Skip to main content
Top
Published in: Respiratory Research 1/2020

Open Access 01-12-2020 | Cystic Fibrosis | Letter to the Editor

Flagellin shifts 3D bronchospheres towards mucus hyperproduction

Authors: Richard F. Sprott, Felix Ritzmann, Frank Langer, Yiwen Yao, Christian Herr, Yvonne Kohl, Thomas Tschernig, Robert Bals, Christoph Beisswenger

Published in: Respiratory Research | Issue 1/2020

Login to get access

Abstract

Cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) are associated with acute and chronic bacterial infections of the lung. Excessive differentiation of basal cells to mucus-producing goblet cells can result in mucus hyperproduction and loss of mucociliary clearance in the airways of CF and COPD patients. Here, we aimed to investigate the effect of pathogen-associated molecular patterns (PAMPs) on the differentiation of human 3D bronchospheres. Primary human bronchial epithelial cells (HBECs) were differentiated to bronchospheres in the presence of bacterial flagellin and LPS and the synthetic Toll-like receptor (TLR) ligands Pam3CSK4 (TLR-2) and polyinosinic:polycytidylic acid (pIC, TLR-3). Electron and fluorescence microscopy showed that the differentiation of bronchospheres associated with the formation of lumina and appearance of cilia within 30 days after seeding. Incubation with flagellin resulted in a decreased formation of lumina and loss of cilia formation. Incubation with Pam3CSK, pIC, and LPS did not significantly affect formation of lumina and ciliation. Mucus production was strongly increased in response to flagellin and, to a lesser degree, in response to Pam3CSK4. Our results indicate that bacterial factors, such as flagellin, drive the differentiation of the respiratory epithelium towards mucus hyperproduction.
Literature
1.
go back to reference De Rose V, Molloy K, Gohy S, Pilette C, Greene CM. Airway epithelium dysfunction in cystic fibrosis and COPD. Mediat Inflamm. 2018;2018:1309746. De Rose V, Molloy K, Gohy S, Pilette C, Greene CM. Airway epithelium dysfunction in cystic fibrosis and COPD. Mediat Inflamm. 2018;2018:1309746.
2.
go back to reference Shaykhiev R. Emerging biology of persistent mucous cell hyperplasia in COPD. Thorax. 2019;74:4–6.CrossRef Shaykhiev R. Emerging biology of persistent mucous cell hyperplasia in COPD. Thorax. 2019;74:4–6.CrossRef
3.
go back to reference Ralhan A, Laval J, Lelis F, Ballbach M, Grund C, Hector A, Hartl D. Current concepts and controversies in innate immunity of cystic fibrosis lung disease. J Innate Immun. 2016;8:531–40.CrossRef Ralhan A, Laval J, Lelis F, Ballbach M, Grund C, Hector A, Hartl D. Current concepts and controversies in innate immunity of cystic fibrosis lung disease. J Innate Immun. 2016;8:531–40.CrossRef
4.
go back to reference Sethi S. Infection as a comorbidity of COPD. Eur Respir J. 2010;35:1209–15.CrossRef Sethi S. Infection as a comorbidity of COPD. Eur Respir J. 2010;35:1209–15.CrossRef
5.
go back to reference Hartl D, Gaggar A, Bruscia E, Hector A, Marcos V, Jung A, Greene C, McElvaney G, Mall M, Doring G. Innate immunity in cystic fibrosis lung disease. J Cyst Fibros. 2012;11:363–82.CrossRef Hartl D, Gaggar A, Bruscia E, Hector A, Marcos V, Jung A, Greene C, McElvaney G, Mall M, Doring G. Innate immunity in cystic fibrosis lung disease. J Cyst Fibros. 2012;11:363–82.CrossRef
6.
go back to reference Hartl D, Tirouvanziam R, Laval J, Greene CM, Habiel D, Sharma L, Yildirim AO, Dela Cruz CS, Hogaboam CM. Innate immunity of the lung: from basic mechanisms to translational medicine. J Innate Immun. 2018;10:487–501.CrossRef Hartl D, Tirouvanziam R, Laval J, Greene CM, Habiel D, Sharma L, Yildirim AO, Dela Cruz CS, Hogaboam CM. Innate immunity of the lung: from basic mechanisms to translational medicine. J Innate Immun. 2018;10:487–501.CrossRef
7.
go back to reference Dinh PC, Cores J, Hensley MT, Vandergriff AC, Tang J, Allen TA, Caranasos TG, Adler KB, Lobo LJ, Cheng K. Derivation of therapeutic lung spheroid cells from minimally invasive transbronchial pulmonary biopsies. Respir Res. 2017;18:132.CrossRef Dinh PC, Cores J, Hensley MT, Vandergriff AC, Tang J, Allen TA, Caranasos TG, Adler KB, Lobo LJ, Cheng K. Derivation of therapeutic lung spheroid cells from minimally invasive transbronchial pulmonary biopsies. Respir Res. 2017;18:132.CrossRef
8.
go back to reference Henry E, Cores J, Hensley MT, Anthony S, Vandergriff A, de Andrade JB, Allen T, Caranasos TG, Lobo LJ, Cheng K: Adult lung spheroid cells contain progenitor cells and mediate regeneration in rodents with bleomycin-induced pulmonary fibrosis. Stem Cells Transl Med 2015, 4:1265–1274. Henry E, Cores J, Hensley MT, Anthony S, Vandergriff A, de Andrade JB, Allen T, Caranasos TG, Lobo LJ, Cheng K: Adult lung spheroid cells contain progenitor cells and mediate regeneration in rodents with bleomycin-induced pulmonary fibrosis. Stem Cells Transl Med 2015, 4:1265–1274.
9.
go back to reference Barkauskas CE, Chung MI, Fioret B, Gao X, Katsura H, Hogan BL. Lung organoids: current uses and future promise. Development. 2017;144:986–97.CrossRef Barkauskas CE, Chung MI, Fioret B, Gao X, Katsura H, Hogan BL. Lung organoids: current uses and future promise. Development. 2017;144:986–97.CrossRef
10.
go back to reference Danahay H, Pessotti AD, Coote J, Montgomery BE, Xia D, Wilson A, Yang H, Wang Z, Bevan L, Thomas C, et al. Notch2 is required for inflammatory cytokine-driven goblet cell metaplasia in the lung. Cell Rep. 2015;10:239–52.CrossRef Danahay H, Pessotti AD, Coote J, Montgomery BE, Xia D, Wilson A, Yang H, Wang Z, Bevan L, Thomas C, et al. Notch2 is required for inflammatory cytokine-driven goblet cell metaplasia in the lung. Cell Rep. 2015;10:239–52.CrossRef
11.
go back to reference Bals R, Beisswenger C, Blouquit S, Chinet T. Isolation and air-liquid interface culture of human large airway and bronchiolar epithelial cells. J Cyst Fibros. 2004;3(Suppl 2):49–51.CrossRef Bals R, Beisswenger C, Blouquit S, Chinet T. Isolation and air-liquid interface culture of human large airway and bronchiolar epithelial cells. J Cyst Fibros. 2004;3(Suppl 2):49–51.CrossRef
12.
go back to reference Ritzmann F, Jungnickel C, Vella G, Kamyschnikow A, Herr C, Li D, Menger MM, Angenendt A, Hoth M, Lis A, et al. IL-17C-mediated innate inflammation decreases the response to PD-1 blockade in a model of Kras-driven lung cancer. Sci Rep. 2019;9:10353.CrossRef Ritzmann F, Jungnickel C, Vella G, Kamyschnikow A, Herr C, Li D, Menger MM, Angenendt A, Hoth M, Lis A, et al. IL-17C-mediated innate inflammation decreases the response to PD-1 blockade in a model of Kras-driven lung cancer. Sci Rep. 2019;9:10353.CrossRef
13.
go back to reference Schmiedl A, Kerber-Momot T, Munder A, Pabst R, Tschernig T. Bacterial distribution in lung parenchyma early after pulmonary infection with Pseudomonas aeruginosa. Cell Tissue Res. 2010;342:67–73.CrossRef Schmiedl A, Kerber-Momot T, Munder A, Pabst R, Tschernig T. Bacterial distribution in lung parenchyma early after pulmonary infection with Pseudomonas aeruginosa. Cell Tissue Res. 2010;342:67–73.CrossRef
14.
go back to reference Zhang Z, Louboutin JP, Weiner DJ, Goldberg JB, Wilson JM. Human airway epithelial cells sense Pseudomonas aeruginosa infection via recognition of flagellin by toll-like receptor 5. Infect Immun. 2005;73:7151–60.CrossRef Zhang Z, Louboutin JP, Weiner DJ, Goldberg JB, Wilson JM. Human airway epithelial cells sense Pseudomonas aeruginosa infection via recognition of flagellin by toll-like receptor 5. Infect Immun. 2005;73:7151–60.CrossRef
15.
go back to reference Blohmke CJ, Victor RE, Hirschfeld AF, Elias IM, Hancock DG, Lane CR, Davidson AG, Wilcox PG, Smith KD, Overhage J, et al. Innate immunity mediated by TLR5 as a novel antiinflammatory target for cystic fibrosis lung disease. J Immunol. 2008;180:7764–73.CrossRef Blohmke CJ, Victor RE, Hirschfeld AF, Elias IM, Hancock DG, Lane CR, Davidson AG, Wilcox PG, Smith KD, Overhage J, et al. Innate immunity mediated by TLR5 as a novel antiinflammatory target for cystic fibrosis lung disease. J Immunol. 2008;180:7764–73.CrossRef
16.
go back to reference Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2011;477:596–600.CrossRef Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2011;477:596–600.CrossRef
17.
go back to reference Adam D, Roux-Delrieu J, Luczka E, Bonnomet A, Lesage J, Merol JC, Polette M, Abely M, Coraux C. Cystic fibrosis airway epithelium remodelling: involvement of inflammation. J Pathol. 2015;235:408–19.CrossRef Adam D, Roux-Delrieu J, Luczka E, Bonnomet A, Lesage J, Merol JC, Polette M, Abely M, Coraux C. Cystic fibrosis airway epithelium remodelling: involvement of inflammation. J Pathol. 2015;235:408–19.CrossRef
18.
go back to reference Wonnenberg B, Jungnickel C, Honecker A, Wolf L, Voss M, Bischoff M, Tschernig T, Herr C, Bals R, Beisswenger C. IL-17A attracts inflammatory cells in murine lung infection with P. aeruginosa. Innate Immun. 2016;22:620–5.CrossRef Wonnenberg B, Jungnickel C, Honecker A, Wolf L, Voss M, Bischoff M, Tschernig T, Herr C, Bals R, Beisswenger C. IL-17A attracts inflammatory cells in murine lung infection with P. aeruginosa. Innate Immun. 2016;22:620–5.CrossRef
19.
go back to reference Muir R, Osbourn M, Dubois AV, Doran E, Small DM, Monahan A, O'Kane CM, McAllister K, Fitzgerald DC, Kissenpfennig A, et al. Innate lymphoid cells are the predominant source of IL-17A during the early pathogenesis of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2016;193:407–16.CrossRef Muir R, Osbourn M, Dubois AV, Doran E, Small DM, Monahan A, O'Kane CM, McAllister K, Fitzgerald DC, Kissenpfennig A, et al. Innate lymphoid cells are the predominant source of IL-17A during the early pathogenesis of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2016;193:407–16.CrossRef
20.
go back to reference Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ, de Leon GP, Chen Y, Finkle D, Venook R, Wu X, Ridgway J, et al. Therapeutic antibody targeting of individual notch receptors. Nature. 2010;464:1052–7.CrossRef Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ, de Leon GP, Chen Y, Finkle D, Venook R, Wu X, Ridgway J, et al. Therapeutic antibody targeting of individual notch receptors. Nature. 2010;464:1052–7.CrossRef
Metadata
Title
Flagellin shifts 3D bronchospheres towards mucus hyperproduction
Authors
Richard F. Sprott
Felix Ritzmann
Frank Langer
Yiwen Yao
Christian Herr
Yvonne Kohl
Thomas Tschernig
Robert Bals
Christoph Beisswenger
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2020
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-020-01486-x

Other articles of this Issue 1/2020

Respiratory Research 1/2020 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.