Skip to main content
Top
Published in: Cancer Cell International 1/2017

Open Access 01-12-2017 | Primary Research

MicroRNA-338-3p suppresses cell proliferation and induces apoptosis of non-small-cell lung cancer by targeting sphingosine kinase 2

Authors: Guowei Zhang, Hao Zheng, Guojun Zhang, Ruirui Cheng, Chunya Lu, Yijie Guo, Guoqiang Zhao

Published in: Cancer Cell International | Issue 1/2017

Login to get access

Abstract

Background

Lung cancer is the major cause of cancer-related death worldwide, and 80% patients of lung cancer are non-small-cell lung cancer (NSCLC) cases. MicroRNAs are important gene regulators with critical roles in diverse biological processes, including tumorigenesis. Studies indicate that sphingosine kinase 2 (SphK2) promotes tumor progression in NSCLC, but how this occurs is unclear. Thus, we explored the effect of miR-338-3p targeting SphK2 on proliferation and apoptosis of NSCLC cells.

Methods

Expression of miR-338-3p and SphK2 in NSCLC A549 and H1299 cell lines was measured using qRT-PCR and Western blot. CCK-8 and colony formation assays were used to assess the effect of miR-338-3p on NSCLC cell line proliferation. Flow cytometry was used to study the effect of miR-338-3p on NSCLC apoptosis. Luciferase reporter assay and Western blot were used to confirm targeting of SphK2 by miR-338-3p. Finally, in vivo tumorigenesis studies were used to demonstrate subcutaneous tumor growth.

Results

miR-338-3p expression in 34 NSCLC clinical samples was downregulated and this was correlated with TNM stage. miR-338-3p significantly suppressed proliferation and induced apoptosis of NSCLC A549 and H1299 cells in vitro. SphK2 was a direct target of miR-338-3p. Overexpression of miR-338-3p significantly inhibited SphK2 expression and reduced luciferase reporter activity containing the SphK2 3′-untranslated region (3′-UTR) through the first binding site. SphK2 lacking 3′-UTR restored the effects of miR-338-3p on cell proliferation inhibition. miR-338-3p significantly inhibited tumorigenicity of NSCLC A549 and H1299 cells in a nude mouse xenograft model.

Conclusions

Collectively, miR-338-3p inhibited cell proliferation and induced apoptosis of NSCLC cells by targeting and down-regulating SphK2, and miR-338-3p could inhibit NSCLC cells A549 and H1299 growth in vivo, suggesting a potential mechanism of NSCLC progression. Therapeutically, miR-338-3p may serve as a potential target in the treatment of human lung cancer.
Literature
1.
go back to reference Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.CrossRefPubMed Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.CrossRefPubMed
3.
go back to reference Chen T, Xu C, Chen J, Ding C, Xu Z, Li C, et al. MicroRNA-203 inhibits cellular proliferation and invasion by targeting Bmi1 in non-small cell lung cancer. Oncol Lett. 2015;9(6):2639–46.PubMedPubMedCentral Chen T, Xu C, Chen J, Ding C, Xu Z, Li C, et al. MicroRNA-203 inhibits cellular proliferation and invasion by targeting Bmi1 in non-small cell lung cancer. Oncol Lett. 2015;9(6):2639–46.PubMedPubMedCentral
4.
go back to reference Zhong C, Ding S, Xu Y, Huang H. MicroRNA-222 promotes human non-small cell lung cancer H460 growth by targeting p27. Int J Clin Exp Med. 2015;8(4):5534–40.PubMedPubMedCentral Zhong C, Ding S, Xu Y, Huang H. MicroRNA-222 promotes human non-small cell lung cancer H460 growth by targeting p27. Int J Clin Exp Med. 2015;8(4):5534–40.PubMedPubMedCentral
5.
go back to reference Zhu D, Chen H, Yang X, Chen W, Wang L, Xu J, et al. Decreased microRNA-224 and its clinical significance in non-small cell lung cancer patients. Diagn Pathol. 2014;9:198.CrossRefPubMedPubMedCentral Zhu D, Chen H, Yang X, Chen W, Wang L, Xu J, et al. Decreased microRNA-224 and its clinical significance in non-small cell lung cancer patients. Diagn Pathol. 2014;9:198.CrossRefPubMedPubMedCentral
6.
go back to reference Luo W, Huang B, Li Z, Li H, Sun L, Zhang Q, et al. MicroRNA-449a is downregulated in non-small cell lung cancer and inhibits migration and invasion by targeting c-Met. PLoS ONE. 2013;8(5):e64759.CrossRefPubMedPubMedCentral Luo W, Huang B, Li Z, Li H, Sun L, Zhang Q, et al. MicroRNA-449a is downregulated in non-small cell lung cancer and inhibits migration and invasion by targeting c-Met. PLoS ONE. 2013;8(5):e64759.CrossRefPubMedPubMedCentral
8.
go back to reference Hale BJ, Yang CX, Ross JW. Small RNA regulation of reproductive function. Mol Reprod Dev. 2014;81(2):148–59.CrossRefPubMed Hale BJ, Yang CX, Ross JW. Small RNA regulation of reproductive function. Mol Reprod Dev. 2014;81(2):148–59.CrossRefPubMed
11.
go back to reference Corsini LR, Bronte G, Terrasi M, Amodeo V, Fanale D, Fiorentino E, et al. The role of microRNAs in cancer: diagnostic and prognostic biomarkers and targets of therapies. Expert Opin Ther Targets. 2012;16(Suppl 2):S103–9.CrossRefPubMed Corsini LR, Bronte G, Terrasi M, Amodeo V, Fanale D, Fiorentino E, et al. The role of microRNAs in cancer: diagnostic and prognostic biomarkers and targets of therapies. Expert Opin Ther Targets. 2012;16(Suppl 2):S103–9.CrossRefPubMed
12.
go back to reference Chaudhuri K, Chatterjee R. MicroRNA detection and target prediction: integration of computational and experimental approaches. DNA Cell Biol. 2007;26(5):321–37.CrossRefPubMed Chaudhuri K, Chatterjee R. MicroRNA detection and target prediction: integration of computational and experimental approaches. DNA Cell Biol. 2007;26(5):321–37.CrossRefPubMed
13.
go back to reference Shenouda SK, Alahari SK. MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev. 2009;28(3–4):369–78.CrossRefPubMed Shenouda SK, Alahari SK. MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev. 2009;28(3–4):369–78.CrossRefPubMed
14.
go back to reference Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12.CrossRefPubMed Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12.CrossRefPubMed
15.
go back to reference Kos A, Olde Loohuis NF, Wieczorek ML, Glennon JC, Martens GJ, Kolk SM, et al. A potential regulatory role for intronic MicroRNA-338-3p-3p-3p for its host gene encoding apoptosis-associated tyrosine kinase. PLoS ONE. 2012;7(2):e31022.CrossRefPubMedPubMedCentral Kos A, Olde Loohuis NF, Wieczorek ML, Glennon JC, Martens GJ, Kolk SM, et al. A potential regulatory role for intronic MicroRNA-338-3p-3p-3p for its host gene encoding apoptosis-associated tyrosine kinase. PLoS ONE. 2012;7(2):e31022.CrossRefPubMedPubMedCentral
16.
17.
go back to reference Huang N, Wu Z, Lin L, Zhou M, Wang L, Ma H, et al. MiR-338-3p-3p inhibits epithelial-mesenchymal transition in gastric cancer cells by targeting ZEB2 and MACC1/Met/Akt signaling. Oncotarget. 2015;6(17):15222–34.CrossRefPubMedPubMedCentral Huang N, Wu Z, Lin L, Zhou M, Wang L, Ma H, et al. MiR-338-3p-3p inhibits epithelial-mesenchymal transition in gastric cancer cells by targeting ZEB2 and MACC1/Met/Akt signaling. Oncotarget. 2015;6(17):15222–34.CrossRefPubMedPubMedCentral
18.
go back to reference Sun K, Su G, Deng H, Dong J, Lei S, Li G. Relationship between miRNA-338-3p expression and progression and prognosis of human colorectal carcinoma. Chin Med J. 2014;127(10):1884–90.PubMed Sun K, Su G, Deng H, Dong J, Lei S, Li G. Relationship between miRNA-338-3p expression and progression and prognosis of human colorectal carcinoma. Chin Med J. 2014;127(10):1884–90.PubMed
19.
go back to reference Sun J, Feng X, Gao S, Xiao Z. MicroRNA-338-3p-3p-3p functions as a tumor suppressor in human nonsmallcell lung carcinoma and targets Ras-related protein 14. Mol Med Rep. 2015;11(2):1400–6.PubMed Sun J, Feng X, Gao S, Xiao Z. MicroRNA-338-3p-3p-3p functions as a tumor suppressor in human nonsmallcell lung carcinoma and targets Ras-related protein 14. Mol Med Rep. 2015;11(2):1400–6.PubMed
20.
go back to reference Venkata JK, An N, Stuart R, Costa LJ, Cai H, Coker W, et al. Inhibition of sphingosine kinase 2 downregulates the expression of c-Myc and Mcl-1 and induces apoptosis in multiple myeloma. Blood. 2014;124(12):1915–25.CrossRefPubMed Venkata JK, An N, Stuart R, Costa LJ, Cai H, Coker W, et al. Inhibition of sphingosine kinase 2 downregulates the expression of c-Myc and Mcl-1 and induces apoptosis in multiple myeloma. Blood. 2014;124(12):1915–25.CrossRefPubMed
21.
22.
go back to reference Oskeritzian CA, Alvarez SE, Hait NC, Price MM, Milstien S, Spiegel S. Distinct roles of sphingosine kinases 1 and 2 in human mast-cell functions. Blood. 2008;111(8):4193–200.CrossRefPubMedPubMedCentral Oskeritzian CA, Alvarez SE, Hait NC, Price MM, Milstien S, Spiegel S. Distinct roles of sphingosine kinases 1 and 2 in human mast-cell functions. Blood. 2008;111(8):4193–200.CrossRefPubMedPubMedCentral
23.
go back to reference Liu H, Chakravarty D, Maceyka M, Milstien S, Spiegel S. Sphingosine kinases: a novel family of lipid kinases. Prog Nucleic Acid Res Mol Biol. 2002;71:493–511.CrossRefPubMed Liu H, Chakravarty D, Maceyka M, Milstien S, Spiegel S. Sphingosine kinases: a novel family of lipid kinases. Prog Nucleic Acid Res Mol Biol. 2002;71:493–511.CrossRefPubMed
24.
go back to reference Garofalo M, Croce CM. microRNAs: master regulators as potential therapeutics in cancer. Annu Rev Pharmacol Toxicol. 2011;51:25–43.CrossRefPubMed Garofalo M, Croce CM. microRNAs: master regulators as potential therapeutics in cancer. Annu Rev Pharmacol Toxicol. 2011;51:25–43.CrossRefPubMed
25.
go back to reference Seki N, Hayashi A, Hattori A, Kozuma S, Ohira M, Hori T, et al. Chromosomal assignment of a human apoptosis-associated tyrosine kinase gene on chromosome 17q25.3 by somatic hybrid analysis and fluorescence in situ hybridization. J Hum Genet. 1999;44(2):141–2.CrossRefPubMed Seki N, Hayashi A, Hattori A, Kozuma S, Ohira M, Hori T, et al. Chromosomal assignment of a human apoptosis-associated tyrosine kinase gene on chromosome 17q25.3 by somatic hybrid analysis and fluorescence in situ hybridization. J Hum Genet. 1999;44(2):141–2.CrossRefPubMed
26.
go back to reference Haag T, Herkt CE, Walesch SK, Richter AM, Dammann RH. The apoptosis associated tyrosine kinase gene is frequently hypermethylated in human cancer and is regulated by epigenetic mechanisms. Genes Cancer. 2014;5(9–10):365–74.PubMedPubMedCentral Haag T, Herkt CE, Walesch SK, Richter AM, Dammann RH. The apoptosis associated tyrosine kinase gene is frequently hypermethylated in human cancer and is regulated by epigenetic mechanisms. Genes Cancer. 2014;5(9–10):365–74.PubMedPubMedCentral
27.
go back to reference Ma S, Rubin BP. Apoptosis-associated tyrosine kinase 1 inhibits growth and migration and promotes apoptosis in melanoma. Lab Invest. 2014;94(4):430–8.CrossRefPubMed Ma S, Rubin BP. Apoptosis-associated tyrosine kinase 1 inhibits growth and migration and promotes apoptosis in melanoma. Lab Invest. 2014;94(4):430–8.CrossRefPubMed
28.
go back to reference Guo B, Liu L, Yao J, Ma R, Chang D, Li Z, et al. miR-338-3p-3p suppresses gastric cancer progression through a PTEN-AKT axis by targeting P-REX2a. Mol Cancer Res. 2014;12(3):313–21.CrossRefPubMed Guo B, Liu L, Yao J, Ma R, Chang D, Li Z, et al. miR-338-3p-3p suppresses gastric cancer progression through a PTEN-AKT axis by targeting P-REX2a. Mol Cancer Res. 2014;12(3):313–21.CrossRefPubMed
29.
go back to reference Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI. Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res. 2008;14(9):2588–92.CrossRefPubMed Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI. Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res. 2008;14(9):2588–92.CrossRefPubMed
30.
go back to reference Sun K, Deng HJ, Lei ST, Dong JQ, Li GX. miRNA-338-3p suppresses cell growth of human colorectal carcinoma by targeting smoothened. World J Gastroenterol. 2013;19(14):2197–207.CrossRefPubMedPubMedCentral Sun K, Deng HJ, Lei ST, Dong JQ, Li GX. miRNA-338-3p suppresses cell growth of human colorectal carcinoma by targeting smoothened. World J Gastroenterol. 2013;19(14):2197–207.CrossRefPubMedPubMedCentral
31.
go back to reference Huang XH, Chen JS, Wang Q, Chen XL, Wen L, Chen LZ, et al. miR-338-3p-3p suppresses invasion of liver cancer cell by targeting smoothened. J Pathol. 2011;225(3):463–72.CrossRefPubMed Huang XH, Chen JS, Wang Q, Chen XL, Wen L, Chen LZ, et al. miR-338-3p-3p suppresses invasion of liver cancer cell by targeting smoothened. J Pathol. 2011;225(3):463–72.CrossRefPubMed
32.
go back to reference Li P, Chen X, Su L, Li C, Zhi Q, Yu B, et al. Epigenetic silencing of miR-338-3p-3p contributes to tumorigenicity in gastric cancer by targeting SSX2IP. PLoS ONE. 2013;8(6):e66782.CrossRefPubMedPubMedCentral Li P, Chen X, Su L, Li C, Zhi Q, Yu B, et al. Epigenetic silencing of miR-338-3p-3p contributes to tumorigenicity in gastric cancer by targeting SSX2IP. PLoS ONE. 2013;8(6):e66782.CrossRefPubMedPubMedCentral
33.
go back to reference Tan X, Qin W, Zhang L, Hang J, Li B, Zhang C, et al. A 5-microRNA signature for lung squamous cell carcinoma diagnosis and hsa-miR-31 for prognosis. Clin Cancer Res. 2011;17(21):6802–11.CrossRefPubMed Tan X, Qin W, Zhang L, Hang J, Li B, Zhang C, et al. A 5-microRNA signature for lung squamous cell carcinoma diagnosis and hsa-miR-31 for prognosis. Clin Cancer Res. 2011;17(21):6802–11.CrossRefPubMed
34.
go back to reference Vosa U, Vooder T, Kolde R, Fischer K, Valk K, Tonisson N, et al. Identification of miR-374a as a prognostic marker for survival in patients with early-stage nonsmall cell lung cancer. Genes Chromosomes Cancer. 2011;50(10):812–22.CrossRefPubMed Vosa U, Vooder T, Kolde R, Fischer K, Valk K, Tonisson N, et al. Identification of miR-374a as a prognostic marker for survival in patients with early-stage nonsmall cell lung cancer. Genes Chromosomes Cancer. 2011;50(10):812–22.CrossRefPubMed
Metadata
Title
MicroRNA-338-3p suppresses cell proliferation and induces apoptosis of non-small-cell lung cancer by targeting sphingosine kinase 2
Authors
Guowei Zhang
Hao Zheng
Guojun Zhang
Ruirui Cheng
Chunya Lu
Yijie Guo
Guoqiang Zhao
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2017
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-017-0415-9

Other articles of this Issue 1/2017

Cancer Cell International 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine