Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2017

Open Access 01-12-2017 | Original investigation

Glycated albumin and its variability as an indicator of cardiovascular autonomic neuropathy development in type 2 diabetic patients

Authors: Ji Eun Jun, Seung-Eun Lee, You-Bin Lee, Ji Yeon Ahn, Gyuri Kim, Sang-Man Jin, Kyu Yeon Hur, Moon-Kyu Lee, Jae Hyeon Kim

Published in: Cardiovascular Diabetology | Issue 1/2017

Login to get access

Abstract

Background

We investigated whether glycated albumin (GA) and its variability are associated with cardiovascular autonomic neuropathy (CAN) and further compared their associations with glycated hemoglobin (HbA1c).

Methods

This retrospective longitudinal study included 498 type 2 diabetic patients without CAN. CAN was defined as at least two abnormal results in parasympathetic tests or presence of orthostatic hypotension. The mean, standard deviation (SD), and coefficient of variance (CV) were calculated from consecutively measured GA (median 7 times) and HbA1c levels (median 8 times) over 2 years. Logistic regression analysis was used to compare the associations between CAN and GA- or HbA1c-related parameters. Receiver operating characteristic (ROC) curve analysis was used to compare the predictive power for CAN between GA- and HbA1c-related parameters.

Results

A total of 53 subjects (10.6%) developed CAN over 2 years. The mean, SD, and CV of GA or HbA1c were significantly higher in subjects with CAN. Higher mean GA and GA variability were associated with the risk of developing CAN, independent of conventional risk factors and HbA1c. In ROC curve analysis, the SD and CV of GA showed higher predictive value for CAN compared to the SD and CV of HbA1c, whereas the predictive value of mean GA did not differ from that of mean HbA1c. The mean, SD, and CV of GA showed additive predictive power to detect CAN development along with mean HbA1c.

Conclusions

Higher serum GA and its variability are significantly associated with the risk of developing CAN. Serum GA might be a useful indicator for diabetic complications and can enhance HbA1c’s modest clinical prediction for CAN.
Appendix
Available only for authorised users
Literature
1.
go back to reference Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, Mitch W, Smith SC Jr, Sowers JR. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100(10):1134–46.CrossRefPubMed Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, Mitch W, Smith SC Jr, Sowers JR. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100(10):1134–46.CrossRefPubMed
3.
go back to reference Ceriello A, Esposito K, Piconi L, Ihnat MA, Thorpe JE, Testa R, Boemi M, Giugliano D. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes. 2008;57(5):1349–54.CrossRefPubMed Ceriello A, Esposito K, Piconi L, Ihnat MA, Thorpe JE, Testa R, Boemi M, Giugliano D. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes. 2008;57(5):1349–54.CrossRefPubMed
4.
go back to reference Lee JE. Alternative biomarkers for assessing glycemic control in diabetes: fructosamine, glycated albumin, and 1,5-anhydroglucitol. Ann Pediatr Endocrinol Metab. 2015;20(2):74–8.CrossRefPubMedPubMedCentral Lee JE. Alternative biomarkers for assessing glycemic control in diabetes: fructosamine, glycated albumin, and 1,5-anhydroglucitol. Ann Pediatr Endocrinol Metab. 2015;20(2):74–8.CrossRefPubMedPubMedCentral
5.
go back to reference Koga M. Glycated albumin; clinical usefulness. Clin Chimica Acta Int J Clin Chem. 2014;433:96–104.CrossRef Koga M. Glycated albumin; clinical usefulness. Clin Chimica Acta Int J Clin Chem. 2014;433:96–104.CrossRef
6.
go back to reference Koga M, Murai J, Morita S, Saito H, Kasayama S. Comparison of annual variability in HbA1c and glycated albumin in patients with type 1 vs. type 2 diabetes mellitus. J Diabetes Complicat. 2013;27(3):211–3.CrossRefPubMed Koga M, Murai J, Morita S, Saito H, Kasayama S. Comparison of annual variability in HbA1c and glycated albumin in patients with type 1 vs. type 2 diabetes mellitus. J Diabetes Complicat. 2013;27(3):211–3.CrossRefPubMed
7.
go back to reference Hirsch IB, Brownlee M. Beyond hemoglobin A1c–need for additional markers of risk for diabetic microvascular complications. JAMA. 2010;303(22):2291–2.CrossRefPubMed Hirsch IB, Brownlee M. Beyond hemoglobin A1c–need for additional markers of risk for diabetic microvascular complications. JAMA. 2010;303(22):2291–2.CrossRefPubMed
8.
go back to reference Pan J, Li Q, Zhang L, Jia L, Tang J, Bao Y, Jia W. Serum glycated albumin predicts the progression of diabetic retinopathy—a five year retrospective longitudinal study. J Diabetes Complicat. 2014;28(6):772–8.CrossRefPubMed Pan J, Li Q, Zhang L, Jia L, Tang J, Bao Y, Jia W. Serum glycated albumin predicts the progression of diabetic retinopathy—a five year retrospective longitudinal study. J Diabetes Complicat. 2014;28(6):772–8.CrossRefPubMed
9.
go back to reference Selvin E, Rawlings AM, Grams M, Klein R, Sharrett AR, Steffes M, Coresh J. Fructosamine and glycated albumin for risk stratification and prediction of incident diabetes and microvascular complications: a prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. Lancet Diabetes Endocrinol. 2014;2(4):279–88.CrossRefPubMedPubMedCentral Selvin E, Rawlings AM, Grams M, Klein R, Sharrett AR, Steffes M, Coresh J. Fructosamine and glycated albumin for risk stratification and prediction of incident diabetes and microvascular complications: a prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. Lancet Diabetes Endocrinol. 2014;2(4):279–88.CrossRefPubMedPubMedCentral
10.
go back to reference Wang N, Guo C, Han P, Li T. Glycated albumin indicates peripheral diabetic neuropathy. Acta Diabetol. 2016;53(6):973–9.CrossRefPubMed Wang N, Guo C, Han P, Li T. Glycated albumin indicates peripheral diabetic neuropathy. Acta Diabetol. 2016;53(6):973–9.CrossRefPubMed
11.
go back to reference Pu LJ, Lu L, Shen WF, Zhang Q, Zhang RY, Zhang JS, Hu J, Yang ZK, Ding FH, Chen QJ, et al. Increased serum glycated albumin level is associated with the presence and severity of coronary artery disease in type 2 diabetic patients. Circ J Off J Japn Circ Soc. 2007;71(7):1067–73. Pu LJ, Lu L, Shen WF, Zhang Q, Zhang RY, Zhang JS, Hu J, Yang ZK, Ding FH, Chen QJ, et al. Increased serum glycated albumin level is associated with the presence and severity of coronary artery disease in type 2 diabetic patients. Circ J Off J Japn Circ Soc. 2007;71(7):1067–73.
12.
go back to reference Sato Y, Nagao M, Asai A, Nakajima Y, Takaya M, Takeichi N, Takemitsu S, Sudo M, Kano-Wakakuri T, Ishizaki A, et al. Association of glycated albumin with the presence of carotid plaque in patients with type 2 diabetes. J Diabetes Investig. 2013;4(6):634–9.CrossRefPubMedPubMedCentral Sato Y, Nagao M, Asai A, Nakajima Y, Takaya M, Takeichi N, Takemitsu S, Sudo M, Kano-Wakakuri T, Ishizaki A, et al. Association of glycated albumin with the presence of carotid plaque in patients with type 2 diabetes. J Diabetes Investig. 2013;4(6):634–9.CrossRefPubMedPubMedCentral
13.
go back to reference Jun JE, Jin SM, Baek J, Oh S, Hur KY, Lee MS, Lee MK, Kim JH. The association between glycemic variability and diabetic cardiovascular autonomic neuropathy in patients with type 2 diabetes. Cardiovasc Diabetol. 2015;14:70.CrossRefPubMedPubMedCentral Jun JE, Jin SM, Baek J, Oh S, Hur KY, Lee MS, Lee MK, Kim JH. The association between glycemic variability and diabetic cardiovascular autonomic neuropathy in patients with type 2 diabetes. Cardiovasc Diabetol. 2015;14:70.CrossRefPubMedPubMedCentral
14.
go back to reference Penno G, Solini A, Bonora E, Fondelli C, Orsi E, Zerbini G, Morano S, Cavalot F, Lamacchia O, Laviola L, et al. HbA1c variability as an independent correlate of nephropathy, but not retinopathy, in patients with type 2 diabetes: the Renal Insufficiency and Cardiovascular Events (RIACE) Italian multicenter study. Diabetes Care. 2013;36(8):2301–10.CrossRefPubMedPubMedCentral Penno G, Solini A, Bonora E, Fondelli C, Orsi E, Zerbini G, Morano S, Cavalot F, Lamacchia O, Laviola L, et al. HbA1c variability as an independent correlate of nephropathy, but not retinopathy, in patients with type 2 diabetes: the Renal Insufficiency and Cardiovascular Events (RIACE) Italian multicenter study. Diabetes Care. 2013;36(8):2301–10.CrossRefPubMedPubMedCentral
15.
go back to reference Hermann JM, Hammes HP, Rami-Merhar B, Rosenbauer J, Schutt M, Siegel E, Holl RW. HbA1c variability as an independent risk factor for diabetic retinopathy in type 1 diabetes: a German/Austrian multicenter analysis on 35,891 patients. PLoS ONE. 2014;9(3):e91137.CrossRefPubMedPubMedCentral Hermann JM, Hammes HP, Rami-Merhar B, Rosenbauer J, Schutt M, Siegel E, Holl RW. HbA1c variability as an independent risk factor for diabetic retinopathy in type 1 diabetes: a German/Austrian multicenter analysis on 35,891 patients. PLoS ONE. 2014;9(3):e91137.CrossRefPubMedPubMedCentral
16.
go back to reference Kilpatrick ES, Rigby AS, Atkin SL. A1C variability and the risk of microvascular complications in type 1 diabetes: data from the Diabetes Control and Complications Trial. Diabetes Care. 2008;31(11):2198–202.CrossRefPubMedPubMedCentral Kilpatrick ES, Rigby AS, Atkin SL. A1C variability and the risk of microvascular complications in type 1 diabetes: data from the Diabetes Control and Complications Trial. Diabetes Care. 2008;31(11):2198–202.CrossRefPubMedPubMedCentral
17.
go back to reference Karayannis G, Giamouzis G, Cokkinos DV, Skoularigis J, Triposkiadis F. Diabetic cardiovascular autonomic neuropathy: clinical implications. Exp Rev Cardiovasc Ther. 2012;10(6):747–65.CrossRef Karayannis G, Giamouzis G, Cokkinos DV, Skoularigis J, Triposkiadis F. Diabetic cardiovascular autonomic neuropathy: clinical implications. Exp Rev Cardiovasc Ther. 2012;10(6):747–65.CrossRef
18.
19.
go back to reference Balcioglu AS, Muderrisoglu H. Diabetes and cardiac autonomic neuropathy: clinical manifestations, cardiovascular consequences, diagnosis and treatment. World J Diabetes. 2015;6(1):80–91.CrossRefPubMedPubMedCentral Balcioglu AS, Muderrisoglu H. Diabetes and cardiac autonomic neuropathy: clinical manifestations, cardiovascular consequences, diagnosis and treatment. World J Diabetes. 2015;6(1):80–91.CrossRefPubMedPubMedCentral
20.
go back to reference Spallone V, Ziegler D, Freeman R, Bernardi L, Frontoni S, Pop-Busui R, Stevens M, Kempler P, Hilsted J, Tesfaye S, et al. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev. 2011;27(7):639–53.CrossRefPubMed Spallone V, Ziegler D, Freeman R, Bernardi L, Frontoni S, Pop-Busui R, Stevens M, Kempler P, Hilsted J, Tesfaye S, et al. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev. 2011;27(7):639–53.CrossRefPubMed
21.
go back to reference Rolim LC, Sa JR, Chacra AR, Dib SA. Diabetic cardiovascular autonomic neuropathy: risk factors, clinical impact and early diagnosis. Arq Bras Cardiol. 2008;90(4):e24–31.CrossRefPubMed Rolim LC, Sa JR, Chacra AR, Dib SA. Diabetic cardiovascular autonomic neuropathy: risk factors, clinical impact and early diagnosis. Arq Bras Cardiol. 2008;90(4):e24–31.CrossRefPubMed
22.
go back to reference Gottsater A, Ahmed M, Fernlund P, Sundkvist G. Autonomic neuropathy in Type 2 diabetic patients is associated with hyperinsulinaemia and hypertriglyceridaemia. Diabetic Med J Br Diabet Assoc. 1999;16(1):49–54.CrossRef Gottsater A, Ahmed M, Fernlund P, Sundkvist G. Autonomic neuropathy in Type 2 diabetic patients is associated with hyperinsulinaemia and hypertriglyceridaemia. Diabetic Med J Br Diabet Assoc. 1999;16(1):49–54.CrossRef
23.
go back to reference Toyry JP, Niskanen LK, Mantysaari MJ, Lansimies EA, Uusitupa MI. Occurrence, predictors, and clinical significance of autonomic neuropathy in NIDDM. Ten-year follow-up from the diagnosis. Diabetes. 1996;45(3):308–15.CrossRefPubMed Toyry JP, Niskanen LK, Mantysaari MJ, Lansimies EA, Uusitupa MI. Occurrence, predictors, and clinical significance of autonomic neuropathy in NIDDM. Ten-year follow-up from the diagnosis. Diabetes. 1996;45(3):308–15.CrossRefPubMed
24.
go back to reference Middlekauff HR, Park J, Moheimani RS. Adverse effects of cigarette and noncigarette smoke exposure on the autonomic nervous system: mechanisms and implications for cardiovascular risk. J Am Coll Cardiol. 2014;64(16):1740–50.CrossRefPubMed Middlekauff HR, Park J, Moheimani RS. Adverse effects of cigarette and noncigarette smoke exposure on the autonomic nervous system: mechanisms and implications for cardiovascular risk. J Am Coll Cardiol. 2014;64(16):1740–50.CrossRefPubMed
25.
go back to reference Snell-Bergeon JK, Wadwa RP. Hypoglycemia, diabetes, and cardiovascular disease. Diabetes Technol Thera. 2012;14(Suppl 1):S51–8. Snell-Bergeon JK, Wadwa RP. Hypoglycemia, diabetes, and cardiovascular disease. Diabetes Technol Thera. 2012;14(Suppl 1):S51–8.
26.
go back to reference Young LH, Wackers FJ, Chyun DA, Davey JA, Barrett EJ, Taillefer R, Heller GV, Iskandrian AE, Wittlin SD, Filipchuk N, et al. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA. 2009;301(15):1547–55.CrossRefPubMedPubMedCentral Young LH, Wackers FJ, Chyun DA, Davey JA, Barrett EJ, Taillefer R, Heller GV, Iskandrian AE, Wittlin SD, Filipchuk N, et al. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA. 2009;301(15):1547–55.CrossRefPubMedPubMedCentral
27.
go back to reference Marthol H, Brown CM, Zikeli U, Ziegler D, Dimitrov N, Baltadzhieva R, Hilz MJ. Altered cerebral regulation in type 2 diabetic patients with cardiac autonomic neuropathy. Diabetologia. 2006;49(10):2481–7.CrossRefPubMed Marthol H, Brown CM, Zikeli U, Ziegler D, Dimitrov N, Baltadzhieva R, Hilz MJ. Altered cerebral regulation in type 2 diabetic patients with cardiac autonomic neuropathy. Diabetologia. 2006;49(10):2481–7.CrossRefPubMed
28.
go back to reference Valensi P, Paries J, Attali JR. Cardiac autonomic neuropathy in diabetic patients: influence of diabetes duration, obesity, and microangiopathic complications—the French multicenter study. Metab Clin Exp. 2003;52(7):815–20.CrossRefPubMed Valensi P, Paries J, Attali JR. Cardiac autonomic neuropathy in diabetic patients: influence of diabetes duration, obesity, and microangiopathic complications—the French multicenter study. Metab Clin Exp. 2003;52(7):815–20.CrossRefPubMed
29.
go back to reference Motataianu A, Balasa R, Voidazan S, Bajko Z. Cardiovascular autonomic neuropathy in context of other complications of type 2 diabetes mellitus. Biomed Res Int. 2013;2013:507216.CrossRefPubMedPubMedCentral Motataianu A, Balasa R, Voidazan S, Bajko Z. Cardiovascular autonomic neuropathy in context of other complications of type 2 diabetes mellitus. Biomed Res Int. 2013;2013:507216.CrossRefPubMedPubMedCentral
30.
go back to reference Sharma R, Buras E, Terashima T, Serrano F, Massaad CA, Hu L, Bitner B, Inoue T, Chan L, Pautler RG. Hyperglycemia induces oxidative stress and impairs axonal transport rates in mice. PLoS ONE. 2010;5(10):e13463.CrossRefPubMedPubMedCentral Sharma R, Buras E, Terashima T, Serrano F, Massaad CA, Hu L, Bitner B, Inoue T, Chan L, Pautler RG. Hyperglycemia induces oxidative stress and impairs axonal transport rates in mice. PLoS ONE. 2010;5(10):e13463.CrossRefPubMedPubMedCentral
31.
go back to reference Wright E Jr, Scism-Bacon JL, Glass LC. Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract. 2006;60(3):308–14.CrossRefPubMedPubMedCentral Wright E Jr, Scism-Bacon JL, Glass LC. Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract. 2006;60(3):308–14.CrossRefPubMedPubMedCentral
32.
go back to reference Ceriello A, Quagliaro L, Catone B, Pascon R, Piazzola M, Bais B, Marra G, Tonutti L, Taboga C, Motz E. Role of hyperglycemia in nitrotyrosine postprandial generation. Diabetes Care. 2002;25(8):1439–43.CrossRefPubMed Ceriello A, Quagliaro L, Catone B, Pascon R, Piazzola M, Bais B, Marra G, Tonutti L, Taboga C, Motz E. Role of hyperglycemia in nitrotyrosine postprandial generation. Diabetes Care. 2002;25(8):1439–43.CrossRefPubMed
33.
go back to reference Hayashi A, Takano K, Masaki T, Yoshino S, Ogawa A, Shichiri M. Distinct biomarker roles for HbA1c and glycated albumin in patients with type 2 diabetes on hemodialysis. J Diabetes Complic. 2016;30(8):1494–9.CrossRef Hayashi A, Takano K, Masaki T, Yoshino S, Ogawa A, Shichiri M. Distinct biomarker roles for HbA1c and glycated albumin in patients with type 2 diabetes on hemodialysis. J Diabetes Complic. 2016;30(8):1494–9.CrossRef
34.
go back to reference Suwa T, Ohta A, Matsui T, Koganei R, Kato H, Kawata T, Sada Y, Ishii S, Kondo A, Murakami K, et al. Relationship between clinical markers of glycemia and glucose excursion evaluated by continuous glucose monitoring (CGM). Endocr J. 2010;57(2):135–40.CrossRefPubMed Suwa T, Ohta A, Matsui T, Koganei R, Kato H, Kawata T, Sada Y, Ishii S, Kondo A, Murakami K, et al. Relationship between clinical markers of glycemia and glucose excursion evaluated by continuous glucose monitoring (CGM). Endocr J. 2010;57(2):135–40.CrossRefPubMed
35.
go back to reference Arasteh A, Farahi S, Habibi-Rezaei M, Moosavi-Movahedi AA. Glycated albumin: an overview of the in vitro models of an in vivo potential disease marker. J Diabetes Metab Disord. 2014;13:49.CrossRefPubMedPubMedCentral Arasteh A, Farahi S, Habibi-Rezaei M, Moosavi-Movahedi AA. Glycated albumin: an overview of the in vitro models of an in vivo potential disease marker. J Diabetes Metab Disord. 2014;13:49.CrossRefPubMedPubMedCentral
36.
go back to reference Rodino-Janeiro BK, Gonzalez-Peteiro M, Ucieda-Somoza R, Gonzalez-Juanatey JR, Alvarez E. Glycated albumin, a precursor of advanced glycation end-products, up-regulates NADPH oxidase and enhances oxidative stress in human endothelial cells: molecular correlate of diabetic vasculopathy. Diabetes Metab Res Rev. 2010;26(7):550–8.CrossRefPubMed Rodino-Janeiro BK, Gonzalez-Peteiro M, Ucieda-Somoza R, Gonzalez-Juanatey JR, Alvarez E. Glycated albumin, a precursor of advanced glycation end-products, up-regulates NADPH oxidase and enhances oxidative stress in human endothelial cells: molecular correlate of diabetic vasculopathy. Diabetes Metab Res Rev. 2010;26(7):550–8.CrossRefPubMed
38.
go back to reference Hattori Y, Suzuki M, Hattori S, Kasai K. Vascular smooth muscle cell activation by glycated albumin (Amadori adducts). Hypertension. 2002;39(1):22–8.CrossRefPubMed Hattori Y, Suzuki M, Hattori S, Kasai K. Vascular smooth muscle cell activation by glycated albumin (Amadori adducts). Hypertension. 2002;39(1):22–8.CrossRefPubMed
39.
go back to reference Ma X, Hu X, Zhou J, Hao Y, Luo Y, Lu Z, Bao Y, Jia W. Glycated albumin is more closely correlated with coronary artery disease than 1,5-anhydroglucitol and glycated hemoglobin A1c. Cardiovasc Diabetol. 2015;14:16.CrossRefPubMedPubMedCentral Ma X, Hu X, Zhou J, Hao Y, Luo Y, Lu Z, Bao Y, Jia W. Glycated albumin is more closely correlated with coronary artery disease than 1,5-anhydroglucitol and glycated hemoglobin A1c. Cardiovasc Diabetol. 2015;14:16.CrossRefPubMedPubMedCentral
40.
go back to reference Shen Y, Pu LJ, Lu L, Zhang Q, Zhang RY, Shen WF. Glycated albumin is superior to hemoglobin A1c for evaluating the presence and severity of coronary artery disease in type 2 diabetic patients. Cardiology. 2012;123(2):84–90.CrossRefPubMed Shen Y, Pu LJ, Lu L, Zhang Q, Zhang RY, Shen WF. Glycated albumin is superior to hemoglobin A1c for evaluating the presence and severity of coronary artery disease in type 2 diabetic patients. Cardiology. 2012;123(2):84–90.CrossRefPubMed
41.
go back to reference Mukai N, Ninomiya T, Hata J, Hirakawa Y, Ikeda F, Fukuhara M, Hotta T, Koga M, Nakamura U, Kang D, et al. Association of hemoglobin A1c and glycated albumin with carotid atherosclerosis in community-dwelling Japanese subjects: the Hisayama Study. Cardiovasc Diabetol. 2015;14:84.CrossRefPubMedPubMedCentral Mukai N, Ninomiya T, Hata J, Hirakawa Y, Ikeda F, Fukuhara M, Hotta T, Koga M, Nakamura U, Kang D, et al. Association of hemoglobin A1c and glycated albumin with carotid atherosclerosis in community-dwelling Japanese subjects: the Hisayama Study. Cardiovasc Diabetol. 2015;14:84.CrossRefPubMedPubMedCentral
42.
go back to reference Furusyo N, Koga T, Ai M, Otokozawa S, Kohzuma T, Ikezaki H, Schaefer EJ, Hayashi J. Plasma glycated albumin level and atherosclerosis: results from the Kyushu and Okinawa Population Study (KOPS). Int J Cardiol. 2013;167(5):2066–72.CrossRefPubMed Furusyo N, Koga T, Ai M, Otokozawa S, Kohzuma T, Ikezaki H, Schaefer EJ, Hayashi J. Plasma glycated albumin level and atherosclerosis: results from the Kyushu and Okinawa Population Study (KOPS). Int J Cardiol. 2013;167(5):2066–72.CrossRefPubMed
43.
go back to reference Selvin E, Rawlings AM, Lutsey PL, Maruthur N, Pankow JS, Steffes M, Coresh J. Fructosamine and glycated albumin and the risk of cardiovascular outcomes and death. Circulation. 2015;132(4):269–77.CrossRefPubMedPubMedCentral Selvin E, Rawlings AM, Lutsey PL, Maruthur N, Pankow JS, Steffes M, Coresh J. Fructosamine and glycated albumin and the risk of cardiovascular outcomes and death. Circulation. 2015;132(4):269–77.CrossRefPubMedPubMedCentral
Metadata
Title
Glycated albumin and its variability as an indicator of cardiovascular autonomic neuropathy development in type 2 diabetic patients
Authors
Ji Eun Jun
Seung-Eun Lee
You-Bin Lee
Ji Yeon Ahn
Gyuri Kim
Sang-Man Jin
Kyu Yeon Hur
Moon-Kyu Lee
Jae Hyeon Kim
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2017
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-017-0619-2

Other articles of this Issue 1/2017

Cardiovascular Diabetology 1/2017 Go to the issue