Skip to main content
Top
Published in: Respiratory Research 1/2017

Open Access 01-12-2017 | Research

Electronic cigarette vapor alters the lateral structure but not tensiometric properties of calf lung surfactant

Authors: Rebecca J. Przybyla, Jason Wright, Rajan Parthiban, Saeed Nazemidashtarjandi, Savas Kaya, Amir M. Farnoud

Published in: Respiratory Research | Issue 1/2017

Login to get access

Abstract

Background

Despite their growing popularity, the potential respiratory toxicity of electronic cigarettes (e-cigarettes) remains largely unknown. One potential aspect of e-cigarette toxicity is the effect of e-cigarette vapor on lung surfactant function. Lung surfactant is a mixture of lipids and proteins that lines the alveolar region. The surfactant layer reduces the surface tension of the alveolar fluid, thereby playing a crucial role in lung stability. Due to their small size, particulates in e-cigarette vapor can penetrate the deep lungs and come into contact with the lung surfactant. The current study sought to examine the potential adverse effects of e-cigarette vapor and conventional cigarette smoke on lung surfactant interfacial properties.

Methods

Infasurf®, a clinically used and commercially available calf lung surfactant extract, was used as lung surfactant model. Infasurf® films were spread on top of an aqueous subphase in a Langmuir trough with smoke particulates from conventional cigarettes or vapor from different flavors of e-cigarettes dispersed in the subphase. Surfactant interfacial properties were measured in real-time upon surface compression while surfactant lateral structure after exposure to smoke or vapor was examined using atomic force microscopy (AFM).

Results

E-cigarette vapor regardless of the dose and flavoring of the e-liquid did not affect surfactant interfacial properties. In contrast, smoke from conventional cigarettes had a drastic, dose-dependent effect on Infasurf® interfacial properties reducing the maximum surface pressure from 65.1 ± 0.2 mN/m to 46.1 ± 1.3 mN/m at the highest dose. Cigarette smoke and e-cigarette vapor both altered surfactant microstructure resulting in an increase in the area of lipid multilayers. Studies with individual smoke components revealed that tar was the smoke component most disruptive to surfactant function.

Conclusions

While both e-cigarette vapor and conventional cigarette smoke affect surfactant lateral structure, only cigarette smoke disrupts surfactant interfacial properties. The surfactant inhibitory compound in conventional cigarettes is tar, which is a product of burning and is thus absent in e-cigarette vapor.
Literature
1.
go back to reference Schoenborn CA, Gindi RM. Electronic cigarette use among adults: United States, 2014. NCHS Data Brief. 2015;217:1–8. Schoenborn CA, Gindi RM. Electronic cigarette use among adults: United States, 2014. NCHS Data Brief. 2015;217:1–8.
2.
go back to reference Health UDo, Services H. E-cigarette use among youth and young adults. In: A report of the surgeon general. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health; 2016. Health UDo, Services H. E-cigarette use among youth and young adults. In: A report of the surgeon general. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health; 2016.
3.
go back to reference Fuoco FC, Buonanno G, Stabile L, Vigo P. Influential parameters on particle concentration and size distribution in the mainstream of e-cigarettes. Environ Pollut. 2014;184:523–9.CrossRefPubMed Fuoco FC, Buonanno G, Stabile L, Vigo P. Influential parameters on particle concentration and size distribution in the mainstream of e-cigarettes. Environ Pollut. 2014;184:523–9.CrossRefPubMed
4.
go back to reference Manigrasso M, Buonanno G, Fuoco FC, Stabile L, Avino P. Aerosol deposition doses in the human respiratory tree of electronic cigarette smokers. Environ Pollut. 2015;196:257–67.CrossRefPubMed Manigrasso M, Buonanno G, Fuoco FC, Stabile L, Avino P. Aerosol deposition doses in the human respiratory tree of electronic cigarette smokers. Environ Pollut. 2015;196:257–67.CrossRefPubMed
5.
go back to reference Azzopardi D, Patel K, Jaunky T, Santopietro S, Camacho OM, McAughey J, Gaça M. Electronic cigarette aerosol induces significantly less cytotoxicity than tobacco smoke. Toxicol Mech Methods. 2016;26:477–91.CrossRefPubMedPubMedCentral Azzopardi D, Patel K, Jaunky T, Santopietro S, Camacho OM, McAughey J, Gaça M. Electronic cigarette aerosol induces significantly less cytotoxicity than tobacco smoke. Toxicol Mech Methods. 2016;26:477–91.CrossRefPubMedPubMedCentral
6.
go back to reference Taylor M, Carr T, Oke O, Jaunky T, Breheny D, Lowe F, Gaça M. E-cigarette aerosols induce lower oxidative stress in vitro when compared to tobacco smoke. Toxicol Mech Methods. 2016;26:465–76.CrossRefPubMed Taylor M, Carr T, Oke O, Jaunky T, Breheny D, Lowe F, Gaça M. E-cigarette aerosols induce lower oxidative stress in vitro when compared to tobacco smoke. Toxicol Mech Methods. 2016;26:465–76.CrossRefPubMed
7.
go back to reference Moses E, Wang T, Corbett S, Jackson GR, Drizik E, Perdomo C, Perdomo C, Kleerup E, Brooks D, O’Connor G. Molecular impact of electronic cigarette aerosol exposure in human bronchial epithelium. Toxicol Sci. 2016;155:248–57.CrossRefPubMed Moses E, Wang T, Corbett S, Jackson GR, Drizik E, Perdomo C, Perdomo C, Kleerup E, Brooks D, O’Connor G. Molecular impact of electronic cigarette aerosol exposure in human bronchial epithelium. Toxicol Sci. 2016;155:248–57.CrossRefPubMed
8.
go back to reference Scheffler S, Dieken H, Krischenowski O, Aufderheide M. Cytotoxic evaluation of e-liquid aerosol using different lung-derived cell models. Int J Environ Public Health. 2015;12:12466–74.CrossRef Scheffler S, Dieken H, Krischenowski O, Aufderheide M. Cytotoxic evaluation of e-liquid aerosol using different lung-derived cell models. Int J Environ Public Health. 2015;12:12466–74.CrossRef
9.
go back to reference Scheffler S, Dieken H, Krischenowski O, Förster C, Branscheid D, Aufderheide M. Evaluation of e-cigarette liquid vapor and mainstream cigarette smoke after direct exposure of primary human bronchial epithelial cells. Int J Environ Public Health. 2015;12:3915–25.CrossRef Scheffler S, Dieken H, Krischenowski O, Förster C, Branscheid D, Aufderheide M. Evaluation of e-cigarette liquid vapor and mainstream cigarette smoke after direct exposure of primary human bronchial epithelial cells. Int J Environ Public Health. 2015;12:3915–25.CrossRef
10.
go back to reference Misra M, Leverette RD, Cooper BT, Bennett MB, Brown SE. Comparative in vitro toxicity profile of electronic and tobacco cigarettes, smokeless tobacco and nicotine replacement therapy products: e-liquids, extracts and collected aerosols. Int J Environ Public Health. 2014;11:11325–47.CrossRef Misra M, Leverette RD, Cooper BT, Bennett MB, Brown SE. Comparative in vitro toxicity profile of electronic and tobacco cigarettes, smokeless tobacco and nicotine replacement therapy products: e-liquids, extracts and collected aerosols. Int J Environ Public Health. 2014;11:11325–47.CrossRef
11.
go back to reference Zuo YY, Veldhuizen RAW, Neumann AW, Petersen NO, Possmayer F. Current perspectives in pulmonary surfactant--inhibition, enhancement and evaluation. Biochim Biophys Acta-Biomembr. 1778;2008:1947–77. Zuo YY, Veldhuizen RAW, Neumann AW, Petersen NO, Possmayer F. Current perspectives in pulmonary surfactant--inhibition, enhancement and evaluation. Biochim Biophys Acta-Biomembr. 1778;2008:1947–77.
12.
go back to reference Avery ME, Mead J. Surface properties in relation to atelectasis and hyaline membrane disease. Arch Pediatr Adolesc Med. 1959;97:517–23.CrossRef Avery ME, Mead J. Surface properties in relation to atelectasis and hyaline membrane disease. Arch Pediatr Adolesc Med. 1959;97:517–23.CrossRef
13.
go back to reference Kurashima K, Fujimura M, Matsuda T, Kobayashi T. Surface activity of sputum from acute asthmatic patients. Am J Respir Crit Care. 1997;155:1254–9.CrossRef Kurashima K, Fujimura M, Matsuda T, Kobayashi T. Surface activity of sputum from acute asthmatic patients. Am J Respir Crit Care. 1997;155:1254–9.CrossRef
14.
go back to reference Günther A, Siebert C, Schmidt R, Ziegler S, Grimminger F, Yabut M, Temmesfeld B, Walmrath D, Morr H, Seeger W. Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema. Am J Respir Crit Care. 1996;153:176–84.CrossRef Günther A, Siebert C, Schmidt R, Ziegler S, Grimminger F, Yabut M, Temmesfeld B, Walmrath D, Morr H, Seeger W. Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema. Am J Respir Crit Care. 1996;153:176–84.CrossRef
15.
go back to reference Lusuardi M, Capelli A, Carli S, Tacconi M, Salmona M, Donner C. Role of surfactant in chronic obstructive pulmonary disease: therapeutic implications. Respiration. 1992;59:28–32.CrossRefPubMed Lusuardi M, Capelli A, Carli S, Tacconi M, Salmona M, Donner C. Role of surfactant in chronic obstructive pulmonary disease: therapeutic implications. Respiration. 1992;59:28–32.CrossRefPubMed
16.
go back to reference Bloom BT, Kattwinkel J, Hall RT, Delmore PM, Egan EA, Trout JR, Malloy MH, Brown DR, Holzman IR, Coghill CH. Comparison of Infasurf (calf lung surfactant extract) to Survanta (Beractant) in the treatment and prevention of respiratory distress syndrome. Pediatrics. 1997;100:31–8.CrossRefPubMed Bloom BT, Kattwinkel J, Hall RT, Delmore PM, Egan EA, Trout JR, Malloy MH, Brown DR, Holzman IR, Coghill CH. Comparison of Infasurf (calf lung surfactant extract) to Survanta (Beractant) in the treatment and prevention of respiratory distress syndrome. Pediatrics. 1997;100:31–8.CrossRefPubMed
17.
go back to reference Fan Q, Wang YE, Zhao X, Loo JSC, Zuo YY. Adverse biophysical effects of hydroxyapatite nanoparticles on natural pulmonary surfactant. ACS Nano. 2011;5:6410–6.CrossRefPubMedPubMedCentral Fan Q, Wang YE, Zhao X, Loo JSC, Zuo YY. Adverse biophysical effects of hydroxyapatite nanoparticles on natural pulmonary surfactant. ACS Nano. 2011;5:6410–6.CrossRefPubMedPubMedCentral
18.
go back to reference Farnoud AM, Fiegel J. Calf lung surfactant recovers surface functionality after exposure to aerosols containing polymeric particles. J Aerosol Med Pulm Drug Deliv. 2016;29:10–23.PubMedCentral Farnoud AM, Fiegel J. Calf lung surfactant recovers surface functionality after exposure to aerosols containing polymeric particles. J Aerosol Med Pulm Drug Deliv. 2016;29:10–23.PubMedCentral
19.
go back to reference Hu Q, Jiao B, Shi X, Valle RP, Zuo YY, Hu G. Effects of graphene oxide nanosheets on the ultrastructure and biophysical properties of the pulmonary surfactant film. Nano. 2015;7(43):18025–9. Hu Q, Jiao B, Shi X, Valle RP, Zuo YY, Hu G. Effects of graphene oxide nanosheets on the ultrastructure and biophysical properties of the pulmonary surfactant film. Nano. 2015;7(43):18025–9.
20.
go back to reference Kanishtha T, Banerjee R, Venkataraman C. Effect of particle emissions from biofuel combustion on surface activity of model and therapeutic pulmonary surfactants. Environ Toxicol Pharmacol. 2006;22:325–33.CrossRefPubMed Kanishtha T, Banerjee R, Venkataraman C. Effect of particle emissions from biofuel combustion on surface activity of model and therapeutic pulmonary surfactants. Environ Toxicol Pharmacol. 2006;22:325–33.CrossRefPubMed
21.
go back to reference Higenbottam T. Tobacco smoking and the pulmonary surfactant system. Tokai J Exp Clin Med. 1985;10:465–70.PubMed Higenbottam T. Tobacco smoking and the pulmonary surfactant system. Tokai J Exp Clin Med. 1985;10:465–70.PubMed
22.
go back to reference Subramaniam S, Bummer P, Gairola C. Biochemical and biophysical characterization of pulmonary surfactant in rats exposed chronically to cigarefte smoke. Toxicol Sci. 1995;27:63–9.CrossRef Subramaniam S, Bummer P, Gairola C. Biochemical and biophysical characterization of pulmonary surfactant in rats exposed chronically to cigarefte smoke. Toxicol Sci. 1995;27:63–9.CrossRef
23.
go back to reference Bringezu F, Pinkerton KE, Zasadzinski JA. Environmental tobacco smoke effects on the primary lipids of lung surfactant. Langmuir. 2003;19:2900–7.CrossRef Bringezu F, Pinkerton KE, Zasadzinski JA. Environmental tobacco smoke effects on the primary lipids of lung surfactant. Langmuir. 2003;19:2900–7.CrossRef
24.
go back to reference Stenger PC, Alonso C, Zasadzinski JA, Waring AJ, Jung C-L, Pinkerton KE. Environmental tobacco smoke effects on lung surfactant film organization. Biochim Biophys Acta-Biomembr. 1788;2009:358–70. Stenger PC, Alonso C, Zasadzinski JA, Waring AJ, Jung C-L, Pinkerton KE. Environmental tobacco smoke effects on lung surfactant film organization. Biochim Biophys Acta-Biomembr. 1788;2009:358–70.
26.
go back to reference Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.CrossRefPubMed Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.CrossRefPubMed
27.
go back to reference Notter RH, Wang Z, Egan EA, Holm BA. Component-specific surface and physiological activity in bovine-derived lung surfactants. Chem Phys Lipids. 2002;114:21–34.CrossRefPubMed Notter RH, Wang Z, Egan EA, Holm BA. Component-specific surface and physiological activity in bovine-derived lung surfactants. Chem Phys Lipids. 2002;114:21–34.CrossRefPubMed
28.
go back to reference Wang YE, Zhang H, Fan Q, Neal CR, Zuo YY. Biophysical interaction between corticosteroids and natural surfactant preparation: implications for pulmonary drug delivery using surfactant as a carrier. Soft Matter. 2012;8:504–11.CrossRefPubMed Wang YE, Zhang H, Fan Q, Neal CR, Zuo YY. Biophysical interaction between corticosteroids and natural surfactant preparation: implications for pulmonary drug delivery using surfactant as a carrier. Soft Matter. 2012;8:504–11.CrossRefPubMed
29.
go back to reference Zhang H, Fan Q, Wang YE, Neal CR, Zuo YY. Comparative study of clinical pulmonary surfactants using atomic force microscopy. Biochim Biophys Acta-Biomembr. 1808;2011:1832–42. Zhang H, Fan Q, Wang YE, Neal CR, Zuo YY. Comparative study of clinical pulmonary surfactants using atomic force microscopy. Biochim Biophys Acta-Biomembr. 1808;2011:1832–42.
30.
go back to reference Alonso C, Bringezu F, Brezesinski G, Waring AJ, Zasadzinski JA. Modifying calf lung surfactant by hexadecanol. Langmuir. 2005;21:1028–35.CrossRefPubMed Alonso C, Bringezu F, Brezesinski G, Waring AJ, Zasadzinski JA. Modifying calf lung surfactant by hexadecanol. Langmuir. 2005;21:1028–35.CrossRefPubMed
31.
go back to reference Giovenco DP, Hammond D, Corey CG, Ambrose BK, Delnevo CD. E-cigarette market trends in traditional US retail channels, 2012–2013. Nicotine Tob Res. 2014;17:1279–83.CrossRefPubMedPubMedCentral Giovenco DP, Hammond D, Corey CG, Ambrose BK, Delnevo CD. E-cigarette market trends in traditional US retail channels, 2012–2013. Nicotine Tob Res. 2014;17:1279–83.CrossRefPubMedPubMedCentral
32.
go back to reference de Souza NC, Caetano W, Itri R, Rodrigues CA, Oliveira ON Jr, Giacometti JA, Ferreira M. Interaction of small amounts of bovine serum albumin with phospholipid monolayers investigated by surface pressure and atomic force microscopy. J Colloid Interface Sci. 2006;297:546–53.CrossRefPubMed de Souza NC, Caetano W, Itri R, Rodrigues CA, Oliveira ON Jr, Giacometti JA, Ferreira M. Interaction of small amounts of bovine serum albumin with phospholipid monolayers investigated by surface pressure and atomic force microscopy. J Colloid Interface Sci. 2006;297:546–53.CrossRefPubMed
33.
go back to reference Holm BA, Notter R, Finkelstein JN. Surface property changes from interactions of albumin with natural lung surfactant and extracted lung lipids. Chem Phys Lipids. 1985;38:287–98.CrossRefPubMed Holm BA, Notter R, Finkelstein JN. Surface property changes from interactions of albumin with natural lung surfactant and extracted lung lipids. Chem Phys Lipids. 1985;38:287–98.CrossRefPubMed
34.
go back to reference Zuo YY, Tadayyon SM, Keating E, Zhao L, Veldhuizen RA, Petersen NO, Amrein MW, Possmayer F. Atomic force microscopy studies of functional and dysfunctional pulmonary surfactant films, II: albumin-inhibited pulmonary surfactant films and the effect of SP-A. Biophys J. 2008;95:2779–91.CrossRefPubMedPubMedCentral Zuo YY, Tadayyon SM, Keating E, Zhao L, Veldhuizen RA, Petersen NO, Amrein MW, Possmayer F. Atomic force microscopy studies of functional and dysfunctional pulmonary surfactant films, II: albumin-inhibited pulmonary surfactant films and the effect of SP-A. Biophys J. 2008;95:2779–91.CrossRefPubMedPubMedCentral
35.
go back to reference Farnoud AM, Fiegel J. Low concentrations of negatively charged sub-micron particles alter the microstructure of DPPC at the air-water interface. Colloids Surf A Physicochem Eng Asp. 2012;415:320–7.CrossRef Farnoud AM, Fiegel J. Low concentrations of negatively charged sub-micron particles alter the microstructure of DPPC at the air-water interface. Colloids Surf A Physicochem Eng Asp. 2012;415:320–7.CrossRef
36.
go back to reference Kaganer VM, Möhwald H, Dutta P. Structure and phase transitions in Langmuir monolayers. Rev Mod Phys. 1999;71:779.CrossRef Kaganer VM, Möhwald H, Dutta P. Structure and phase transitions in Langmuir monolayers. Rev Mod Phys. 1999;71:779.CrossRef
37.
go back to reference Zuo YY, Keating E, Zhao L, Tadayyon SM, Veldhuizen RA, Petersen NO, Possmayer F. Atomic force microscopy studies of functional and dysfunctional pulmonary surfactant films. I. Micro-and nanostructures of functional pulmonary surfactant films and the effect of SP-A. Biophys J. 2008;94:3549–64.CrossRefPubMedPubMedCentral Zuo YY, Keating E, Zhao L, Tadayyon SM, Veldhuizen RA, Petersen NO, Possmayer F. Atomic force microscopy studies of functional and dysfunctional pulmonary surfactant films. I. Micro-and nanostructures of functional pulmonary surfactant films and the effect of SP-A. Biophys J. 2008;94:3549–64.CrossRefPubMedPubMedCentral
38.
go back to reference Davies MJ, Birkett JW, Kotwa M, Tomlinson L, Woldetinsae R. The impact of cigarette/e-cigarette vapour on simulated pulmonary surfactant monolayers under physiologically relevant conditions. Surf Interface Anal. 2017;49(7):654–65.CrossRef Davies MJ, Birkett JW, Kotwa M, Tomlinson L, Woldetinsae R. The impact of cigarette/e-cigarette vapour on simulated pulmonary surfactant monolayers under physiologically relevant conditions. Surf Interface Anal. 2017;49(7):654–65.CrossRef
39.
go back to reference Margham J, McAdam K, Forster M, Liu C, Wright C, Mariner D, Proctor C. Chemical composition of aerosol from an e-cigarette: a quantitative comparison with cigarette smoke. Chem Res Toxicol. 2016;29:1662–78.CrossRefPubMed Margham J, McAdam K, Forster M, Liu C, Wright C, Mariner D, Proctor C. Chemical composition of aerosol from an e-cigarette: a quantitative comparison with cigarette smoke. Chem Res Toxicol. 2016;29:1662–78.CrossRefPubMed
40.
go back to reference Goel R, Durand E, Trushin N, Prokopczyk B, Foulds J, Elias RJ, Richie JP Jr. Highly reactive free radicals in electronic cigarette aerosols. Chem Res Toxicol. 2015;28:1675–7.CrossRefPubMedPubMedCentral Goel R, Durand E, Trushin N, Prokopczyk B, Foulds J, Elias RJ, Richie JP Jr. Highly reactive free radicals in electronic cigarette aerosols. Chem Res Toxicol. 2015;28:1675–7.CrossRefPubMedPubMedCentral
41.
go back to reference Zasadzinski JA, Stenger PC, Shieh I, Dhar P. Overcoming rapid inactivation of lung surfactant: analogies between competitive adsorption and colloid stability. Biochim Biophys Acta. 1798;2010:801–28. Zasadzinski JA, Stenger PC, Shieh I, Dhar P. Overcoming rapid inactivation of lung surfactant: analogies between competitive adsorption and colloid stability. Biochim Biophys Acta. 1798;2010:801–28.
42.
go back to reference Warriner H, Ding J, Waring A, Zasadzinski J. A concentration-dependent mechanism by which serum albumin inactivates replacement lung surfactants. Biophys J. 2002;82:835–42.CrossRefPubMedPubMedCentral Warriner H, Ding J, Waring A, Zasadzinski J. A concentration-dependent mechanism by which serum albumin inactivates replacement lung surfactants. Biophys J. 2002;82:835–42.CrossRefPubMedPubMedCentral
43.
go back to reference Anderson PJ, Wilson JD, Hiller FC. Particle size distribution of mainstream tobacco and marijuana smoke. Am Rev Respir Dis. 1989;140:202–5.CrossRefPubMed Anderson PJ, Wilson JD, Hiller FC. Particle size distribution of mainstream tobacco and marijuana smoke. Am Rev Respir Dis. 1989;140:202–5.CrossRefPubMed
44.
go back to reference Subramaniam S, Whitsett J, Hull W, Gairola C. Alteration of pulmonary surfactant proteins in rats chronically exposed to cigarette smoke. Toxicol Appl Pharmacol. 1996;140:274–80.CrossRefPubMed Subramaniam S, Whitsett J, Hull W, Gairola C. Alteration of pulmonary surfactant proteins in rats chronically exposed to cigarette smoke. Toxicol Appl Pharmacol. 1996;140:274–80.CrossRefPubMed
45.
go back to reference Moré JM, Voelker DR, Silveira LJ, Edwards MG, Chan ED, Bowler RP. Smoking reduces surfactant protein D and phospholipids in patients with and without chronic obstructive pulmonary disease. BMC Pulm Med. 2010;10:1.CrossRef Moré JM, Voelker DR, Silveira LJ, Edwards MG, Chan ED, Bowler RP. Smoking reduces surfactant protein D and phospholipids in patients with and without chronic obstructive pulmonary disease. BMC Pulm Med. 2010;10:1.CrossRef
46.
go back to reference Teague SV, Pinkerton KE, Goldsmith M, Gebremichael A, Chang S, Jenkins RA, Moneyhun JH. Sidestream cigarette smoke generation and exposure system for environmental tobacco smoke studies. Inhal Toxicol. 1994;6:79–93.CrossRef Teague SV, Pinkerton KE, Goldsmith M, Gebremichael A, Chang S, Jenkins RA, Moneyhun JH. Sidestream cigarette smoke generation and exposure system for environmental tobacco smoke studies. Inhal Toxicol. 1994;6:79–93.CrossRef
48.
go back to reference Chen P, Moldoveanu S. Mainstream smoke chemical analyses for 2R4F Kentucky reference cigarette. Beitr Tabakforsch Int. 2003;20:448–58. Chen P, Moldoveanu S. Mainstream smoke chemical analyses for 2R4F Kentucky reference cigarette. Beitr Tabakforsch Int. 2003;20:448–58.
49.
go back to reference Counts M, Hsu F, Tewes F. Development of a commercial cigarette “market map” comparison methodology for evaluating new or non-conventional cigarettes. Regul Toxicol Pharmacol. 2006;46:225–42.CrossRefPubMed Counts M, Hsu F, Tewes F. Development of a commercial cigarette “market map” comparison methodology for evaluating new or non-conventional cigarettes. Regul Toxicol Pharmacol. 2006;46:225–42.CrossRefPubMed
50.
go back to reference Roemer E, Schramke H, Weiler H, Buettner A, Kausche S, Weber S, Berges A, Stueber M, Muench M, Trelles-Sticken E. Mainstream smoke chemistry and in vitro and in vivo toxicity of the reference cigarettes 3R4F and 2R4F. Beitr Tabakforsch Int. 2014;25:316–35. Roemer E, Schramke H, Weiler H, Buettner A, Kausche S, Weber S, Berges A, Stueber M, Muench M, Trelles-Sticken E. Mainstream smoke chemistry and in vitro and in vivo toxicity of the reference cigarettes 3R4F and 2R4F. Beitr Tabakforsch Int. 2014;25:316–35.
51.
go back to reference Lerner CA, Sundar IK, Watson RM, Elder A, Jones R, Done D, Kurtzman R, Ossip DJ, Robinson R, McIntosh S. Environmental health hazards of e-cigarettes and their components: oxidants and copper in e-cigarette aerosols. Environ Pollut. 2015;198:100–7.CrossRefPubMedPubMedCentral Lerner CA, Sundar IK, Watson RM, Elder A, Jones R, Done D, Kurtzman R, Ossip DJ, Robinson R, McIntosh S. Environmental health hazards of e-cigarettes and their components: oxidants and copper in e-cigarette aerosols. Environ Pollut. 2015;198:100–7.CrossRefPubMedPubMedCentral
52.
go back to reference Lerner CA, Sundar IK, Yao H, Gerloff J, Ossip DJ, McIntosh S, Robinson R, Rahman I. Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung. PLoS One. 2015;10:e0116732.CrossRefPubMedPubMedCentral Lerner CA, Sundar IK, Yao H, Gerloff J, Ossip DJ, McIntosh S, Robinson R, Rahman I. Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung. PLoS One. 2015;10:e0116732.CrossRefPubMedPubMedCentral
53.
go back to reference Hoshino Y, Mio T, Nagai S, Miki H, Ito I, Izumi T. Cytotoxic effects of cigarette smoke extract on an alveolar type II cell-derived cell line. Am J Physiol Lung Cell Mol Physiol. 2001;281:L509–16.PubMed Hoshino Y, Mio T, Nagai S, Miki H, Ito I, Izumi T. Cytotoxic effects of cigarette smoke extract on an alveolar type II cell-derived cell line. Am J Physiol Lung Cell Mol Physiol. 2001;281:L509–16.PubMed
54.
go back to reference Lannan S, Donaldson K, Brown D, MacNee W. Effect of cigarette smoke and its condensates on alveolar epithelial cell injury in vitro. Am J Physiol Lung Cell Mol Physiol. 1994;266:L92–L100. Lannan S, Donaldson K, Brown D, MacNee W. Effect of cigarette smoke and its condensates on alveolar epithelial cell injury in vitro. Am J Physiol Lung Cell Mol Physiol. 1994;266:L92–L100.
55.
go back to reference Wirtz H, Schmidt M. Acute influence of cigarette smoke on secretion of pulmonary surfactant in rat alveolar type II cells in culture. Eur Respir J. 1996;9:24–32.CrossRefPubMed Wirtz H, Schmidt M. Acute influence of cigarette smoke on secretion of pulmonary surfactant in rat alveolar type II cells in culture. Eur Respir J. 1996;9:24–32.CrossRefPubMed
56.
go back to reference Masubuchi T, Koyama S, Sato E, Takamizawa A, Kubo K, Sekiguchi M, Nagai S, Izumi T. Smoke extract stimulates lung epithelial cells to release neutrophil and monocyte chemotactic activity. Am J Pathol. 1998;153:1903–12.CrossRefPubMedPubMedCentral Masubuchi T, Koyama S, Sato E, Takamizawa A, Kubo K, Sekiguchi M, Nagai S, Izumi T. Smoke extract stimulates lung epithelial cells to release neutrophil and monocyte chemotactic activity. Am J Pathol. 1998;153:1903–12.CrossRefPubMedPubMedCentral
57.
Metadata
Title
Electronic cigarette vapor alters the lateral structure but not tensiometric properties of calf lung surfactant
Authors
Rebecca J. Przybyla
Jason Wright
Rajan Parthiban
Saeed Nazemidashtarjandi
Savas Kaya
Amir M. Farnoud
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2017
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-017-0676-9

Other articles of this Issue 1/2017

Respiratory Research 1/2017 Go to the issue