Skip to main content
Top
Published in: Cancer Cell International 1/2015

Open Access 01-12-2015 | Primary research

Etoposide induces cell death via mitochondrial-dependent actions of p53

Authors: Sarwat Jamil, Irene Lam, Maryam Majd, Shu-Huei Tsai, Vincent Duronio

Published in: Cancer Cell International | Issue 1/2015

Login to get access

Abstract

Background

Etoposide has been used clinically in cancer treatment, as well as in numerous research studies, for many years. However, there is incomplete information about its exact mechanism of action in induction of cell death.

Methods

Etoposide was compared at various concentrations to characterize the mechanisms by which it induces cell death. We investigated its effects on mouse embryonic fibroblasts (MEFs) and focused on both transcriptional and non-transcriptional responses of p53.

Results

Here we demonstrate that treatment of MEFs with higher concentrations of etoposide induce apoptosis and activate the transcription-dependent functions of p53. Interestingly, lower concentrations of etoposide also induced apoptosis, but without any evidence of p53-dependent transcription up-regulation. Treatment of MEFs with an inhibitor of p53, Pifithrin-α, blocked p53-dependent transcription but failed to rescue the cells from etoposide-induced apoptosis. Treatment with PES, which inhibits the mitochondrial arm of the p53 pathway inhibited etoposide-induced cell death at all concentrations tested.

Conclusions

We have demonstrated that transcriptional functions of p53 are dispensable for etoposide-induced cell death. The more recently characterized effects of p53 at the mitochondria, likely involving its interactions with BCL-2 family members, are thus more important for etoposide’s actions.
Appendix
Available only for authorised users
Literature
3.
go back to reference Haldar S, Negrini M, Monne M, Sabbioni S, Croce CM (1994) Down-regulation of bcl-2 by p53 in breast cancer cells. Cancer Res 54(8):2095–2097PubMed Haldar S, Negrini M, Monne M, Sabbioni S, Croce CM (1994) Down-regulation of bcl-2 by p53 in breast cancer cells. Cancer Res 54(8):2095–2097PubMed
4.
go back to reference Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA et al (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9(6):1799–1805PubMed Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA et al (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9(6):1799–1805PubMed
6.
go back to reference Miyashita T, Harigai M, Hanada M, Reed JC (1994) Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res 54(12):3131–3135PubMed Miyashita T, Harigai M, Hanada M, Reed JC (1994) Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res 54(12):3131–3135PubMed
9.
go back to reference Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M et al (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303(5660):1010–1014. doi:10.1126/science.1092734 PubMedCrossRef Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M et al (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303(5660):1010–1014. doi:10.​1126/​science.​1092734 PubMedCrossRef
10.
go back to reference Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR (2005) PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309(5741):1732–1735PubMedCrossRef Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR (2005) PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309(5741):1732–1735PubMedCrossRef
12.
go back to reference Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV et al (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285(5434):1733–1737PubMedCrossRef Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV et al (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285(5434):1733–1737PubMedCrossRef
13.
go back to reference Strom E, Sathe S, Komarov PG, Chernova OB, Pavlovska I, Shyshynova I et al (2006) Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol 2(9):474–479. doi:10.1038/nchembio809 PubMedCrossRef Strom E, Sathe S, Komarov PG, Chernova OB, Pavlovska I, Shyshynova I et al (2006) Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol 2(9):474–479. doi:10.​1038/​nchembio809 PubMedCrossRef
15.
go back to reference Burden DA, Kingma PS, Froelich-Ammon SJ, Bjornsti MA, Patchan MW, Thompson RB et al (1996) Topoisomerase II· Etoposide interactions direct the formation of drug-induced enzyme-DNA cleavage complexes. J Biol Chem 271(46):29238–29244PubMedCrossRef Burden DA, Kingma PS, Froelich-Ammon SJ, Bjornsti MA, Patchan MW, Thompson RB et al (1996) Topoisomerase II· Etoposide interactions direct the formation of drug-induced enzyme-DNA cleavage complexes. J Biol Chem 271(46):29238–29244PubMedCrossRef
16.
go back to reference Clifford B, Beljin M, Stark GR, Taylor WR (2003) G2 arrest in response to topoisomerase II inhibitors: the role of p53. Cancer Res 63(14):4074–4081PubMed Clifford B, Beljin M, Stark GR, Taylor WR (2003) G2 arrest in response to topoisomerase II inhibitors: the role of p53. Cancer Res 63(14):4074–4081PubMed
18.
go back to reference Relling MV, Mahmoud HH, Pui CH, Sandlund JT, Rivera GK, Ribeiro RC et al (1996) Etoposide achieves potentially cytotoxic concentrations in CSF of children with acute lymphoblastic leukemia. J Clin Oncol 14(2):399–404PubMed Relling MV, Mahmoud HH, Pui CH, Sandlund JT, Rivera GK, Ribeiro RC et al (1996) Etoposide achieves potentially cytotoxic concentrations in CSF of children with acute lymphoblastic leukemia. J Clin Oncol 14(2):399–404PubMed
19.
go back to reference Hande KR, Wedlund PJ, Noone RM, Wilkinson GR, Greco FA, Wolff SN (1984) Pharmacokinetics of high-dose etoposide (VP-16-213) administered to cancer patients. Cancer Res 44(1):379–382PubMed Hande KR, Wedlund PJ, Noone RM, Wilkinson GR, Greco FA, Wolff SN (1984) Pharmacokinetics of high-dose etoposide (VP-16-213) administered to cancer patients. Cancer Res 44(1):379–382PubMed
20.
go back to reference Minami H, Ando Y, Sakai S, Shimokata K (1995) Clinical and pharmacologic analysis of hyperfractionated daily oral etoposide. J Clin Oncol 13(1):191–199PubMed Minami H, Ando Y, Sakai S, Shimokata K (1995) Clinical and pharmacologic analysis of hyperfractionated daily oral etoposide. J Clin Oncol 13(1):191–199PubMed
21.
22.
go back to reference Komarova EA, Gudkov AV (2001) Chemoprotection from p53-dependent apoptosis: potential clinical applications of the p53 inhibitors. Biochem Pharmacol 62(6):657–667PubMedCrossRef Komarova EA, Gudkov AV (2001) Chemoprotection from p53-dependent apoptosis: potential clinical applications of the p53 inhibitors. Biochem Pharmacol 62(6):657–667PubMedCrossRef
23.
go back to reference Murphy PJ, Galigniana MD, Morishima Y, Harrell JM, Kwok RP, Ljungman M et al (2004) Pifithrin-alpha inhibits p53 signaling after interaction of the tumor suppressor protein with hsp90 and its nuclear translocation. J Biol Chem 279(29):30195–30201. doi:10.1074/jbc.M403539200 PubMedCrossRef Murphy PJ, Galigniana MD, Morishima Y, Harrell JM, Kwok RP, Ljungman M et al (2004) Pifithrin-alpha inhibits p53 signaling after interaction of the tumor suppressor protein with hsp90 and its nuclear translocation. J Biol Chem 279(29):30195–30201. doi:10.​1074/​jbc.​M403539200 PubMedCrossRef
24.
go back to reference Sohn D, Graupner V, Neise D, Essmann F, Schulze-Osthoff K, Janicke RU (2009) Pifithrin-alpha protects against DNA damage-induced apoptosis downstream of mitochondria independent of p53. Cell Death Differ 16(6):869–878. doi:10.1038/cdd.2009.17 PubMedCrossRef Sohn D, Graupner V, Neise D, Essmann F, Schulze-Osthoff K, Janicke RU (2009) Pifithrin-alpha protects against DNA damage-induced apoptosis downstream of mitochondria independent of p53. Cell Death Differ 16(6):869–878. doi:10.​1038/​cdd.​2009.​17 PubMedCrossRef
25.
go back to reference Gary RK, Jensen DA (2005) The p53 inhibitor pifithrin-alpha forms a sparingly soluble derivative via intramolecular cyclization under physiological conditions. Mol Pharm 2(6):462–474. doi:10.1021/mp050055d PubMedCrossRef Gary RK, Jensen DA (2005) The p53 inhibitor pifithrin-alpha forms a sparingly soluble derivative via intramolecular cyclization under physiological conditions. Mol Pharm 2(6):462–474. doi:10.​1021/​mp050055d PubMedCrossRef
28.
go back to reference Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11(3):577–590PubMedCrossRef Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11(3):577–590PubMedCrossRef
29.
31.
go back to reference Ding H, Duan W, Zhu WG, Ju R, Srinivasan K, Otterson GA et al (2003) P21 response to DNA damage induced by genistein and etoposide in human lung cancer cells. Biochem Biophys Res Commun. 305(4):950–956PubMedCrossRef Ding H, Duan W, Zhu WG, Ju R, Srinivasan K, Otterson GA et al (2003) P21 response to DNA damage induced by genistein and etoposide in human lung cancer cells. Biochem Biophys Res Commun. 305(4):950–956PubMedCrossRef
32.
go back to reference Nilsson I, Hoffmann I (2000) Cell cycle regulation by the Cdc25 phosphatase family. Prog Cell Cycle Res 4:107–114PubMedCrossRef Nilsson I, Hoffmann I (2000) Cell cycle regulation by the Cdc25 phosphatase family. Prog Cell Cycle Res 4:107–114PubMedCrossRef
39.
go back to reference Olsson A, Manzl C, Strasser A, Villunger A (2007) How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ 14(9):1561–1575. doi:10.1038/sj.cdd.4402196 PubMedCrossRef Olsson A, Manzl C, Strasser A, Villunger A (2007) How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ 14(9):1561–1575. doi:10.​1038/​sj.​cdd.​4402196 PubMedCrossRef
41.
go back to reference Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E et al (2002) MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J 21(22):6236–6245PubMedCentralPubMedCrossRef Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E et al (2002) MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J 21(22):6236–6245PubMedCentralPubMedCrossRef
42.
go back to reference Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem/FEBS 268(10):2764–2772CrossRef Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem/FEBS 268(10):2764–2772CrossRef
Metadata
Title
Etoposide induces cell death via mitochondrial-dependent actions of p53
Authors
Sarwat Jamil
Irene Lam
Maryam Majd
Shu-Huei Tsai
Vincent Duronio
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2015
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-015-0231-z

Other articles of this Issue 1/2015

Cancer Cell International 1/2015 Go to the issue

Reviewer acknowledgement

Thanking our 2014 reviewers

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine