Skip to main content
Top
Published in: Cancer Cell International 1/2016

Open Access 01-12-2016 | Primary research

MiR-145 functions as a tumor suppressor via regulating angiopoietin-2 in pancreatic cancer cells

Authors: Hao Wang, Cheng Hang, Xi-Long Ou, Jin-Shan Nie, Yi-Tao Ding, Shi-Gui Xue, Hua Gao, Jian-Xin Zhu

Published in: Cancer Cell International | Issue 1/2016

Login to get access

Abstract

Background

Pancreatic cancer is currently one of the leading causes of cancer deaths without any effective therapies. Mir-145 has been found to be tumor-suppressive in various types of cancers. The aim of this study is to investigate the role of miR-145 in pancreatic cancer cells and explore its underlying mechanism.

Methods

Quantitative real time PCR was used to determine the expression level of miR-145 and angiopoietin-2 (Ang-2) mNRA, and the expression level of Ang-2 protein was measured by western blotting. The anti-cancer activities of miR-145 were tested both in in vitro by using cell invasion and colony formation assay and in vivo by using xenograft assay. The direct action of miR-145 on Ang-2 was predicted by TargetScan and confirmed by luciferase report assay. The vascularization of xenografts were performed by immunohistochemical analysis.

Results

The expression level of miR-145 was significantly lower and the expression levels of Ang-2 mRNA and protein was significantly higher in the more aggressive pancreatic cancer cells (MiaPaCa-2 and Panc-1) when compared to that in BxPC3 cells. Overexpression of miR-145 in the BxPC3, MiaPaCa-2 and Panc-1 cells suppressed the cell invasion and colony formation ability, and the expression level of Ang-2 protein in MiaPaCa-2 and Panc-1 cells was also suppressed after pre-miR-145 transfection. Intratumoral delivery of miR-145 inhibited the growth of pancreatic cancer xenografts and angiogenesis in vivo, and also suppressed the expression level of angiopoietin-2 protein. Luciferase report assay showed that Ang-2 is a direct target of miR-145, and down-regulation of angiopoietin-2 by treatment with Ang-2 siRNA in the BxPC3, MiaPaCa-2 and Panc-1 cells suppressed cell invasion and colony formation ability. The reverse transcription PCR results also showed that Tie1 and Tie2 were expressed in BxPC3, MiaPaCa-2 and Panc-1 cells.

Conclusion

MiR-145 functions as a tumor suppressor in pancreatic cancer cells by targeting Ang-2 for translation repression and thus suppresses pancreatic cancer cell invasion and growth, which suggests that restoring of miR-145 may be a potential therapeutic target for pancreatic cancer.
Literature
1.
2.
go back to reference Hezel AF, et al. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2006;20(10):1218–49.CrossRefPubMed Hezel AF, et al. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2006;20(10):1218–49.CrossRefPubMed
3.
4.
go back to reference He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–31.CrossRefPubMed He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–31.CrossRefPubMed
5.
6.
go back to reference Xiao Z, et al. A small-molecule modulator of the tumor-suppressor miR34a inhibits the growth of hepatocellular carcinoma. Cancer Res. 2014;74(21):6236–47.CrossRefPubMed Xiao Z, et al. A small-molecule modulator of the tumor-suppressor miR34a inhibits the growth of hepatocellular carcinoma. Cancer Res. 2014;74(21):6236–47.CrossRefPubMed
7.
go back to reference Yang XW, et al. miR-145 suppresses cell invasion in hepatocellular carcinoma cells: miR-145 targets ADAM17. Hepatol Res. 2014;44(5):551–9.CrossRefPubMed Yang XW, et al. miR-145 suppresses cell invasion in hepatocellular carcinoma cells: miR-145 targets ADAM17. Hepatol Res. 2014;44(5):551–9.CrossRefPubMed
8.
go back to reference Yu CC, et al. miR145 targets the SOX9/ADAM17 axis to inhibit tumor-initiating cells and IL-6-mediated paracrine effects in head and neck cancer. Cancer Res. 2013;73(11):3425–40.CrossRefPubMed Yu CC, et al. miR145 targets the SOX9/ADAM17 axis to inhibit tumor-initiating cells and IL-6-mediated paracrine effects in head and neck cancer. Cancer Res. 2013;73(11):3425–40.CrossRefPubMed
9.
go back to reference Xu N, et al. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell. 2009;137(4):647–58.CrossRefPubMed Xu N, et al. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell. 2009;137(4):647–58.CrossRefPubMed
10.
go back to reference Boufraqech M, et al. miR-145 suppresses thyroid cancer growth and metastasis and targets AKT3. Endocr Relat Cancer. 2014;21(4):517–31.CrossRefPubMed Boufraqech M, et al. miR-145 suppresses thyroid cancer growth and metastasis and targets AKT3. Endocr Relat Cancer. 2014;21(4):517–31.CrossRefPubMed
11.
go back to reference Sachdeva M, Mo YY. MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res. 2010;70(1):378–87.CrossRefPubMed Sachdeva M, Mo YY. MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res. 2010;70(1):378–87.CrossRefPubMed
12.
go back to reference Xu Q, et al. MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis. Nucleic Acids Res. 2012;40(2):761–74.CrossRefPubMed Xu Q, et al. MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis. Nucleic Acids Res. 2012;40(2):761–74.CrossRefPubMed
13.
go back to reference Zhu Z, et al. MicroRNA-145 directly targets the insulin-like growth factor receptor I in human bladder cancer cells. FEBS Lett. 2014;588(17):3180–5.CrossRefPubMed Zhu Z, et al. MicroRNA-145 directly targets the insulin-like growth factor receptor I in human bladder cancer cells. FEBS Lett. 2014;588(17):3180–5.CrossRefPubMed
14.
go back to reference Kavanagh T, et al. Process evaluation of appreciative inquiry to translate pain management evidence into pediatric nursing practice. Implement Sci. 2010;5:90.CrossRefPubMedPubMedCentral Kavanagh T, et al. Process evaluation of appreciative inquiry to translate pain management evidence into pediatric nursing practice. Implement Sci. 2010;5:90.CrossRefPubMedPubMedCentral
18.
go back to reference Lewis CE, De Palma M, Naldini L. Tie2-expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin-2. Cancer Res. 2007;67(18):8429–32.CrossRefPubMed Lewis CE, De Palma M, Naldini L. Tie2-expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin-2. Cancer Res. 2007;67(18):8429–32.CrossRefPubMed
19.
go back to reference Zhou J, et al. Anti-angiogenesis by lentivirus-mediated small interfering RNA silencing of angiopoietin-2 gene in pancreatic carcinoma. Technol Cancer Res Treat. 2011;10(4):361–9.PubMed Zhou J, et al. Anti-angiogenesis by lentivirus-mediated small interfering RNA silencing of angiopoietin-2 gene in pancreatic carcinoma. Technol Cancer Res Treat. 2011;10(4):361–9.PubMed
20.
go back to reference Zhang ZX, et al. Knockdown of angiopoietin-2 suppresses metastasis in human pancreatic carcinoma by reduced matrix metalloproteinase-2. Mol Biotechnol. 2013;53(3):336–44.CrossRefPubMed Zhang ZX, et al. Knockdown of angiopoietin-2 suppresses metastasis in human pancreatic carcinoma by reduced matrix metalloproteinase-2. Mol Biotechnol. 2013;53(3):336–44.CrossRefPubMed
21.
go back to reference Xiao Z, et al. Role of microRNA-95 in the anticancer activity of Brucein D in hepatocellular carcinoma. Eur J Pharmacol. 2014;728:141–50.CrossRefPubMed Xiao Z, et al. Role of microRNA-95 in the anticancer activity of Brucein D in hepatocellular carcinoma. Eur J Pharmacol. 2014;728:141–50.CrossRefPubMed
23.
24.
go back to reference Holopainen T, et al. Effects of angiopoietin-2-blocking antibody on endothelial cell-cell junctions and lung metastasis. J Natl Cancer Inst. 2012;104(6):461–75.CrossRefPubMedPubMedCentral Holopainen T, et al. Effects of angiopoietin-2-blocking antibody on endothelial cell-cell junctions and lung metastasis. J Natl Cancer Inst. 2012;104(6):461–75.CrossRefPubMedPubMedCentral
25.
go back to reference Kienast Y, et al. Ang-2-VEGF-A CrossMab, a novel bispecific human IgG1 antibody blocking VEGF-A and Ang-2 functions simultaneously, mediates potent antitumor, antiangiogenic, and antimetastatic efficacy. Clin Cancer Res. 2013;19(24):6730–40.CrossRefPubMed Kienast Y, et al. Ang-2-VEGF-A CrossMab, a novel bispecific human IgG1 antibody blocking VEGF-A and Ang-2 functions simultaneously, mediates potent antitumor, antiangiogenic, and antimetastatic efficacy. Clin Cancer Res. 2013;19(24):6730–40.CrossRefPubMed
26.
go back to reference Koh YJ, et al. Double antiangiogenic protein, DAAP, targeting VEGF-A and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage. Cancer Cell. 2010;18(2):171–84.CrossRefPubMed Koh YJ, et al. Double antiangiogenic protein, DAAP, targeting VEGF-A and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage. Cancer Cell. 2010;18(2):171–84.CrossRefPubMed
27.
go back to reference Srivastava K, et al. Postsurgical adjuvant tumor therapy by combining anti-angiopoietin-2 and metronomic chemotherapy limits metastatic growth. Cancer Cell. 2014;26(6):880–95.CrossRefPubMed Srivastava K, et al. Postsurgical adjuvant tumor therapy by combining anti-angiopoietin-2 and metronomic chemotherapy limits metastatic growth. Cancer Cell. 2014;26(6):880–95.CrossRefPubMed
29.
go back to reference Fan L, et al. MicroRNA-145 targets vascular endothelial growth factor and inhibits invasion and metastasis of osteosarcoma cells. Acta Biochim Biophys Sin (Shanghai). 2012;44(5):407–14.CrossRef Fan L, et al. MicroRNA-145 targets vascular endothelial growth factor and inhibits invasion and metastasis of osteosarcoma cells. Acta Biochim Biophys Sin (Shanghai). 2012;44(5):407–14.CrossRef
31.
go back to reference Thurston G, Daly C. The complex role of angiopoietin-2 in the angiopoietin-tie signaling pathway. Cold Spring Harb Perspect Med. 2012;2(9):a006550.CrossRefPubMed Thurston G, Daly C. The complex role of angiopoietin-2 in the angiopoietin-tie signaling pathway. Cold Spring Harb Perspect Med. 2012;2(9):a006550.CrossRefPubMed
32.
go back to reference Singh N, et al. Angiotensin-(1-7) reverses angiogenic dysfunction in corpus cavernosum by acting on the microvasculature and bone marrow-derived cells in diabetes. J Sex Med. 2014;11(9):2153–63.CrossRefPubMedPubMedCentral Singh N, et al. Angiotensin-(1-7) reverses angiogenic dysfunction in corpus cavernosum by acting on the microvasculature and bone marrow-derived cells in diabetes. J Sex Med. 2014;11(9):2153–63.CrossRefPubMedPubMedCentral
34.
go back to reference Janssen HL, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368(18):1685–94.CrossRefPubMed Janssen HL, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368(18):1685–94.CrossRefPubMed
36.
go back to reference Young DD, et al. Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. J Am Chem Soc. 2010;132(23):7976–81.CrossRefPubMed Young DD, et al. Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. J Am Chem Soc. 2010;132(23):7976–81.CrossRefPubMed
Metadata
Title
MiR-145 functions as a tumor suppressor via regulating angiopoietin-2 in pancreatic cancer cells
Authors
Hao Wang
Cheng Hang
Xi-Long Ou
Jin-Shan Nie
Yi-Tao Ding
Shi-Gui Xue
Hua Gao
Jian-Xin Zhu
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2016
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-016-0331-4

Other articles of this Issue 1/2016

Cancer Cell International 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine