Skip to main content
Top
Published in: Cancer Cell International 1/2016

Open Access 01-12-2016 | Primary research

The histone deacetylase inhibitor PCI-24781 as a putative radiosensitizer in pediatric glioblastoma cell lines

Authors: Pamela Viani de Andrade, Augusto Faria Andrade, Rosane Gomes de Paula Queiroz, Carlos Alberto Scrideli, Luiz Gonzaga Tone, Elvis Terci Valera

Published in: Cancer Cell International | Issue 1/2016

Login to get access

Abstract

Background

Glioblastoma (GBM) is considered to be one of the most aggressive tumors of the central nervous system (CNS). Even with the use of modern treatment protocols, the prognosis remains reserved, with children with GBM having a mean survival of 12–15 months.

Methods

In the present study we investigated the potential radiosensitizing effect of PCI-24781, a potent pan-histone deacetylase inhibitor (HDACi), on the SF188 and KNS42 cell lines of pediatric GBM. Cell proliferation rates, clonogenicity and apoptosis were compared in the presence and absence of treatment with PCI-24781. We also compared the clonogenicity rates of the irradiated SF188 and KNS42 cell lines with or without previous treatment with PCI-24781 at the doses of 0.25–16 μM. In addition, we investigated the effects of PCI-24781 on the expression of some of the main proteins responsible for the repair of double-strand DNA breaks caused by irradiation.

Results

The inhibitor blocked cell proliferation, induced death by apoptosis and reduced the colony forming capacity of the cell lines, both of them showing a significant decrease of colony formation at all irradiation doses. The expression of the Rad51 protein, important for the homologous recombination (HR) repair pathway, and of the DNA-PKcs, Ku70 and Ku86 proteins, important for the non-homologous end joining (NHEJ) repair pathway, was more reduced when the irradiated cell line was previously treated with PCI-24781 than when it was treated exclusively with radiotherapy.

Conclusions

These findings demonstrate that HDACi PCI-24781 has a radiosensitizing profile that compromises the repair of double-strand DNA breaks in cells of pediatric GBM treated with radiotherapy.
Literature
1.
go back to reference Brandes AA, Tososni A, Enrico F. Glioblastoma in adults. Critic Rev Oncol Hematol. 2008;67:139–52.CrossRef Brandes AA, Tososni A, Enrico F. Glioblastoma in adults. Critic Rev Oncol Hematol. 2008;67:139–52.CrossRef
2.
go back to reference Song KS, Phi JH, Cho BK, Wang KC, Lee JY, Kim DG, et al. Long-term outcomes in children with glioblastoma. J Neurosurg Pediatr. 2010;6(2):145–9.CrossRefPubMed Song KS, Phi JH, Cho BK, Wang KC, Lee JY, Kim DG, et al. Long-term outcomes in children with glioblastoma. J Neurosurg Pediatr. 2010;6(2):145–9.CrossRefPubMed
3.
go back to reference Chang JE, Khuntia D, Robins HI, Mehta MP. Radiotherapy and radiosensitizers in the treatment of glioblastoma multiforme. Clin Adv Hematol Oncol. 2007;5(11):894–915.PubMed Chang JE, Khuntia D, Robins HI, Mehta MP. Radiotherapy and radiosensitizers in the treatment of glioblastoma multiforme. Clin Adv Hematol Oncol. 2007;5(11):894–915.PubMed
5.
go back to reference Minniti G, Muni R, Lanzetta G, Marchetti P, Enrici RM. Chemotherapy for glioblastoma: current treatment and future perspectives for cytotoxic and targeted agents. Anticancer Res. 2009;29(12):5171–84.PubMed Minniti G, Muni R, Lanzetta G, Marchetti P, Enrici RM. Chemotherapy for glioblastoma: current treatment and future perspectives for cytotoxic and targeted agents. Anticancer Res. 2009;29(12):5171–84.PubMed
8.
go back to reference Broniscer A, Chintagumpala M, Fouladi M, Krasin MJ, Kocak M, Bowers DC, et al. Temozolomide after radiotherapy for newly diagnosed high-grade glioma and unfavorable low-grade glioma in children. J Neurooncol. 2006;76:313–9.CrossRefPubMed Broniscer A, Chintagumpala M, Fouladi M, Krasin MJ, Kocak M, Bowers DC, et al. Temozolomide after radiotherapy for newly diagnosed high-grade glioma and unfavorable low-grade glioma in children. J Neurooncol. 2006;76:313–9.CrossRefPubMed
9.
go back to reference Nicholson HS, Kretschmar CS, Krailo M, Bernstein M, Kadota R, Fort D, et al. Phase 2 study of temozolomide in children and adolescents with recurrent central nervous system tumors: a report from the Children’s Oncology Group. Cancer. 2007;110:1542–50.CrossRefPubMed Nicholson HS, Kretschmar CS, Krailo M, Bernstein M, Kadota R, Fort D, et al. Phase 2 study of temozolomide in children and adolescents with recurrent central nervous system tumors: a report from the Children’s Oncology Group. Cancer. 2007;110:1542–50.CrossRefPubMed
10.
go back to reference Packer RJ, Boyett JM, Zimmerman RA, Rorke LB, Kaplan AM, Albright AL, et al. Hyperfractionated radiation therapy (72 Gy) for children with brain stem gliomas. A Childrens Cancer Group Phase I/II Trial. Cancer. 1993;72(4):1414–21.CrossRefPubMed Packer RJ, Boyett JM, Zimmerman RA, Rorke LB, Kaplan AM, Albright AL, et al. Hyperfractionated radiation therapy (72 Gy) for children with brain stem gliomas. A Childrens Cancer Group Phase I/II Trial. Cancer. 1993;72(4):1414–21.CrossRefPubMed
11.
go back to reference de Ville de Goyet M, Moniotte S, Brichard B. Cardiotoxicity of childhood cancer treatment: update and current knowledge on long-term follow-up. Pediatr Hematol Oncol. 2012;29(5):395–414.CrossRefPubMed de Ville de Goyet M, Moniotte S, Brichard B. Cardiotoxicity of childhood cancer treatment: update and current knowledge on long-term follow-up. Pediatr Hematol Oncol. 2012;29(5):395–414.CrossRefPubMed
12.
go back to reference Lee SE, Moore JK, Holmes A, Umezu K, Kolodner RD, Haber JE. Saccharomyces Ku70. mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell. 1998;94(3):399–409.CrossRefPubMed Lee SE, Moore JK, Holmes A, Umezu K, Kolodner RD, Haber JE. Saccharomyces Ku70. mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell. 1998;94(3):399–409.CrossRefPubMed
13.
14.
go back to reference Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001;27(3):247–54.CrossRefPubMed Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001;27(3):247–54.CrossRefPubMed
15.
16.
go back to reference Delacôte F, Lopez BS. Importance of the cell cycle phase for the choice of the appropriate DSB repair pathway, for genome stability maintenance: the trans-S double-strand break repair model. Cell Cycle. 2008;7:33–8.CrossRefPubMed Delacôte F, Lopez BS. Importance of the cell cycle phase for the choice of the appropriate DSB repair pathway, for genome stability maintenance: the trans-S double-strand break repair model. Cell Cycle. 2008;7:33–8.CrossRefPubMed
17.
go back to reference Yan W, Zhang W, Jiang T. Oncogene addiction in gliomas: implications for molecular target therapy. J Exp Clin Cancer Res. 2011;30(58):1–5.CrossRef Yan W, Zhang W, Jiang T. Oncogene addiction in gliomas: implications for molecular target therapy. J Exp Clin Cancer Res. 2011;30(58):1–5.CrossRef
18.
go back to reference Singh MM, Manton CA, Bhat KP, Tsai WW, Aldape K, Barton MC, et al. Inhibition of LSD1 sensitizes glioblastomas cells to histone deacetylase inhibitors. Neuro Oncol. 2011;13(8):894–903.CrossRefPubMedPubMedCentral Singh MM, Manton CA, Bhat KP, Tsai WW, Aldape K, Barton MC, et al. Inhibition of LSD1 sensitizes glioblastomas cells to histone deacetylase inhibitors. Neuro Oncol. 2011;13(8):894–903.CrossRefPubMedPubMedCentral
22.
go back to reference Lu Q, Qiu X, Hu N, Wen H, Su Y, Richardson BC. Epigenetics, disease, and therapeutic interventions. Ageing Res Rev. 2006;5:449–67.CrossRefPubMed Lu Q, Qiu X, Hu N, Wen H, Su Y, Richardson BC. Epigenetics, disease, and therapeutic interventions. Ageing Res Rev. 2006;5:449–67.CrossRefPubMed
23.
go back to reference Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol. 2007;1:19–25.CrossRefPubMed Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol. 2007;1:19–25.CrossRefPubMed
24.
go back to reference Delcuve GP, Khan DH, Davie JR. Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Clin Epigenetics. 2012;4(1):5.CrossRefPubMedPubMedCentral Delcuve GP, Khan DH, Davie JR. Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Clin Epigenetics. 2012;4(1):5.CrossRefPubMedPubMedCentral
25.
go back to reference Masetti R, Serravalle S, Biagi C, Pession A. The role of HDACs inhibitors in childhood and adolescence acute leukemias. J Biomed Biotechnol. 2011;148046:1–9.CrossRef Masetti R, Serravalle S, Biagi C, Pession A. The role of HDACs inhibitors in childhood and adolescence acute leukemias. J Biomed Biotechnol. 2011;148046:1–9.CrossRef
27.
go back to reference Hildmann C, Riester D, Schwienhorst A. Histone deacetylases–an important class of cellular regulators with a variety of functions. Appl Microbiol Biotechnol. 2007;75(3):487–97.CrossRefPubMed Hildmann C, Riester D, Schwienhorst A. Histone deacetylases–an important class of cellular regulators with a variety of functions. Appl Microbiol Biotechnol. 2007;75(3):487–97.CrossRefPubMed
28.
go back to reference Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006;6:38–51.CrossRefPubMed Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006;6:38–51.CrossRefPubMed
29.
go back to reference Bax DA, Little SE, Gaspar N, Perryman L, Marshall L, Viana-Pereira M, et al. Molecular and phenotypic characterisation of paediatric glioma cell lines as models for preclinical drug development. PLoS One. 2009;4(4):e5209.CrossRefPubMedPubMedCentral Bax DA, Little SE, Gaspar N, Perryman L, Marshall L, Viana-Pereira M, et al. Molecular and phenotypic characterisation of paediatric glioma cell lines as models for preclinical drug development. PLoS One. 2009;4(4):e5209.CrossRefPubMedPubMedCentral
30.
go back to reference Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.CrossRefPubMed Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.CrossRefPubMed
31.
go back to reference Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.CrossRefPubMed Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.CrossRefPubMed
32.
go back to reference Sambrook J, Fritschi EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press; 1989. Sambrook J, Fritschi EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press; 1989.
33.
go back to reference Robey RW, Chakraborty AR, Basseville A, Luchenko V, Bahr J, Zhan Z, et al. Histone deacetylase inhibitors: emerging mechanisms of resistance. Mol Pharm. 2011;8(6):2021–31.CrossRefPubMedPubMedCentral Robey RW, Chakraborty AR, Basseville A, Luchenko V, Bahr J, Zhan Z, et al. Histone deacetylase inhibitors: emerging mechanisms of resistance. Mol Pharm. 2011;8(6):2021–31.CrossRefPubMedPubMedCentral
35.
go back to reference Lopez G, Liu J, Ren W, Wei W, Wang S, Lahat G, et al. Combining PCI-24781, a novel histone deacetylase inhibitor, with chemotherapy for the treatment of soft tissue sarcoma. Clin Cancer Res. 2009;15(10):3472–83.CrossRefPubMed Lopez G, Liu J, Ren W, Wei W, Wang S, Lahat G, et al. Combining PCI-24781, a novel histone deacetylase inhibitor, with chemotherapy for the treatment of soft tissue sarcoma. Clin Cancer Res. 2009;15(10):3472–83.CrossRefPubMed
36.
go back to reference Yang C, Choy E, Hornicek FJ, Wood KB, Schwab JH, Liu X, et al. Histone deacetylase inhibitor (HDACI) PCI-24781 potentiates cytotoxic effects of doxorubicin in bone sarcomacells. Cancer Chemother Pharmacol. 2011;67(2):439–46.CrossRefPubMed Yang C, Choy E, Hornicek FJ, Wood KB, Schwab JH, Liu X, et al. Histone deacetylase inhibitor (HDACI) PCI-24781 potentiates cytotoxic effects of doxorubicin in bone sarcomacells. Cancer Chemother Pharmacol. 2011;67(2):439–46.CrossRefPubMed
37.
go back to reference Yang C, Choy E, Hornicek FJ, Wood KB, Schwab JH, Liu X, et al. Histone deacetylase inhibitor PCI-24781 enhances chemotherapy-induced apoptosis in multidrug-resistant sarcoma cell lines. Anticancer Res. 2011;31(4):1115–23.PubMedPubMedCentral Yang C, Choy E, Hornicek FJ, Wood KB, Schwab JH, Liu X, et al. Histone deacetylase inhibitor PCI-24781 enhances chemotherapy-induced apoptosis in multidrug-resistant sarcoma cell lines. Anticancer Res. 2011;31(4):1115–23.PubMedPubMedCentral
38.
go back to reference He WL, Li YH, Hou WJ, Ke ZF, Chen XL, Lu LY, et al. RAD51 potentiates synergistic effects of chemotherapy with PCI-24781 and cis-diamminedichloroplatinum on gastric cancer. World Gastroenterol. 2014;20(29):10094–107.CrossRef He WL, Li YH, Hou WJ, Ke ZF, Chen XL, Lu LY, et al. RAD51 potentiates synergistic effects of chemotherapy with PCI-24781 and cis-diamminedichloroplatinum on gastric cancer. World Gastroenterol. 2014;20(29):10094–107.CrossRef
39.
go back to reference Zhan Q, Tsai S, Lu Y, Wang C, Kwan Y, Ngai S. RuvBL2 is involved in histone deacetylase inhibitor PCI-24781-induced cell death in SK-N-DZ neuroblastoma cells. PLoS One. 2013;8(8):e71663.CrossRefPubMedPubMedCentral Zhan Q, Tsai S, Lu Y, Wang C, Kwan Y, Ngai S. RuvBL2 is involved in histone deacetylase inhibitor PCI-24781-induced cell death in SK-N-DZ neuroblastoma cells. PLoS One. 2013;8(8):e71663.CrossRefPubMedPubMedCentral
40.
go back to reference Bhalla S, Balasubramanian S, David K, Sirisawad M, Buggy J, Mauro L, et al. PCI-24781 induces caspase and reactive oxygen species-dependent apoptosis through NF-kappaB mechanisms and is synergistic with bortezomib in lymphoma cells. Clin Cancer Res. 2009;15(10):3354–65.CrossRefPubMedPubMedCentral Bhalla S, Balasubramanian S, David K, Sirisawad M, Buggy J, Mauro L, et al. PCI-24781 induces caspase and reactive oxygen species-dependent apoptosis through NF-kappaB mechanisms and is synergistic with bortezomib in lymphoma cells. Clin Cancer Res. 2009;15(10):3354–65.CrossRefPubMedPubMedCentral
41.
go back to reference Kitamura T, Connolly K, Ruffino L, Ajiki T, Lueckgen A, DiGiovanni J, et al. The therapeutic effect of histone deacetylase inhibitor PCI-24781 on gallbladder carcinoma in BK5.erbB2 mice. J Hepatol. 2012;57(1):84–91.CrossRefPubMedPubMedCentral Kitamura T, Connolly K, Ruffino L, Ajiki T, Lueckgen A, DiGiovanni J, et al. The therapeutic effect of histone deacetylase inhibitor PCI-24781 on gallbladder carcinoma in BK5.erbB2 mice. J Hepatol. 2012;57(1):84–91.CrossRefPubMedPubMedCentral
42.
go back to reference Gressette M, Vérillaud B, Jimenez-Pailhès AS, Lelièvre H, Lo KW, Ferrand FR, et al. Treatment of nasopharyngeal carcinoma with the histone deacetylase inhibitor abexinostat: cooperative effects with cisplatin and radiotherapy on patient-derived xenografts. PLoS One. 2014;9(3):e91325.CrossRefPubMedPubMedCentral Gressette M, Vérillaud B, Jimenez-Pailhès AS, Lelièvre H, Lo KW, Ferrand FR, et al. Treatment of nasopharyngeal carcinoma with the histone deacetylase inhibitor abexinostat: cooperative effects with cisplatin and radiotherapy on patient-derived xenografts. PLoS One. 2014;9(3):e91325.CrossRefPubMedPubMedCentral
43.
go back to reference Dalvai M, Bystricky K. The role of histone modifications and variants in regulating gene expression in breast cancer. J Mammary Gland Biol Neoplasia. 2010;15(1):19–33.CrossRefPubMed Dalvai M, Bystricky K. The role of histone modifications and variants in regulating gene expression in breast cancer. J Mammary Gland Biol Neoplasia. 2010;15(1):19–33.CrossRefPubMed
44.
go back to reference Rivera-Del VN, Gao S, Miller CP, Fulbright J, Gonzales C, Sirisawad M, Steggerda S, et al. PCI-24781, a novel hydroxamic acid HDAC inhibitor, exerts cytotoxicity and histone alterations via caspase-8 and FADD in leukemia cells. Int J Cell Biol. 2010;2010:207420. Rivera-Del VN, Gao S, Miller CP, Fulbright J, Gonzales C, Sirisawad M, Steggerda S, et al. PCI-24781, a novel hydroxamic acid HDAC inhibitor, exerts cytotoxicity and histone alterations via caspase-8 and FADD in leukemia cells. Int J Cell Biol. 2010;2010:207420.
45.
go back to reference Fouladi M, Park JR, Stewart CF, Gilbertson RJ, Schaiquevich P, Sun J, et al. Pediatric phase I trial and pharmacokinetic study of vorinostat: a Children’s Oncology Group phase I consortium report. J Clin Oncol. 2010;28(22):3623–9.CrossRefPubMedPubMedCentral Fouladi M, Park JR, Stewart CF, Gilbertson RJ, Schaiquevich P, Sun J, et al. Pediatric phase I trial and pharmacokinetic study of vorinostat: a Children’s Oncology Group phase I consortium report. J Clin Oncol. 2010;28(22):3623–9.CrossRefPubMedPubMedCentral
46.
go back to reference Su JM, Li XN, Thompson P, Ou CN, Ingle AM, Russell H, et al. Phase 1 study of valproic acid in pediatric patients with refractory solid or CNS tumors: a children’s oncology group report. Clin Cancer Res. 2011;17(3):589–97.CrossRefPubMedPubMedCentral Su JM, Li XN, Thompson P, Ou CN, Ingle AM, Russell H, et al. Phase 1 study of valproic acid in pediatric patients with refractory solid or CNS tumors: a children’s oncology group report. Clin Cancer Res. 2011;17(3):589–97.CrossRefPubMedPubMedCentral
47.
go back to reference Hummel TR, Wagner L, Ahern C, Fouladi M, Reid JM, McGovern RM, et al. A pediatric phase 1 trial of vorinostat and temozolomide in relapsed or refractory primary brain or spinal cord tumors: a Children’s Oncology Group phase 1 consortium study. Pediatr Blood Cancer. 2013;60(9):1452–7.CrossRefPubMedPubMedCentral Hummel TR, Wagner L, Ahern C, Fouladi M, Reid JM, McGovern RM, et al. A pediatric phase 1 trial of vorinostat and temozolomide in relapsed or refractory primary brain or spinal cord tumors: a Children’s Oncology Group phase 1 consortium study. Pediatr Blood Cancer. 2013;60(9):1452–7.CrossRefPubMedPubMedCentral
48.
go back to reference Masoudi A, Elopre M, Amini E, Nagel ME, Ater JL, Gopalakrishnan V, et al. Influence of valproic acid on outcome of high-grade gliomas in children. Anticancer Res. 2008;28(4C):2437–42.PubMed Masoudi A, Elopre M, Amini E, Nagel ME, Ater JL, Gopalakrishnan V, et al. Influence of valproic acid on outcome of high-grade gliomas in children. Anticancer Res. 2008;28(4C):2437–42.PubMed
49.
go back to reference Wolff JE, Kramm C, Kortmann RD, Pietsch T, Rutkowski S, Jorch N, et al. Valproic acid was well tolerated in heavily pretreated pediatric patients with high-grade glioma. J Neurooncol. 2008;90(3):309–14.CrossRefPubMed Wolff JE, Kramm C, Kortmann RD, Pietsch T, Rutkowski S, Jorch N, et al. Valproic acid was well tolerated in heavily pretreated pediatric patients with high-grade glioma. J Neurooncol. 2008;90(3):309–14.CrossRefPubMed
50.
go back to reference Chen X, Wong P, Radany E, Wong JY. HDAC inhibitor, valproic acid, induces p53-dependent radiosensitization of colon cancer cells. Cancer Biother Radiopharm. 2009;24(6):689–99.CrossRefPubMedPubMedCentral Chen X, Wong P, Radany E, Wong JY. HDAC inhibitor, valproic acid, induces p53-dependent radiosensitization of colon cancer cells. Cancer Biother Radiopharm. 2009;24(6):689–99.CrossRefPubMedPubMedCentral
51.
go back to reference Munshi A, Kurland JF, Nishikawa T, Tanaka T, Hobbs ML, Tucker SL, et al. Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin Cancer Res. 2005;11:4912–22.CrossRefPubMed Munshi A, Kurland JF, Nishikawa T, Tanaka T, Hobbs ML, Tucker SL, et al. Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin Cancer Res. 2005;11:4912–22.CrossRefPubMed
52.
go back to reference Harasaki Y, Waziri A. Potential usefulness of radiosensitizers in glioblastoma. Neurosurg Clin N Am. 2012;23(3):429–37.CrossRefPubMed Harasaki Y, Waziri A. Potential usefulness of radiosensitizers in glioblastoma. Neurosurg Clin N Am. 2012;23(3):429–37.CrossRefPubMed
53.
go back to reference Adimoolam S, Sirisawad M, Chen J, Thiemann P, Ford JM, Buggy JJ. HDAC inhibitor PCI-24781 decreases RAD51 expression and inhibits homologous recombination. Proc Natl Acad Sci USA. 2007;104:19482–7.CrossRefPubMedPubMedCentral Adimoolam S, Sirisawad M, Chen J, Thiemann P, Ford JM, Buggy JJ. HDAC inhibitor PCI-24781 decreases RAD51 expression and inhibits homologous recombination. Proc Natl Acad Sci USA. 2007;104:19482–7.CrossRefPubMedPubMedCentral
54.
go back to reference Chen X, Wong P, Radany EH, Stark JM, Laulier C, Wong JY. Suberoylanilide hydroxamic acid as a radiosensitizer through modulation of RAD51 protein and inhibition of homology-directed repair in multiple myeloma. Mol Cancer Res. 2012;10(8):1052–64.CrossRefPubMed Chen X, Wong P, Radany EH, Stark JM, Laulier C, Wong JY. Suberoylanilide hydroxamic acid as a radiosensitizer through modulation of RAD51 protein and inhibition of homology-directed repair in multiple myeloma. Mol Cancer Res. 2012;10(8):1052–64.CrossRefPubMed
55.
go back to reference Blattmann C, Oertel S, Ehemann V, Thiemann M, Huber PE, Bischof M, et al. Enhancement of radiation response in osteosarcoma and rhabomyosarcoma cell lines by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys. 2010;78(1):237–45.CrossRefPubMed Blattmann C, Oertel S, Ehemann V, Thiemann M, Huber PE, Bischof M, et al. Enhancement of radiation response in osteosarcoma and rhabomyosarcoma cell lines by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys. 2010;78(1):237–45.CrossRefPubMed
56.
go back to reference Xiao W, Graham PH, Hao J, Chang L, Ni J, Power CA, et al. Combination therapy with the histone deacetylase inhibitor LBH589 and radiation is an effective regimen for prostate cancer cells. PLoS One. 2013;8(8):e74253.CrossRefPubMedPubMedCentral Xiao W, Graham PH, Hao J, Chang L, Ni J, Power CA, et al. Combination therapy with the histone deacetylase inhibitor LBH589 and radiation is an effective regimen for prostate cancer cells. PLoS One. 2013;8(8):e74253.CrossRefPubMedPubMedCentral
57.
go back to reference Raderschall E, Stout K, Freier S, Suckow V, Schweiger S, Haaf T. Elevated levels of Rad51 recombination protein in tumor cells. Cancer Res. 2002;62(1):219–25.PubMed Raderschall E, Stout K, Freier S, Suckow V, Schweiger S, Haaf T. Elevated levels of Rad51 recombination protein in tumor cells. Cancer Res. 2002;62(1):219–25.PubMed
58.
go back to reference Ward JF. The complexity of DNA damage: relevance to biological consequences. Int J Radiat Biol. 1994;66:427–32.CrossRefPubMed Ward JF. The complexity of DNA damage: relevance to biological consequences. Int J Radiat Biol. 1994;66:427–32.CrossRefPubMed
59.
go back to reference Richardson C, Jasin M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature. 2000;405(6787):697–700.CrossRefPubMed Richardson C, Jasin M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature. 2000;405(6787):697–700.CrossRefPubMed
60.
go back to reference Daido S, Yamamoto A, Fujiwara K, Sawaya R, Kondo S, Kondo Y. Inhibition of the DNA-dependent protein kinase catalytic subunit radiosensitizes malignant glioma cells by inducing autophagy. Cancer Res. 2005;65:4368–75.CrossRefPubMed Daido S, Yamamoto A, Fujiwara K, Sawaya R, Kondo S, Kondo Y. Inhibition of the DNA-dependent protein kinase catalytic subunit radiosensitizes malignant glioma cells by inducing autophagy. Cancer Res. 2005;65:4368–75.CrossRefPubMed
61.
go back to reference Sak A, Stueben G, Groneberg M, Bocker W, Stuschke M. Targeting of Rad51-dependent homologous recombination: implications for the radiation sensitivity of human lung cancer cell lines. Br J Cancer. 2005;92:1089–97.CrossRefPubMedPubMedCentral Sak A, Stueben G, Groneberg M, Bocker W, Stuschke M. Targeting of Rad51-dependent homologous recombination: implications for the radiation sensitivity of human lung cancer cell lines. Br J Cancer. 2005;92:1089–97.CrossRefPubMedPubMedCentral
62.
go back to reference Chinnaiyan P, Vallabhaneni G, Armstrong E, Huang SM, Harari PM. Modulation of radiation response by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys. 2005;62:223–9.CrossRefPubMed Chinnaiyan P, Vallabhaneni G, Armstrong E, Huang SM, Harari PM. Modulation of radiation response by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys. 2005;62:223–9.CrossRefPubMed
63.
go back to reference Munshi A, Tanaka T, Hobbs ML, Tucker SL, Richon VM, Meyn RE. Vorinostat, a histone deacetylase inhibitor, enhances the response of human tumor cells to ionizing radiation through prolongation of gamma-H2AX foci. Mol Cancer Ther. 2006;5:1967–74.CrossRefPubMed Munshi A, Tanaka T, Hobbs ML, Tucker SL, Richon VM, Meyn RE. Vorinostat, a histone deacetylase inhibitor, enhances the response of human tumor cells to ionizing radiation through prolongation of gamma-H2AX foci. Mol Cancer Ther. 2006;5:1967–74.CrossRefPubMed
64.
65.
go back to reference Jeggo PA. Identification of genes involved in repair of DNA doublestrand breaks in mammalian cells. Radiat Res. 1998;150:80–91.CrossRef Jeggo PA. Identification of genes involved in repair of DNA doublestrand breaks in mammalian cells. Radiat Res. 1998;150:80–91.CrossRef
Metadata
Title
The histone deacetylase inhibitor PCI-24781 as a putative radiosensitizer in pediatric glioblastoma cell lines
Authors
Pamela Viani de Andrade
Augusto Faria Andrade
Rosane Gomes de Paula Queiroz
Carlos Alberto Scrideli
Luiz Gonzaga Tone
Elvis Terci Valera
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2016
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-016-0306-5

Other articles of this Issue 1/2016

Cancer Cell International 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine