Skip to main content
Top
Published in: Respiratory Research 1/2018

Open Access 01-12-2018 | Research

Serum phosphate and phosphate-regulatory hormones in COPD patients

Authors: Alexandra Stroda, Vincent Brandenburg, Ayham Daher, Christian Cornelissen, Claudia Goettsch, András Keszei, Michael Dreher

Published in: Respiratory Research | Issue 1/2018

Login to get access

Abstract

Background

Fibroblast growth factor 23 (FGF23) regulates phosphate metabolism by increasing renal phosphate excretion and decreasing 1.25-dihydroxyvitamin D synthesis. Reports about hypophosphatemia in patients with chronic obstructive pulmonary disease (COPD) suggest altered phosphate metabolism. Therefore, we hypothesized that disturbances in phosphate-regulatory hormones such as FGF23 and parathyroid hormone (PTH) are present in COPD patients.

Methods

We investigated 40 COPD patients (63.5 ± 9.9 years, 27 male), each matched with two age- and sex-matched controls without any primary lung disease. COPD patients underwent lung function testing in advance. All patients had a glomerular filtration rate (GFR) > 60 mL/min/1.73m2. We measured concentrations of intact FGF23 (iFGF23) and c-terminal FGF23 (c-term FGF23), phosphate, parathyroid hormone (PTH) and C-reactive protein (CRP) levels in COPD patients and controls.

Results

Phosphate (1.0 ± 02 vs. 1.1 ± 0.2 mmol/L; p = 0.027), PTH (54.2 ± 29.4 vs. 68.7 ± 31.8 pg/mL; p = 0.002) and iFGF23 (46.3 ± 29.0 vs. 57.5 ± 33.5 pg/mL; p = 0.026 ) levels were significantly lower in COPD patients compared with controls. There was a significant negative correlation between c-term FGF23 and total lung capacity (r = − 0.4; p = 0.01), and between c-term FGF23 and CRP in COPD patients (r = 0.48; p = 0.002). iFGF23 and c-term FGF23 were positively correlated with phosphate and PTH in the control group.

Conclusion

We confirmed lower average serum phosphate levels in COPD patients compared with controls. However, our data do not suggest a causative role for FGF23 or PTH in COPD because levels of both phosphate-lowering hormones appear to be adaptively decreased as well. Therefore, further investigations are needed to identify the pathogenesis of low phosphate levels in patients with COPD and the relationship between phosphate-regulatory hormones and disease progression.
Literature
1.
go back to reference Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3:e442.CrossRefPubMed Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3:e442.CrossRefPubMed
2.
go back to reference Anto JM, Vermeire P, Vestbo J, Sunyer J. Epidemiology of chronic obstructive pulmonary disease. Eur Respir J. 2001;17:982–94.CrossRef Anto JM, Vermeire P, Vestbo J, Sunyer J. Epidemiology of chronic obstructive pulmonary disease. Eur Respir J. 2001;17:982–94.CrossRef
3.
go back to reference Fiaccadori E, Coffrini E, Ronda N, Vezzani A, Cacciani G, Fracchia C, Rampulla C, Borghetti A. Hypophosphatemia in course of chronic obstructive pulmonary disease. Chest. 1990;97:857–68.CrossRef Fiaccadori E, Coffrini E, Ronda N, Vezzani A, Cacciani G, Fracchia C, Rampulla C, Borghetti A. Hypophosphatemia in course of chronic obstructive pulmonary disease. Chest. 1990;97:857–68.CrossRef
4.
go back to reference Fiaccadori E, Coffrini E, Fracchia C, Rampulla C, Montagna T, Borghetti A. Hypophosphatemia and phosphorus depletion in respiratory and peripheral muscles of patients with respiratory failure due to COPD. Chest. 1994;105:1392–8.CrossRef Fiaccadori E, Coffrini E, Fracchia C, Rampulla C, Montagna T, Borghetti A. Hypophosphatemia and phosphorus depletion in respiratory and peripheral muscles of patients with respiratory failure due to COPD. Chest. 1994;105:1392–8.CrossRef
5.
go back to reference Gattineni J, Bates C, Twombley K, Dwarakanath V, Robinson ML, Goetz R, Mohammadi M, Baum M. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol. 2009;297:F282–91.CrossRefPubMed Gattineni J, Bates C, Twombley K, Dwarakanath V, Robinson ML, Goetz R, Mohammadi M, Baum M. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol. 2009;297:F282–91.CrossRefPubMed
6.
go back to reference Saito H, Kusano K, Kinosaki M, Ito H, Hirata M, Segawa H, Miyamoto K, Fukushima N. Human fibroblast growth factor-23 mutants suppress Na+−dependent phosphate co-transport activity and 1alpha,25-dihydroxyvitamin D3 production. J Biol Chem. 2003;278:2206–11.CrossRef Saito H, Kusano K, Kinosaki M, Ito H, Hirata M, Segawa H, Miyamoto K, Fukushima N. Human fibroblast growth factor-23 mutants suppress Na+−dependent phosphate co-transport activity and 1alpha,25-dihydroxyvitamin D3 production. J Biol Chem. 2003;278:2206–11.CrossRef
7.
go back to reference Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19:429–35.CrossRef Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19:429–35.CrossRef
8.
go back to reference Razzaque MS, Sitara D, Taguchi T, St-Arnaud R, Lanske B. Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB J. 2006;20:720–2.CrossRefPubMed Razzaque MS, Sitara D, Taguchi T, St-Arnaud R, Lanske B. Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB J. 2006;20:720–2.CrossRefPubMed
9.
go back to reference Ohnishi M, Razzaque MS. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB J. 2010;24:3562–71.CrossRefPubMed Ohnishi M, Razzaque MS. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB J. 2010;24:3562–71.CrossRefPubMed
10.
go back to reference Parker BD, Schurgers LJ, Brandenburg VM, Christenson RH, Vermeer C, Ketteler M, Shlipak MG, Whooley MA, Ix JH. The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the heart and soul study. Ann Intern Med. 2010;152:640–8.CrossRefPubMed Parker BD, Schurgers LJ, Brandenburg VM, Christenson RH, Vermeer C, Ketteler M, Shlipak MG, Whooley MA, Ix JH. The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the heart and soul study. Ann Intern Med. 2010;152:640–8.CrossRefPubMed
11.
go back to reference Brandenburg VM, Kleber ME, Vervloet MG, Tomaschitz A, Pilz S, Stojakovic T, Delgado G, Grammer TB, Marx N, Marz W, Scharnagl H. Fibroblast growth factor 23 (FGF23) and mortality: the Ludwigshafen risk and cardiovascular health study. Atherosclerosis. 2014;237:53–9.CrossRef Brandenburg VM, Kleber ME, Vervloet MG, Tomaschitz A, Pilz S, Stojakovic T, Delgado G, Grammer TB, Marx N, Marz W, Scharnagl H. Fibroblast growth factor 23 (FGF23) and mortality: the Ludwigshafen risk and cardiovascular health study. Atherosclerosis. 2014;237:53–9.CrossRef
12.
go back to reference Isakova T, Xie H, Yang W, Xie D, Anderson AH, Scialla J, Wahl P, Gutierrez OM, Steigerwalt S, He J, et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011;305:2432–9.CrossRefPubMed Isakova T, Xie H, Yang W, Xie D, Anderson AH, Scialla J, Wahl P, Gutierrez OM, Steigerwalt S, He J, et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011;305:2432–9.CrossRefPubMed
13.
go back to reference Farah R, Khamisy-Farah R, Arraf Z, Jacobson L, Makhoul N. Hypophosphatemia as a prognostic value in acute exacerbation of COPD. Clin Respir J. 2013;7:407–15.CrossRef Farah R, Khamisy-Farah R, Arraf Z, Jacobson L, Makhoul N. Hypophosphatemia as a prognostic value in acute exacerbation of COPD. Clin Respir J. 2013;7:407–15.CrossRef
14.
go back to reference Elsammak M, Attia A, Suleman M. Fibroblast growth Factor-23 and hypophosphatemia in chronic obstructive pulmonary disease patients. J Med Biochem. 2012;31.CrossRef Elsammak M, Attia A, Suleman M. Fibroblast growth Factor-23 and hypophosphatemia in chronic obstructive pulmonary disease patients. J Med Biochem. 2012;31.CrossRef
15.
go back to reference Vestbo J, Hurd SS, Agusti AG, Jones PW, Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ, Nishimura M, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187:347–65.CrossRef Vestbo J, Hurd SS, Agusti AG, Jones PW, Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ, Nishimura M, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187:347–65.CrossRef
16.
go back to reference El-Maouche D, Dumitrescu CE, Andreopoulou P, Gafni RI, Brillante BA, Bhattacharyya N, Fedarko NS, Collins MT. Stability and degradation of fibroblast growth factor 23 (FGF23): the effect of time and temperature and assay type. Osteoporos Int. 2016;27:2345–53.CrossRef El-Maouche D, Dumitrescu CE, Andreopoulou P, Gafni RI, Brillante BA, Bhattacharyya N, Fedarko NS, Collins MT. Stability and degradation of fibroblast growth factor 23 (FGF23): the effect of time and temperature and assay type. Osteoporos Int. 2016;27:2345–53.CrossRef
17.
go back to reference Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group: KDIGO. Clinical practice guideline for the evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl. 2012;2013(3):1–150. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group: KDIGO. Clinical practice guideline for the evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl. 2012;2013(3):1–150.
18.
go back to reference Bergwitz C, Juppner H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med. 2010;61:91–104.CrossRefPubMed Bergwitz C, Juppner H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med. 2010;61:91–104.CrossRefPubMed
19.
go back to reference Hanks LJ, Casazza K, Judd SE, Jenny NS, Gutierrez OM. Associations of fibroblast growth factor-23 with markers of inflammation, insulin resistance and obesity in adults. PLoS One. 2015;10:e0122885.CrossRefPubMed Hanks LJ, Casazza K, Judd SE, Jenny NS, Gutierrez OM. Associations of fibroblast growth factor-23 with markers of inflammation, insulin resistance and obesity in adults. PLoS One. 2015;10:e0122885.CrossRefPubMed
20.
go back to reference Munoz Mendoza J, Isakova T, Ricardo AC, Xie H, Navaneethan SD, Anderson AH, Bazzano LA, Xie D, Kretzler M, Nessel L, et al. Fibroblast growth factor 23 and inflammation in CKD. Clin J Am Soc Nephrol. 2012;7:1155–62.CrossRefPubMed Munoz Mendoza J, Isakova T, Ricardo AC, Xie H, Navaneethan SD, Anderson AH, Bazzano LA, Xie D, Kretzler M, Nessel L, et al. Fibroblast growth factor 23 and inflammation in CKD. Clin J Am Soc Nephrol. 2012;7:1155–62.CrossRefPubMed
21.
go back to reference Chudek J, Kocelak P, Owczarek A, Bozentowicz-Wikarek M, Mossakowska M, Olszanecka-Glinianowicz M, Wiecek A. Fibroblast growth factor 23 (FGF23) and early chronic kidney disease in the elderly. Nephrol Dial Transplant. 2014;29:1757–63.CrossRef Chudek J, Kocelak P, Owczarek A, Bozentowicz-Wikarek M, Mossakowska M, Olszanecka-Glinianowicz M, Wiecek A. Fibroblast growth factor 23 (FGF23) and early chronic kidney disease in the elderly. Nephrol Dial Transplant. 2014;29:1757–63.CrossRef
22.
go back to reference Liamis G, Milionis HJ, Elisaf M. Medication-induced hypophosphatemia: a review. QJM. 2010;103:449–59.CrossRef Liamis G, Milionis HJ, Elisaf M. Medication-induced hypophosphatemia: a review. QJM. 2010;103:449–59.CrossRef
23.
go back to reference Olauson H, Larsson TE. FGF23 and klotho in chronic kidney disease. Curr Opin Nephrol Hypertens. 2013;22:397–404.CrossRef Olauson H, Larsson TE. FGF23 and klotho in chronic kidney disease. Curr Opin Nephrol Hypertens. 2013;22:397–404.CrossRef
Metadata
Title
Serum phosphate and phosphate-regulatory hormones in COPD patients
Authors
Alexandra Stroda
Vincent Brandenburg
Ayham Daher
Christian Cornelissen
Claudia Goettsch
András Keszei
Michael Dreher
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2018
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-018-0889-6

Other articles of this Issue 1/2018

Respiratory Research 1/2018 Go to the issue