Skip to main content
Top
Published in: Respiratory Research 1/2020

01-12-2020 | Hyperglycemia | Research

Lung volume dependence of respiratory function in rodent models of diabetes mellitus

Authors: Roberta Südy, Álmos Schranc, Gergely H. Fodor, József Tolnai, Barna Babik, Ferenc Peták

Published in: Respiratory Research | Issue 1/2020

Login to get access

Abstract

Background

Diabetes mellitus causes the deterioration of smooth muscle cells and interstitial matrix proteins, including collagen. Collagen and smooth muscle cells are abundant in the lungs, but the effect of diabetes on airway function and viscoelastic respiratory tissue mechanics has not been characterized. This study investigated the impact of diabetes on respiratory function, bronchial responsiveness, and gas exchange parameters.

Methods

Rats were allocated randomly to three groups: a model of type 1 diabetes that received a high dose of streptozotocin (DM1, n = 13); a model of type 2 diabetes that received a low dose of streptozotocin with a high-fat diet (DM2, n = 14); and a control group with no treatment (C, n = 14). Forced oscillations were applied to assess airway resistance (Raw), respiratory tissue damping (G), and elastance (H). The arterial partial pressure of oxygen to the inspired oxygen fraction (PaO2/FiO2) and intrapulmonary shunt fraction (Qs/Qt) were determined from blood gas samples at positive end-expiratory pressures (PEEPs) of 0, 3, and 6 cmH2O. Lung responsiveness to methacholine was also assessed. Collagen fibers in lung tissue were quantified by histology.

Results

The rats in groups DM1 and DM2 exhibited elevated Raw, G, H, and Qs/Qt, compromised PaO2/FiO2, and diminished airway responsiveness. The severity of adverse tissue mechanical change correlated with excessive lung collagen expression. Increased PEEP normalized the respiratory mechanics, but the gas exchange abnormalities remained.

Conclusions

These findings indicate that diabetes reduces airway and lung tissue viscoelasticity, resulting in alveolar collapsibility that can be compensated by increasing PEEP. Diabetes also induces persistent alveolo-capillary dysfunction and abnormal adaptation ability of the airways to exogenous constrictor stimuli.
Literature
1.
go back to reference Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20.PubMedCrossRef Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20.PubMedCrossRef
2.
go back to reference Nishizawa T, Bornfeldt KE. Diabetic vascular disease and the potential role of macrophage glucose metabolism. Ann Med. 2012;44:555–63.PubMedCrossRef Nishizawa T, Bornfeldt KE. Diabetic vascular disease and the potential role of macrophage glucose metabolism. Ann Med. 2012;44:555–63.PubMedCrossRef
3.
go back to reference Kuboki K, Jiang ZY, Takahara N, Ha SW, Igarashi M, Yamauchi T, Feener EP, Herbert TP, Rhodes CJ, King GL. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo : a specific vascular action of insulin. Circulation. 2000;101:676–81.PubMedCrossRef Kuboki K, Jiang ZY, Takahara N, Ha SW, Igarashi M, Yamauchi T, Feener EP, Herbert TP, Rhodes CJ, King GL. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo : a specific vascular action of insulin. Circulation. 2000;101:676–81.PubMedCrossRef
4.
go back to reference Vicent D, Ilany J, Kondo T, Naruse K, Fisher SJ, Kisanuki YY, Bursell S, Yanagisawa M, King GL, Kahn CR. The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J Clin Invest. 2003;111:1373–80.PubMedPubMedCentralCrossRef Vicent D, Ilany J, Kondo T, Naruse K, Fisher SJ, Kisanuki YY, Bursell S, Yanagisawa M, King GL, Kahn CR. The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J Clin Invest. 2003;111:1373–80.PubMedPubMedCentralCrossRef
5.
go back to reference Wang CC, Gurevich I, Draznin B. Insulin affects vascular smooth muscle cell phenotype and migration via distinct signaling pathways. Diabetes. 2003;52:2562–9.PubMedCrossRef Wang CC, Gurevich I, Draznin B. Insulin affects vascular smooth muscle cell phenotype and migration via distinct signaling pathways. Diabetes. 2003;52:2562–9.PubMedCrossRef
6.
go back to reference Harcourt BE, Penfold SA, Forbes JM. Coming full circle in diabetes mellitus: from complications to initiation. Nat Rev Endocrinol. 2013;9:113–23.PubMedCrossRef Harcourt BE, Penfold SA, Forbes JM. Coming full circle in diabetes mellitus: from complications to initiation. Nat Rev Endocrinol. 2013;9:113–23.PubMedCrossRef
7.
go back to reference Degenhardt TP, Thorpe SR, Baynes JW. Chemical modification of proteins by methylglyoxal. Cell Mol Biol (Noisy-le-grand). 1998;44:1139–45. Degenhardt TP, Thorpe SR, Baynes JW. Chemical modification of proteins by methylglyoxal. Cell Mol Biol (Noisy-le-grand). 1998;44:1139–45.
8.
go back to reference Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615–25.PubMedCrossRef Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615–25.PubMedCrossRef
10.
11.
go back to reference Klein OL, Krishnan JA, Glick S, Smith LJ. Systematic review of the association between lung function and type 2 diabetes mellitus. Diabet Med. 2010;27:977–87.PubMedCrossRef Klein OL, Krishnan JA, Glick S, Smith LJ. Systematic review of the association between lung function and type 2 diabetes mellitus. Diabet Med. 2010;27:977–87.PubMedCrossRef
12.
go back to reference Lecube A, Simo R, Pallayova M, Punjabi NM, Lopez-Cano C, Turino C, Hernandez C, Barbe F. Pulmonary function and sleep breathing: two new targets for type 2 diabetes care. Endocr Rev. 2017;38:550–73.PubMedCrossRef Lecube A, Simo R, Pallayova M, Punjabi NM, Lopez-Cano C, Turino C, Hernandez C, Barbe F. Pulmonary function and sleep breathing: two new targets for type 2 diabetes care. Endocr Rev. 2017;38:550–73.PubMedCrossRef
13.
go back to reference Saidullah B, Muralidhar K, Fahim M. Onset of diabetes modulates the airway smooth muscle reactivity of Guinea pigs: role of epithelial mediators. J Smooth Muscle Res. 2014;50:29–38.PubMedPubMedCentralCrossRef Saidullah B, Muralidhar K, Fahim M. Onset of diabetes modulates the airway smooth muscle reactivity of Guinea pigs: role of epithelial mediators. J Smooth Muscle Res. 2014;50:29–38.PubMedPubMedCentralCrossRef
14.
go back to reference Martins JO, Wittlin BM, Anger DB, Martins DO, Sannomiya P, Jancar S. Early phase of allergic airway inflammation in diabetic rats: role of insulin on the signaling pathways and mediators. Cell Physiol Biochem. 2010;26:739–48.PubMedCrossRef Martins JO, Wittlin BM, Anger DB, Martins DO, Sannomiya P, Jancar S. Early phase of allergic airway inflammation in diabetic rats: role of insulin on the signaling pathways and mediators. Cell Physiol Biochem. 2010;26:739–48.PubMedCrossRef
15.
go back to reference Cayir A, Ugan RA, Albayrak A, Kose D, Akpinar E, Cayir Y, Atmaca HT, Bayraktutan Z, Kara M. The lung endothelin system: a potent therapeutic target with bosentan for the amelioration of lung alterations in a rat model of diabetes mellitus. J Endocrinol Investig. 2015;38:987–98.CrossRef Cayir A, Ugan RA, Albayrak A, Kose D, Akpinar E, Cayir Y, Atmaca HT, Bayraktutan Z, Kara M. The lung endothelin system: a potent therapeutic target with bosentan for the amelioration of lung alterations in a rat model of diabetes mellitus. J Endocrinol Investig. 2015;38:987–98.CrossRef
16.
go back to reference Cazzola M, Calzetta L, Rogliani P, Lauro D, Novelli L, Page CP, Kanabar V, Matera MG. High glucose enhances responsiveness of human airways smooth muscle via the rho/ROCK pathway. Am J Respir Cell Mol Biol. 2012;47:509–16.PubMedCrossRef Cazzola M, Calzetta L, Rogliani P, Lauro D, Novelli L, Page CP, Kanabar V, Matera MG. High glucose enhances responsiveness of human airways smooth muscle via the rho/ROCK pathway. Am J Respir Cell Mol Biol. 2012;47:509–16.PubMedCrossRef
17.
go back to reference Gosens R, Nelemans SA, Hiemstra M, Grootte Bromhaar MM, Meurs H, Zaagsma J. Insulin induces a hypercontractile airway smooth muscle phenotype. Eur J Pharmacol. 2003;481:125–31.PubMedCrossRef Gosens R, Nelemans SA, Hiemstra M, Grootte Bromhaar MM, Meurs H, Zaagsma J. Insulin induces a hypercontractile airway smooth muscle phenotype. Eur J Pharmacol. 2003;481:125–31.PubMedCrossRef
18.
go back to reference Watanabe K, Senju S, Toyoshima H, Yoshida M. Thickness of the basement membrane of bronchial epithelial cells in lung diseases as determined by transbronchial biopsy. Respir Med. 1997;91:406–10.PubMedCrossRef Watanabe K, Senju S, Toyoshima H, Yoshida M. Thickness of the basement membrane of bronchial epithelial cells in lung diseases as determined by transbronchial biopsy. Respir Med. 1997;91:406–10.PubMedCrossRef
19.
go back to reference Ofulue AF, Thurlbeck WM. Experimental diabetes and the lung. II. In vivo connective tissue metabolism. Am Rev Respir Dis. 1988;138:284–9.PubMedCrossRef Ofulue AF, Thurlbeck WM. Experimental diabetes and the lung. II. In vivo connective tissue metabolism. Am Rev Respir Dis. 1988;138:284–9.PubMedCrossRef
20.
go back to reference Hollenbach J, Lopez-Rodriguez E, Muhlfeld C, Schipke J. Voluntary activity modulates sugar-induced elastic Fiber remodeling in the alveolar region of the mouse lung. Int J Mol Sci. 2019;20:2438. Hollenbach J, Lopez-Rodriguez E, Muhlfeld C, Schipke J. Voluntary activity modulates sugar-induced elastic Fiber remodeling in the alveolar region of the mouse lung. Int J Mol Sci. 2019;20:2438.
21.
go back to reference Foster DJ, Ravikumar P, Bellotto DJ, Unger RH, Hsia CC. Fatty diabetic lung: altered alveolar structure and surfactant protein expression. Am J Physiol Lung Cell Mol Physiol. 2010;298:L392–403.PubMedPubMedCentralCrossRef Foster DJ, Ravikumar P, Bellotto DJ, Unger RH, Hsia CC. Fatty diabetic lung: altered alveolar structure and surfactant protein expression. Am J Physiol Lung Cell Mol Physiol. 2010;298:L392–403.PubMedPubMedCentralCrossRef
22.
go back to reference Sugahara K, Ezaki K, Kaneko T, Morioka T, Maeda H. Studies of the lungs in diabetes mellitus. II. Phospholipid analyses on the surfactant from broncho-alveolar lavage fluid of alloxan-induced diabetic rats. Biochem Biophys Res Commun. 1981;98:163–8.PubMedCrossRef Sugahara K, Ezaki K, Kaneko T, Morioka T, Maeda H. Studies of the lungs in diabetes mellitus. II. Phospholipid analyses on the surfactant from broncho-alveolar lavage fluid of alloxan-induced diabetic rats. Biochem Biophys Res Commun. 1981;98:163–8.PubMedCrossRef
23.
go back to reference Martin-Frias M, Lamas A, Lara E, Alonso M, Ros P, Barrio R. Pulmonary function in children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2015;28:163–9.PubMedCrossRef Martin-Frias M, Lamas A, Lara E, Alonso M, Ros P, Barrio R. Pulmonary function in children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2015;28:163–9.PubMedCrossRef
24.
go back to reference Schnapf BM, Banks RA, Silverstein JH, Rosenbloom AL, Chesrown SE, Loughlin GM. Pulmonary function in insulin-dependent diabetes mellitus with limited joint mobility. Am Rev Respir Dis. 1984;130:930–2.PubMed Schnapf BM, Banks RA, Silverstein JH, Rosenbloom AL, Chesrown SE, Loughlin GM. Pulmonary function in insulin-dependent diabetes mellitus with limited joint mobility. Am Rev Respir Dis. 1984;130:930–2.PubMed
25.
go back to reference Wanke T, Formanek D, Auinger M, Popp W, Zwick H, Irsigler K. Inspiratory muscle performance and pulmonary function changes in insulin-dependent diabetes mellitus. Am Rev Respir Dis. 1991;143:97–100.PubMedCrossRef Wanke T, Formanek D, Auinger M, Popp W, Zwick H, Irsigler K. Inspiratory muscle performance and pulmonary function changes in insulin-dependent diabetes mellitus. Am Rev Respir Dis. 1991;143:97–100.PubMedCrossRef
26.
go back to reference Kuziemski K, Slominski W, Jassem E. Impact of diabetes mellitus on functional exercise capacity and pulmonary functions in patients with diabetes and healthy persons. BMC Endocr Disord. 2019;19:2.PubMedPubMedCentralCrossRef Kuziemski K, Slominski W, Jassem E. Impact of diabetes mellitus on functional exercise capacity and pulmonary functions in patients with diabetes and healthy persons. BMC Endocr Disord. 2019;19:2.PubMedPubMedCentralCrossRef
27.
go back to reference van Gent R, Brackel HJ, de Vroede M, van der Ent CK. Lung function abnormalities in children with type I diabetes. Respir Med. 2002;96:976–8.PubMedCrossRef van Gent R, Brackel HJ, de Vroede M, van der Ent CK. Lung function abnormalities in children with type I diabetes. Respir Med. 2002;96:976–8.PubMedCrossRef
28.
go back to reference Antonelli Incalzi R, Fuso L, Giordano A, Pitocco D, Maiolo C, Calcagni ML, Ghirlanda G. Neuroadrenergic denervation of the lung in type I diabetes mellitus complicated by autonomic neuropathy. Chest. 2002;121:443–51.PubMedCrossRef Antonelli Incalzi R, Fuso L, Giordano A, Pitocco D, Maiolo C, Calcagni ML, Ghirlanda G. Neuroadrenergic denervation of the lung in type I diabetes mellitus complicated by autonomic neuropathy. Chest. 2002;121:443–51.PubMedCrossRef
29.
go back to reference Bertherat J, Lubetzki J, Lockhart A, Regnard J. Decreased bronchial response to methacholine in IDDM patients with autonomic neuropathy. Diabetes. 1991;40:1100–6.PubMedCrossRef Bertherat J, Lubetzki J, Lockhart A, Regnard J. Decreased bronchial response to methacholine in IDDM patients with autonomic neuropathy. Diabetes. 1991;40:1100–6.PubMedCrossRef
30.
go back to reference Mancini M, Filippelli M, Seghieri G, Iandelli I, Innocenti F, Duranti R, Scano G. Respiratory muscle function and hypoxic ventilatory control in patients with type I diabetes. Chest. 1999;115:1553–62.PubMedCrossRef Mancini M, Filippelli M, Seghieri G, Iandelli I, Innocenti F, Duranti R, Scano G. Respiratory muscle function and hypoxic ventilatory control in patients with type I diabetes. Chest. 1999;115:1553–62.PubMedCrossRef
31.
go back to reference Eaton T, Withy S, Garrett JE, Mercer J, Whitlock RM, Rea HH. Spirometry in primary care practice: the importance of quality assurance and the impact of spirometry workshops. Chest. 1999;116:416–23.PubMedCrossRef Eaton T, Withy S, Garrett JE, Mercer J, Whitlock RM, Rea HH. Spirometry in primary care practice: the importance of quality assurance and the impact of spirometry workshops. Chest. 1999;116:416–23.PubMedCrossRef
32.
go back to reference Giner J, Plaza V, Rigau J, Sola J, Bolibar I, Sanchis J. Spirometric standards and patient characteristics: an exploratory study of factors affecting fulfillment in routine clinical practice. Respir Care. 2014;59:1832–7.PubMedCrossRef Giner J, Plaza V, Rigau J, Sola J, Bolibar I, Sanchis J. Spirometric standards and patient characteristics: an exploratory study of factors affecting fulfillment in routine clinical practice. Respir Care. 2014;59:1832–7.PubMedCrossRef
33.
go back to reference Scano G, Seghieri G, Mancini M, Filippelli M, Duranti R, Fabbri A, Innocenti F, Iandelli I, Misuri G. Dyspnoea, peripheral airway involvement and respiratory muscle effort in patients with type I diabetes mellitus under good metabolic control. Clin Sci (Lond). 1999;96:499–506.CrossRef Scano G, Seghieri G, Mancini M, Filippelli M, Duranti R, Fabbri A, Innocenti F, Iandelli I, Misuri G. Dyspnoea, peripheral airway involvement and respiratory muscle effort in patients with type I diabetes mellitus under good metabolic control. Clin Sci (Lond). 1999;96:499–506.CrossRef
34.
go back to reference Molehin OR, Oloyede OI, Adefegha SA. Streptozotocin-induced diabetes in rats: effects of white butterfly (Clerodendrum volubile) leaves on blood glucose levels, lipid profile and antioxidant status. Toxicol Mech Methods. 2018;28:573–86.PubMedCrossRef Molehin OR, Oloyede OI, Adefegha SA. Streptozotocin-induced diabetes in rats: effects of white butterfly (Clerodendrum volubile) leaves on blood glucose levels, lipid profile and antioxidant status. Toxicol Mech Methods. 2018;28:573–86.PubMedCrossRef
35.
go back to reference Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM, Reaven GM. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism. 2000;49:1390–4.PubMedCrossRef Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM, Reaven GM. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism. 2000;49:1390–4.PubMedCrossRef
37.
go back to reference Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res. 2005;52:313–20.PubMedCrossRef Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res. 2005;52:313–20.PubMedCrossRef
38.
go back to reference Tancrede G, Rousseau-Migneron S, Nadeau A. Long-term changes in the diabetic state induced by different doses of streptozotocin in rats. Br J Exp Pathol. 1983;64:117–23.PubMedPubMedCentral Tancrede G, Rousseau-Migneron S, Nadeau A. Long-term changes in the diabetic state induced by different doses of streptozotocin in rats. Br J Exp Pathol. 1983;64:117–23.PubMedPubMedCentral
39.
go back to reference Zhang M, Lv XY, Li J, Xu ZG, Chen L. The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp Diabetes Res. 2008;2008:704045.PubMedCrossRef Zhang M, Lv XY, Li J, Xu ZG, Chen L. The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp Diabetes Res. 2008;2008:704045.PubMedCrossRef
40.
go back to reference Janosi TZ, Adamicza A, Zosky GR, Asztalos T, Sly PD, Hantos Z. Plethysmographic estimation of thoracic gas volume in apneic mice. J Appl Physiol (1985). 2006;101:454–9.CrossRef Janosi TZ, Adamicza A, Zosky GR, Asztalos T, Sly PD, Hantos Z. Plethysmographic estimation of thoracic gas volume in apneic mice. J Appl Physiol (1985). 2006;101:454–9.CrossRef
41.
go back to reference Petak F, Hantos Z, Adamicza A, Asztalos T, Sly PD. Methacholine-induced bronchoconstriction in rats: effects of intravenous vs. aerosol delivery. J Appl Physiol (1985). 1997;82:1479–87.CrossRef Petak F, Hantos Z, Adamicza A, Asztalos T, Sly PD. Methacholine-induced bronchoconstriction in rats: effects of intravenous vs. aerosol delivery. J Appl Physiol (1985). 1997;82:1479–87.CrossRef
42.
go back to reference Hantos Z, Daroczy B, Suki B, Nagy S, Fredberg JJ. Input impedance and peripheral inhomogeneity of dog lungs. J Appl Physiol (1985). 1992;72:168–78.CrossRef Hantos Z, Daroczy B, Suki B, Nagy S, Fredberg JJ. Input impedance and peripheral inhomogeneity of dog lungs. J Appl Physiol (1985). 1992;72:168–78.CrossRef
43.
go back to reference Fredberg JJ, Stamenovic D. On the imperfect elasticity of lung tissue. J Appl Physiol (1985). 1989;67:2408–19.CrossRef Fredberg JJ, Stamenovic D. On the imperfect elasticity of lung tissue. J Appl Physiol (1985). 1989;67:2408–19.CrossRef
44.
go back to reference Berggren S. The oxygen deficit of arterial blood caused by non-ventilating parts of the lung. Acta Physiol Scand. 1942;4(suppl. 11). Berggren S. The oxygen deficit of arterial blood caused by non-ventilating parts of the lung. Acta Physiol Scand. 1942;4(suppl. 11).
45.
go back to reference Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.PubMedCrossRef Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.PubMedCrossRef
46.
go back to reference Bausell RB, Li YF. Power Analysis for Experimental Research: A Practical Guide for the Biological, Medical and Social Sciences. Cambridge: Cambridge University Press; 2002..CrossRef Bausell RB, Li YF. Power Analysis for Experimental Research: A Practical Guide for the Biological, Medical and Social Sciences. Cambridge: Cambridge University Press; 2002..CrossRef
47.
go back to reference Jargen P, Dietrich A, Herling AW, Hammes HP, Wohlfart P. The role of insulin resistance in experimental diabetic retinopathy-genetic and molecular aspects. PLoS One. 2017;12:e0178658.PubMedPubMedCentralCrossRef Jargen P, Dietrich A, Herling AW, Hammes HP, Wohlfart P. The role of insulin resistance in experimental diabetic retinopathy-genetic and molecular aspects. PLoS One. 2017;12:e0178658.PubMedPubMedCentralCrossRef
48.
go back to reference Chao PC, Li Y, Chang CH, Shieh JP, Cheng JT, Cheng KC. Investigation of insulin resistance in the popularly used four rat models of type-2 diabetes. Biomed Pharmacother. 2018;101:155–61.PubMedCrossRef Chao PC, Li Y, Chang CH, Shieh JP, Cheng JT, Cheng KC. Investigation of insulin resistance in the popularly used four rat models of type-2 diabetes. Biomed Pharmacother. 2018;101:155–61.PubMedCrossRef
49.
go back to reference Douglas NJ, Campbell IW, Ewing DJ, Clarke BF, Flenley DC. Reduced airway vagal tone in diabetic patients with autonomic neuropathy. Clin Sci (Lond). 1981;61:581–4.CrossRef Douglas NJ, Campbell IW, Ewing DJ, Clarke BF, Flenley DC. Reduced airway vagal tone in diabetic patients with autonomic neuropathy. Clin Sci (Lond). 1981;61:581–4.CrossRef
50.
go back to reference Oliveira TL, Candeia-Medeiros N, Cavalcante-Araujo PM, Melo IS, Favaro-Pipi E, Fatima LA, Rocha AA, Goulart LR, Machado UF, Campos RR, Sabino-Silva R. SGLT1 activity in lung alveolar cells of diabetic rats modulates airway surface liquid glucose concentration and bacterial proliferation. Sci Rep. 2016;6:21752.PubMedPubMedCentralCrossRef Oliveira TL, Candeia-Medeiros N, Cavalcante-Araujo PM, Melo IS, Favaro-Pipi E, Fatima LA, Rocha AA, Goulart LR, Machado UF, Campos RR, Sabino-Silva R. SGLT1 activity in lung alveolar cells of diabetic rats modulates airway surface liquid glucose concentration and bacterial proliferation. Sci Rep. 2016;6:21752.PubMedPubMedCentralCrossRef
51.
go back to reference Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, Hoogeveen R, Folsom AR, Heiss G, Atherosclerosis risk in communities S. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes. 2003;52:1799–805.PubMedCrossRef Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, Hoogeveen R, Folsom AR, Heiss G, Atherosclerosis risk in communities S. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes. 2003;52:1799–805.PubMedCrossRef
52.
go back to reference Schmidt MI, Duncan BB, Sharrett AR, Lindberg G, Savage PJ, Offenbacher S, Azambuja MI, Tracy RP, Heiss G. Markers of inflammation and prediction of diabetes mellitus in adults (atherosclerosis risk in communities study): a cohort study. Lancet. 1999;353:1649–52.PubMedCrossRef Schmidt MI, Duncan BB, Sharrett AR, Lindberg G, Savage PJ, Offenbacher S, Azambuja MI, Tracy RP, Heiss G. Markers of inflammation and prediction of diabetes mellitus in adults (atherosclerosis risk in communities study): a cohort study. Lancet. 1999;353:1649–52.PubMedCrossRef
53.
go back to reference Singh S, Bodas M, Bhatraju NK, Pattnaik B, Gheware A, Parameswaran PK, Thompson M, Freeman M, Mabalirajan U, Gosens R, et al. Hyperinsulinemia adversely affects lung structure and function. Am J Physiol Lung Cell Mol Physiol. 2016;310:L837–45.PubMedPubMedCentralCrossRef Singh S, Bodas M, Bhatraju NK, Pattnaik B, Gheware A, Parameswaran PK, Thompson M, Freeman M, Mabalirajan U, Gosens R, et al. Hyperinsulinemia adversely affects lung structure and function. Am J Physiol Lung Cell Mol Physiol. 2016;310:L837–45.PubMedPubMedCentralCrossRef
54.
go back to reference Verrotti A, Verini M, Chiarelli F, Verdesca V, Misticoni G, Morgese G. Pulmonary function in diabetic children with and without persistent microalbuminuria. Diabetes Res Clin Pract. 1993;21:171–6.PubMedCrossRef Verrotti A, Verini M, Chiarelli F, Verdesca V, Misticoni G, Morgese G. Pulmonary function in diabetic children with and without persistent microalbuminuria. Diabetes Res Clin Pract. 1993;21:171–6.PubMedCrossRef
55.
go back to reference Sahebjami H, Denholm D. Effects of streptozotocin-induced diabetes on lung mechanics and biochemistry in rats. J Appl Physiol (1985). 1988;64:147–53.CrossRef Sahebjami H, Denholm D. Effects of streptozotocin-induced diabetes on lung mechanics and biochemistry in rats. J Appl Physiol (1985). 1988;64:147–53.CrossRef
57.
go back to reference Suki B, Ito S, Stamenovic D, Lutchen KR, Ingenito EP. Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. J Appl Physiol (1985). 2005;98:1892–9.CrossRef Suki B, Ito S, Stamenovic D, Lutchen KR, Ingenito EP. Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. J Appl Physiol (1985). 2005;98:1892–9.CrossRef
58.
go back to reference Suki B, Bates JH. Lung tissue mechanics as an emergent phenomenon. J Appl Physiol (1985). 2011;110:1111–8.CrossRef Suki B, Bates JH. Lung tissue mechanics as an emergent phenomenon. J Appl Physiol (1985). 2011;110:1111–8.CrossRef
59.
go back to reference Hu Y, Ma Z, Guo Z, Zhao F, Wang Y, Cai L, Yang J. Type 1 diabetes mellitus is an independent risk factor for pulmonary fibrosis. Cell Biochem Biophys. 2014;70:1385–91.PubMedCrossRef Hu Y, Ma Z, Guo Z, Zhao F, Wang Y, Cai L, Yang J. Type 1 diabetes mellitus is an independent risk factor for pulmonary fibrosis. Cell Biochem Biophys. 2014;70:1385–91.PubMedCrossRef
60.
go back to reference Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.PubMedCrossRef Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.PubMedCrossRef
61.
go back to reference Collaboration NCDRF. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387:1513–30.CrossRef Collaboration NCDRF. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387:1513–30.CrossRef
62.
go back to reference Lee MJ, Coast JR, Hempleman SC, Baldi JC. Type 1 diabetes duration decreases pulmonary diffusing capacity during exercise. Respiration. 2016;91:164–70.PubMedCrossRef Lee MJ, Coast JR, Hempleman SC, Baldi JC. Type 1 diabetes duration decreases pulmonary diffusing capacity during exercise. Respiration. 2016;91:164–70.PubMedCrossRef
63.
go back to reference Grinnan D, Farr G, Fox A, Sweeney L. The role of hyperglycemia and insulin resistance in the development and progression of pulmonary arterial hypertension. J Diabetes Res. 2016;2016:2481659.PubMedPubMedCentralCrossRef Grinnan D, Farr G, Fox A, Sweeney L. The role of hyperglycemia and insulin resistance in the development and progression of pulmonary arterial hypertension. J Diabetes Res. 2016;2016:2481659.PubMedPubMedCentralCrossRef
64.
go back to reference Vracko R, Thorning D, Huang TW. Basal lamina of alveolar epithelium and capillaries: quantitative changes with aging and in diabetes mellitus. Am Rev Respir Dis. 1979;120:973–83.PubMed Vracko R, Thorning D, Huang TW. Basal lamina of alveolar epithelium and capillaries: quantitative changes with aging and in diabetes mellitus. Am Rev Respir Dis. 1979;120:973–83.PubMed
65.
go back to reference Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26:1553–79.PubMedCrossRef Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26:1553–79.PubMedCrossRef
66.
go back to reference Belmonte KE, Fryer AD, Costello RW. Role of insulin in antigen-induced airway eosinophilia and neuronal M2 muscarinic receptor dysfunction. J Appl Physiol (1985). 1998;85:1708–18.CrossRef Belmonte KE, Fryer AD, Costello RW. Role of insulin in antigen-induced airway eosinophilia and neuronal M2 muscarinic receptor dysfunction. J Appl Physiol (1985). 1998;85:1708–18.CrossRef
67.
go back to reference Talakatta G, Sarikhani M, Muhamed J, Dhanya K, Somashekar BS, Mahesh PA, Sundaresan N, Ravindra PV. Diabetes induces fibrotic changes in the lung through the activation of TGF-beta signaling pathways. Sci Rep. 2018;8:11920.PubMedPubMedCentralCrossRef Talakatta G, Sarikhani M, Muhamed J, Dhanya K, Somashekar BS, Mahesh PA, Sundaresan N, Ravindra PV. Diabetes induces fibrotic changes in the lung through the activation of TGF-beta signaling pathways. Sci Rep. 2018;8:11920.PubMedPubMedCentralCrossRef
68.
go back to reference Halayko AJ, Tran T, Gosens R. Phenotype and functional plasticity of airway smooth muscle: role of caveolae and caveolins. Proc Am Thorac Soc. 2008;5:80–8.PubMedCrossRef Halayko AJ, Tran T, Gosens R. Phenotype and functional plasticity of airway smooth muscle: role of caveolae and caveolins. Proc Am Thorac Soc. 2008;5:80–8.PubMedCrossRef
69.
go back to reference Carvalho VF, Barreto EO, Arantes ACS, Serra MF, Ferreira TPT, Jannini-Sa YAP, Hogaboam CM, Martins MA, Silva PMR. Diabetes Downregulates allergen-induced airway inflammation in mice. Mediat Inflamm. 2018;2018:6150843.CrossRef Carvalho VF, Barreto EO, Arantes ACS, Serra MF, Ferreira TPT, Jannini-Sa YAP, Hogaboam CM, Martins MA, Silva PMR. Diabetes Downregulates allergen-induced airway inflammation in mice. Mediat Inflamm. 2018;2018:6150843.CrossRef
70.
go back to reference Kolahian S, Asadi F, Nassiri SM. Airway inflammatory events in diabetic-antigen sensitized Guinea pigs. Eur J Pharmacol. 2011;659:252–8.PubMedCrossRef Kolahian S, Asadi F, Nassiri SM. Airway inflammatory events in diabetic-antigen sensitized Guinea pigs. Eur J Pharmacol. 2011;659:252–8.PubMedCrossRef
71.
go back to reference Rhind GB, Gould GA, Ewing DJ, Clarke BF, Douglas NJ. Increased bronchial reactivity to histamine in diabetic autonomic neuropathy. Clin Sci (Lond). 1987;73:401–5.CrossRef Rhind GB, Gould GA, Ewing DJ, Clarke BF, Douglas NJ. Increased bronchial reactivity to histamine in diabetic autonomic neuropathy. Clin Sci (Lond). 1987;73:401–5.CrossRef
Metadata
Title
Lung volume dependence of respiratory function in rodent models of diabetes mellitus
Authors
Roberta Südy
Álmos Schranc
Gergely H. Fodor
József Tolnai
Barna Babik
Ferenc Peták
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2020
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-020-01334-y

Other articles of this Issue 1/2020

Respiratory Research 1/2020 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.