rezvan Esmaeili
Nasrin Abdoli
Fatemeh Yadegari
Mohamadreza Neishaboury
Leila Farahmand
Ahmad Kaviani
Keivan Majidzadeh-A
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2018
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-018-0522-2

Other articles of this Issue 1/2018

Cancer Cell International 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine