Skip to main content
Top
Published in: Respiratory Research 1/2017

Open Access 01-12-2017 | Research

Characterisation of a murine model of the late asthmatic response

Authors: Katie Baker, Kristof Raemdonck, Robert J. Snelgrove, Maria G. Belvisi, Mark A. Birrell

Published in: Respiratory Research | Issue 1/2017

Login to get access

Abstract

Background

The incidence of asthma is increasing at an alarming rate. While the current available therapies are effective, there are associated side effects and they fail to adequately control symptoms in all patient subsets. In the search to understand disease pathogenesis and find effective therapies hypotheses are often tested in animal models before progressing into clinical studies. However, current dogma is that animal model data is often not predictive of clinical outcome. One possible reason for this is the end points measured such as antigen-challenge induced late asthmatic response (LAR) is often used in early clinical development, but seldom in animal model systems. As the mouse is typically selected as preferred species for pre-clinical models, we wanted to characterise and probe the validity of a murine model exhibiting an allergen induced LAR.

Methods

C57BL/6 mice were sensitised with antigen and subsequently topically challenged with the same antigen. The role of AlumTM adjuvant, glucocorticoid, long acting muscarinic receptor antagonist (LAMA), TRPA1, CD4+ and CD8+ T cells, B cells, Mast cells and IgE were determined in the LAR using genetically modified mice and a range of pharmacological tools.

Results

Our data showed that unlike other features of asthma (e.g. cellular inflammation, elevated IgE levels and airway hyper-reactivity (AHR) the LAR required AlumTMadjuvant. Furthermore, the LAR appeared to be sensitive to glucocorticoid and required CD4+ T cells. Unlike in other species studied, the LAR was not sensitive to LAMA treatment nor required the TRPA1 ion channel, suggesting that airway sensory nerves are not involved in the LAR in this species. Furthermore, the data suggested that CD8+ T cells and the mast cell—B-cell - IgE axis appear to be protective in this murine model.

Conclusion

Together we can conclude that this model does feature steroid sensitive, CD4+ T cell dependent, allergen induced LAR. However, collectively our data questions the validity of using the murine pre-clinical model of LAR in the assessment of future asthma therapies.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Levy ML, Fletcher M, Price DB, Hausen T, Halbert RJ, Yawn BP. International Primary Care Respiratory Group (IPCRG) Guidelines: diagnosis of respiratory diseases in primary care. Prim Care Respir J. 2006;15:20–34. 2006/05/17 ed.CrossRefPubMed Levy ML, Fletcher M, Price DB, Hausen T, Halbert RJ, Yawn BP. International Primary Care Respiratory Group (IPCRG) Guidelines: diagnosis of respiratory diseases in primary care. Prim Care Respir J. 2006;15:20–34. 2006/05/17 ed.CrossRefPubMed
3.
go back to reference Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, Fitzgerald M, et al. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J. 2008;31:143–78. 2008/01/02 ed.CrossRefPubMed Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, Fitzgerald M, et al. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J. 2008;31:143–78. 2008/01/02 ed.CrossRefPubMed
6.
go back to reference Masoli M, Fabian D, Holt S, Beasley R. The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy. 2004;59:469–78. 2004/04/15 ed.CrossRefPubMed Masoli M, Fabian D, Holt S, Beasley R. The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy. 2004;59:469–78. 2004/04/15 ed.CrossRefPubMed
7.
go back to reference Akinbami LJ, Moorman JE, Liu X. Asthma prevalence, health care use, and mortality: United States, 2005–2009. Natl Heal Stat Rep. 2011;12(32):1–14. 2011/03/02 ed. Akinbami LJ, Moorman JE, Liu X. Asthma prevalence, health care use, and mortality: United States, 2005–2009. Natl Heal Stat Rep. 2011;12(32):1–14. 2011/03/02 ed.
9.
go back to reference Holgate ST. The airway epithelium is central to the pathogenesis of asthma. Allergol Int. 2008;57:1–10.CrossRefPubMed Holgate ST. The airway epithelium is central to the pathogenesis of asthma. Allergol Int. 2008;57:1–10.CrossRefPubMed
11.
go back to reference Booij-Noord H, Orie NG, De Vries K. Immediate and late bronchial obstructive reactions to inhalation of house dust and protective effects of disodium cromoglycate and prednisolone. J Allergy Clin Immunol. 1971;48:344–54. 1971/12/01 ed.CrossRefPubMed Booij-Noord H, Orie NG, De Vries K. Immediate and late bronchial obstructive reactions to inhalation of house dust and protective effects of disodium cromoglycate and prednisolone. J Allergy Clin Immunol. 1971;48:344–54. 1971/12/01 ed.CrossRefPubMed
12.
go back to reference O’Byrne PM, Gauvreau GM, Brannan JD. Provoked models of asthma: what have we learnt? Clin Exp Allergy. 2009;39:181–92.CrossRefPubMed O’Byrne PM, Gauvreau GM, Brannan JD. Provoked models of asthma: what have we learnt? Clin Exp Allergy. 2009;39:181–92.CrossRefPubMed
13.
go back to reference Roquet A, Dahlén B, Kumlin M, Ihre E, Anstrén G, Binks S, et al. Combined antagonism of leukotrienes and histamine produces predominant inhibition of allergen-induced early and late phase airway obstruction in asthmatics. Am J Respir Crit Care Med. 1997;155:1856–63.CrossRefPubMed Roquet A, Dahlén B, Kumlin M, Ihre E, Anstrén G, Binks S, et al. Combined antagonism of leukotrienes and histamine produces predominant inhibition of allergen-induced early and late phase airway obstruction in asthmatics. Am J Respir Crit Care Med. 1997;155:1856–63.CrossRefPubMed
14.
go back to reference Curzen N, Rafferty P, Holgate ST. Effects of a cyclo-oxygenase inhibitor, flurbiprofen, and an H1 histamine receptor antagonist, terfenadine, alone and in combination on allergen induced immediate bronchoconstriction in man. Thorax. 1987;42:946–52.CrossRefPubMedPubMedCentral Curzen N, Rafferty P, Holgate ST. Effects of a cyclo-oxygenase inhibitor, flurbiprofen, and an H1 histamine receptor antagonist, terfenadine, alone and in combination on allergen induced immediate bronchoconstriction in man. Thorax. 1987;42:946–52.CrossRefPubMedPubMedCentral
15.
go back to reference Jarjour NN, Calhoun WJ, Kelly EA, Gleich GJ, Schwartz LB, Busse WW. The immediate and late allergic response to segmental bronchopulmonary provocation in asthma. Am J Respir Crit Care Med. 1997;155:1515–21.CrossRefPubMed Jarjour NN, Calhoun WJ, Kelly EA, Gleich GJ, Schwartz LB, Busse WW. The immediate and late allergic response to segmental bronchopulmonary provocation in asthma. Am J Respir Crit Care Med. 1997;155:1515–21.CrossRefPubMed
16.
go back to reference Bousquet J, Jeffery PK, Busse WW, Johnson M, Vignola AM. Asthma: From bronchoconstriction to airways inflammation and remodeling. Am J Respir Crit Care Med. 2000;161(5):1720–45.CrossRefPubMed Bousquet J, Jeffery PK, Busse WW, Johnson M, Vignola AM. Asthma: From bronchoconstriction to airways inflammation and remodeling. Am J Respir Crit Care Med. 2000;161(5):1720–45.CrossRefPubMed
17.
go back to reference Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008;8:183–92. 2008/02/16 ed.CrossRefPubMed Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008;8:183–92. 2008/02/16 ed.CrossRefPubMed
18.
go back to reference Raemdonck K, de Alba J, Birrell MA, Grace M, Maher SA, Irvin CG, et al. A role for sensory nerves in the late asthmatic response. Thorax. 2012;67:19–25.CrossRefPubMed Raemdonck K, de Alba J, Birrell MA, Grace M, Maher SA, Irvin CG, et al. A role for sensory nerves in the late asthmatic response. Thorax. 2012;67:19–25.CrossRefPubMed
20.
go back to reference Stevenson CS, Birrell MA. Moving towards a new generation of animal models for asthma and COPD with improved clinical relevance. Pharmacol Ther. 2011;130:93–105.CrossRefPubMed Stevenson CS, Birrell MA. Moving towards a new generation of animal models for asthma and COPD with improved clinical relevance. Pharmacol Ther. 2011;130:93–105.CrossRefPubMed
21.
go back to reference Shapiro SD. The use of transgenic mice for modeling airways disease. Pulm Pharmacol Ther. 2008;21:699–701.CrossRefPubMed Shapiro SD. The use of transgenic mice for modeling airways disease. Pulm Pharmacol Ther. 2008;21:699–701.CrossRefPubMed
22.
go back to reference Graham MT, Nadeau KC. Lessons learned from mice and man: mimicking human allergy through mouse models. Clin Immunol. 2014;155:1–16.CrossRefPubMed Graham MT, Nadeau KC. Lessons learned from mice and man: mimicking human allergy through mouse models. Clin Immunol. 2014;155:1–16.CrossRefPubMed
23.
go back to reference Holmes AM, Solari R, Holgate ST. Animal models of asthma: value, limitations and opportunities for alternative approaches. Drug Discov Today. 2011;16:659–70.CrossRefPubMed Holmes AM, Solari R, Holgate ST. Animal models of asthma: value, limitations and opportunities for alternative approaches. Drug Discov Today. 2011;16:659–70.CrossRefPubMed
24.
go back to reference Nabe T, Zindl CL, Jung YW, Stephens R, Sakamoto A, Kohno S, et al. Induction of a late asthmatic response associated with airway inflammation in mice. Eur J Pharmacol. 2005;521:144–55. 2005/09/27 ed.CrossRefPubMed Nabe T, Zindl CL, Jung YW, Stephens R, Sakamoto A, Kohno S, et al. Induction of a late asthmatic response associated with airway inflammation in mice. Eur J Pharmacol. 2005;521:144–55. 2005/09/27 ed.CrossRefPubMed
25.
go back to reference Raemdonck K, Baker K, Dale N, Dubuis E, Shala F, Belvisi MG, Birrell MA. CD4(+) and CD8(+) T cells play a central role in a HDM driven model of allergic asthma. Respir Res. 2016;17:45.CrossRefPubMedPubMedCentral Raemdonck K, Baker K, Dale N, Dubuis E, Shala F, Belvisi MG, Birrell MA. CD4(+) and CD8(+) T cells play a central role in a HDM driven model of allergic asthma. Respir Res. 2016;17:45.CrossRefPubMedPubMedCentral
26.
go back to reference Rastrick JM, Stevenson CS, Eltom S, Grace M, Davies M, Kilty I, Evans SM, Pasparakis M, Catley MC, Lawrence T, et al. Cigarette smoke induced airway inflammation is independent of NF-kappaB signalling. Plos One. 2013;8:e54128.CrossRefPubMedPubMedCentral Rastrick JM, Stevenson CS, Eltom S, Grace M, Davies M, Kilty I, Evans SM, Pasparakis M, Catley MC, Lawrence T, et al. Cigarette smoke induced airway inflammation is independent of NF-kappaB signalling. Plos One. 2013;8:e54128.CrossRefPubMedPubMedCentral
27.
go back to reference Birrell MA, De Alba J, Catley MC, Hardaker E, Wong S, Collins M, Clarke DL, Farrow SN, Willson TM, Collins JL, Belvisi MG. Liver X receptor agonists increase airway reactivity in a model of asthma via increasing airway smooth muscle growth. J Immunol. 2008;181:4265–71.CrossRefPubMed Birrell MA, De Alba J, Catley MC, Hardaker E, Wong S, Collins M, Clarke DL, Farrow SN, Willson TM, Collins JL, Belvisi MG. Liver X receptor agonists increase airway reactivity in a model of asthma via increasing airway smooth muscle growth. J Immunol. 2008;181:4265–71.CrossRefPubMed
28.
go back to reference Birrell MA, Wong S, Hardaker EL, Catley MC, Mccluskie K, Collins M, Haj-Yahia S, Belvisi MG. IkappaB kinase-2-independent and -dependent inflammation in airway disease models: relevance of IKK-2 inhibition to the clinic. Mol Pharmacol. 2006;69:1791–800.CrossRefPubMed Birrell MA, Wong S, Hardaker EL, Catley MC, Mccluskie K, Collins M, Haj-Yahia S, Belvisi MG. IkappaB kinase-2-independent and -dependent inflammation in airway disease models: relevance of IKK-2 inhibition to the clinic. Mol Pharmacol. 2006;69:1791–800.CrossRefPubMed
29.
go back to reference Birrell MA, Mccluskie K, Wong S, Donnelly LE, Barnes PJ, Belvisi MG. Resveratrol, an extract of red wine, inhibits lipopolysaccharide induced airway neutrophilia and inflammatory mediators through an NF-kappaB-independent mechanism. FASEB J. 2005;19:840–1.PubMed Birrell MA, Mccluskie K, Wong S, Donnelly LE, Barnes PJ, Belvisi MG. Resveratrol, an extract of red wine, inhibits lipopolysaccharide induced airway neutrophilia and inflammatory mediators through an NF-kappaB-independent mechanism. FASEB J. 2005;19:840–1.PubMed
30.
go back to reference Birrell MA, Hardaker E, Wong S, Mccluskie K, Catley M, De Alba J, Newton R, Haj-Yahia S, Pun KT, Watts CJ, et al. Ikappa-B kinase-2 inhibitor blocks inflammation in human airway smooth muscle and a rat model of asthma. Am J Respir Crit Care Med. 2005;172:962–71.CrossRefPubMed Birrell MA, Hardaker E, Wong S, Mccluskie K, Catley M, De Alba J, Newton R, Haj-Yahia S, Pun KT, Watts CJ, et al. Ikappa-B kinase-2 inhibitor blocks inflammation in human airway smooth muscle and a rat model of asthma. Am J Respir Crit Care Med. 2005;172:962–71.CrossRefPubMed
31.
go back to reference Snelgrove RJ, Goulding J, Didierlaurent AM, Lyonga D, Vekaria S, Edwards L, et al. A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat Immunol. 2008;9:1074–83. 2008/07/29 ed.CrossRefPubMed Snelgrove RJ, Goulding J, Didierlaurent AM, Lyonga D, Vekaria S, Edwards L, et al. A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat Immunol. 2008;9:1074–83. 2008/07/29 ed.CrossRefPubMed
32.
go back to reference Yagil Z, Hadad Erlich T, Ofir-Birin Y, Tshori S, Kay G, Yekhtin Z, et al. Transcription factor E3, a major regulator of mast cell-mediated allergic response. J Allergy Clin Immunol. 2012;129:1357–66. 2012/03/01 ed.CrossRefPubMed Yagil Z, Hadad Erlich T, Ofir-Birin Y, Tshori S, Kay G, Yekhtin Z, et al. Transcription factor E3, a major regulator of mast cell-mediated allergic response. J Allergy Clin Immunol. 2012;129:1357–66. 2012/03/01 ed.CrossRefPubMed
33.
go back to reference Smit M, Zuidhof AB, Bos SIT, Maarsingh H, Gosens R, Zaagsma J, et al. Bronchoprotection by olodaterol is synergistically enhanced by tiotropium in a Guinea pig model of allergic asthma. J Pharmacol Exp Ther. 2014;348:303–10.CrossRefPubMed Smit M, Zuidhof AB, Bos SIT, Maarsingh H, Gosens R, Zaagsma J, et al. Bronchoprotection by olodaterol is synergistically enhanced by tiotropium in a Guinea pig model of allergic asthma. J Pharmacol Exp Ther. 2014;348:303–10.CrossRefPubMed
34.
go back to reference Mueller R, Chanez P, Campbell AM, Bousquet J, Heusser C, Bullock GR. Different cytokine patterns in bronchial biopsies in asthma and chronic bronchitis. Respir Med. 1996;90:79–85.CrossRefPubMed Mueller R, Chanez P, Campbell AM, Bousquet J, Heusser C, Bullock GR. Different cytokine patterns in bronchial biopsies in asthma and chronic bronchitis. Respir Med. 1996;90:79–85.CrossRefPubMed
35.
go back to reference Muratov V, Barck C, Bylin G, Källström E, Halldén G, van Hage M, et al. Allergen challenge alters intracellular cytokine expression. Scand J Immunol. 2005;62:161–7.CrossRefPubMed Muratov V, Barck C, Bylin G, Källström E, Halldén G, van Hage M, et al. Allergen challenge alters intracellular cytokine expression. Scand J Immunol. 2005;62:161–7.CrossRefPubMed
36.
go back to reference Out TA, Wang S-Z, Rudolph K, Bice DE. Local T-cell activation after segmental allergen challenge in the lungs of allergic dogs. Immunology. 2002;105:499–508.CrossRefPubMedPubMedCentral Out TA, Wang S-Z, Rudolph K, Bice DE. Local T-cell activation after segmental allergen challenge in the lungs of allergic dogs. Immunology. 2002;105:499–508.CrossRefPubMedPubMedCentral
37.
go back to reference Meyts I, Vanoirbeek JA, Hens G, Vanaudenaerde BM, Verbinnen B, Bullens DM, et al. T-cell mediated late increase in bronchial tone after allergen provocation in a murine asthma model. Clin Immunol. 2008;128:248–58. 2008/05/27 ed.CrossRefPubMed Meyts I, Vanoirbeek JA, Hens G, Vanaudenaerde BM, Verbinnen B, Bullens DM, et al. T-cell mediated late increase in bronchial tone after allergen provocation in a murine asthma model. Clin Immunol. 2008;128:248–58. 2008/05/27 ed.CrossRefPubMed
38.
go back to reference Nabe T, Morishita T, Matsuya K, Ikedo A, Fujii M, Mizutani N, et al. Complete dependence on CD4+ cells in late asthmatic response, but limited contribution of the cells to airway remodeling in sensitized mice. J Pharmacol Sci. 2011;116:373–83. 2011/07/23 ed.CrossRefPubMed Nabe T, Morishita T, Matsuya K, Ikedo A, Fujii M, Mizutani N, et al. Complete dependence on CD4+ cells in late asthmatic response, but limited contribution of the cells to airway remodeling in sensitized mice. J Pharmacol Sci. 2011;116:373–83. 2011/07/23 ed.CrossRefPubMed
39.
go back to reference Ohtomo T, Kaminuma O, Kitamura N, Suko M, Kobayashi N, Mori A. Murine Th clones confer late asthmatic response upon antigen challenge. Int Arch Allergy Immunol. 2009;149:2–6.CrossRefPubMed Ohtomo T, Kaminuma O, Kitamura N, Suko M, Kobayashi N, Mori A. Murine Th clones confer late asthmatic response upon antigen challenge. Int Arch Allergy Immunol. 2009;149:2–6.CrossRefPubMed
40.
go back to reference Watanabe A, Mishima H, Renzi PM, Xu LJ, Hamid Q, Martin JG. Transfer of allergic airway responses with antigen-primed CD4+ but not CD8+ T cells in brown Norway rats. J Clin Invest. 1995;96:1303–10.CrossRefPubMedPubMedCentral Watanabe A, Mishima H, Renzi PM, Xu LJ, Hamid Q, Martin JG. Transfer of allergic airway responses with antigen-primed CD4+ but not CD8+ T cells in brown Norway rats. J Clin Invest. 1995;96:1303–10.CrossRefPubMedPubMedCentral
41.
go back to reference Haczku A, Moqbel R, Jacobson M, Kay AB, Barnes PJ, Chung KF. T-cells subsets and activation in bronchial mucosa of sensitized Brown-Norway rats after single allergen exposure. Immunology. 1995;85:591–7.PubMedPubMedCentral Haczku A, Moqbel R, Jacobson M, Kay AB, Barnes PJ, Chung KF. T-cells subsets and activation in bronchial mucosa of sensitized Brown-Norway rats after single allergen exposure. Immunology. 1995;85:591–7.PubMedPubMedCentral
42.
go back to reference Olivenstein R, Renzi PM, Yang JP, Rossi P, Laberge S, Waserman S, et al. Depletion of OX-8 lymphocytes from the blood and airways using monoclonal antibodies enhances the late airway response in rats. J Clin Invest. 1993;92:1477–82.CrossRefPubMedPubMedCentral Olivenstein R, Renzi PM, Yang JP, Rossi P, Laberge S, Waserman S, et al. Depletion of OX-8 lymphocytes from the blood and airways using monoclonal antibodies enhances the late airway response in rats. J Clin Invest. 1993;92:1477–82.CrossRefPubMedPubMedCentral
43.
go back to reference Allakhverdi Z, Lamkhioued B, Olivenstein R, Hamid Q, Renzi PM. CD8 depletion-induced late airway response is characterized by eosinophilia, increased eotaxin, and decreased IFN-gamma expression in rats. Am J Respir Crit Care Med. 2000;162:1123–31. 2000/09/16 ed.CrossRefPubMed Allakhverdi Z, Lamkhioued B, Olivenstein R, Hamid Q, Renzi PM. CD8 depletion-induced late airway response is characterized by eosinophilia, increased eotaxin, and decreased IFN-gamma expression in rats. Am J Respir Crit Care Med. 2000;162:1123–31. 2000/09/16 ed.CrossRefPubMed
44.
go back to reference Suzuki M, Taha R, Ihaku D, Hamid Q, Martin JG. CD8+ T cells modulate late allergic airway responses in Brown Norway rats. J Immunol. 1999;163:5574–81.PubMed Suzuki M, Taha R, Ihaku D, Hamid Q, Martin JG. CD8+ T cells modulate late allergic airway responses in Brown Norway rats. J Immunol. 1999;163:5574–81.PubMed
45.
go back to reference Isogai S, Hamid Q, Minshall E, Miyake S, Yoshizawa Y, Taha R, et al. Interferon-gamma increases IL-12 mRNA expression and attentuates allergic late-onset airway responses in the Brown Norway rat. Eur Respir J. 2000;16:22–9.CrossRefPubMed Isogai S, Hamid Q, Minshall E, Miyake S, Yoshizawa Y, Taha R, et al. Interferon-gamma increases IL-12 mRNA expression and attentuates allergic late-onset airway responses in the Brown Norway rat. Eur Respir J. 2000;16:22–9.CrossRefPubMed
46.
go back to reference Isogai S, Rubin A, Maghni K, Ramos-Barbon D, Taha R, Yoshizawa Y, et al. The effects of CD8 + gammadelta T cells on late allergic airway responses and airway inflammation in rats. J Allergy Clin Immunol. 2003;112:547–55.CrossRefPubMed Isogai S, Rubin A, Maghni K, Ramos-Barbon D, Taha R, Yoshizawa Y, et al. The effects of CD8 + gammadelta T cells on late allergic airway responses and airway inflammation in rats. J Allergy Clin Immunol. 2003;112:547–55.CrossRefPubMed
47.
go back to reference Kemeny DM, Noble A, Holmes BJ, Diaz-Sanchez D. Immune regulation: a new role for the CD8+ T cell. Immunol Today. 1994;15:107–10.CrossRefPubMed Kemeny DM, Noble A, Holmes BJ, Diaz-Sanchez D. Immune regulation: a new role for the CD8+ T cell. Immunol Today. 1994;15:107–10.CrossRefPubMed
48.
go back to reference Li Y, Richards D, Noble A, Kemeny DM. Cytokine production by highly purified human CD8+ T cells. Int Arch Allergy Immunol. 1995;107:354–5.CrossRefPubMed Li Y, Richards D, Noble A, Kemeny DM. Cytokine production by highly purified human CD8+ T cells. Int Arch Allergy Immunol. 1995;107:354–5.CrossRefPubMed
49.
go back to reference Isogai S, Athiviraham A, Fraser RS, Taha R, Hamid Q, Martin JG. Interferon-gamma-dependent inhibition of late allergic airway responses and eosinophilia by CD8+ gammadelta T cells. Immunology. 2007;122:230–8.CrossRefPubMedPubMedCentral Isogai S, Athiviraham A, Fraser RS, Taha R, Hamid Q, Martin JG. Interferon-gamma-dependent inhibition of late allergic airway responses and eosinophilia by CD8+ gammadelta T cells. Immunology. 2007;122:230–8.CrossRefPubMedPubMedCentral
50.
go back to reference Gajewski TF, Goldwasser E, Fitch FW. Anti-proliferative effect of IFN-gamma in immune regulation. II. IFN-gamma inhibits the proliferation of murine bone marrow cells stimulated with IL-3, IL-4, or granulocyte-macrophage colony-stimulating factor. J Immunol. 1988;141:2635–42.PubMed Gajewski TF, Goldwasser E, Fitch FW. Anti-proliferative effect of IFN-gamma in immune regulation. II. IFN-gamma inhibits the proliferation of murine bone marrow cells stimulated with IL-3, IL-4, or granulocyte-macrophage colony-stimulating factor. J Immunol. 1988;141:2635–42.PubMed
51.
go back to reference Gajewski TF, Joyce J, Fitch FW. Antiproliferative effect of IFN-gamma in immune regulation. III. Differential selection of TH1 and TH2 murine helper T lymphocyte clones using recombinant IL-2 and recombinant IFN-gamma. J Immunol. 1989;143:15–22.PubMed Gajewski TF, Joyce J, Fitch FW. Antiproliferative effect of IFN-gamma in immune regulation. III. Differential selection of TH1 and TH2 murine helper T lymphocyte clones using recombinant IL-2 and recombinant IFN-gamma. J Immunol. 1989;143:15–22.PubMed
52.
go back to reference Young HA, Hardy KJ. Role of interferon-gamma in immune cell regulation. J Leukoc Biol. 1995;58:373–81.PubMed Young HA, Hardy KJ. Role of interferon-gamma in immune cell regulation. J Leukoc Biol. 1995;58:373–81.PubMed
53.
go back to reference Nakamura T, Lee RK, Nam SY, Podack ER, Bottomly K, Flavell RA. Roles of IL-4 and IFN-gamma in stabilizing the T helper cell type 1 and 2 phenotype. J Immunol. 1997;158:2648–53.PubMed Nakamura T, Lee RK, Nam SY, Podack ER, Bottomly K, Flavell RA. Roles of IL-4 and IFN-gamma in stabilizing the T helper cell type 1 and 2 phenotype. J Immunol. 1997;158:2648–53.PubMed
54.
go back to reference Iwamoto I, Nakajima H, Endo H, Yoshida S. Interferon gamma regulates antigen-induced eosinophil recruitment into the mouse airways by inhibiting the infiltration of CD4+ T cells. J Exp Med. 1993;177:573–6.CrossRefPubMed Iwamoto I, Nakajima H, Endo H, Yoshida S. Interferon gamma regulates antigen-induced eosinophil recruitment into the mouse airways by inhibiting the infiltration of CD4+ T cells. J Exp Med. 1993;177:573–6.CrossRefPubMed
55.
go back to reference Isogai S, Jedrzkiewicz S, Taha R, Hamid Q, Martin JG. Resident CD8+ T cells suppress CD4+ T cell-dependent late allergic airway responses. J Allergy Clin Immunol. 2005;115:521–6.CrossRefPubMed Isogai S, Jedrzkiewicz S, Taha R, Hamid Q, Martin JG. Resident CD8+ T cells suppress CD4+ T cell-dependent late allergic airway responses. J Allergy Clin Immunol. 2005;115:521–6.CrossRefPubMed
56.
go back to reference Mizutani N, Goshima H, Nabe T, Yoshino S. Establishment and characterization of a murine model for allergic asthma using allergen-specific IgE monoclonal antibody to study pathological roles of IgE. Immunol Lett. 2012;141:235–45.CrossRefPubMed Mizutani N, Goshima H, Nabe T, Yoshino S. Establishment and characterization of a murine model for allergic asthma using allergen-specific IgE monoclonal antibody to study pathological roles of IgE. Immunol Lett. 2012;141:235–45.CrossRefPubMed
57.
go back to reference Nabe T, Yamashita K, Miura M, Kawai T, Kohno S. Cysteinyl leukotriene-dependent interleukin-5 production leading to eosinophilia during late asthmatic response in guinea-pigs. Clin Exp Allergy. 2002;32:633–40.CrossRefPubMed Nabe T, Yamashita K, Miura M, Kawai T, Kohno S. Cysteinyl leukotriene-dependent interleukin-5 production leading to eosinophilia during late asthmatic response in guinea-pigs. Clin Exp Allergy. 2002;32:633–40.CrossRefPubMed
58.
go back to reference Peebles RS, Hamilton RG, Lichtenstein LM, Schlosberg M, Liu MC, Proud D, et al. Antigen-specific IgE and IgA antibodies in bronchoalveolar lavage fluid are associated with stronger antigen-induced late phase reactions. Clin Exp Allergy. 2001;31:239–48.CrossRefPubMed Peebles RS, Hamilton RG, Lichtenstein LM, Schlosberg M, Liu MC, Proud D, et al. Antigen-specific IgE and IgA antibodies in bronchoalveolar lavage fluid are associated with stronger antigen-induced late phase reactions. Clin Exp Allergy. 2001;31:239–48.CrossRefPubMed
59.
go back to reference Crimi E, Chiaramondia M, Milanese M, Rossi GA, Brusasco V. Increased numbers of mast cells in bronchial mucosa after the late-phase asthmatic response to allergen. Am Rev Respir Dis. 1991;144:1282–6.CrossRefPubMed Crimi E, Chiaramondia M, Milanese M, Rossi GA, Brusasco V. Increased numbers of mast cells in bronchial mucosa after the late-phase asthmatic response to allergen. Am Rev Respir Dis. 1991;144:1282–6.CrossRefPubMed
60.
go back to reference James A, Gyllfors P, Henriksson E, Dahlen SE, Adner M, Nilsson G, et al. Corticosteroid treatment selectively decreases mast cells in the smooth muscle and epithelium of asthmatic bronchi. Allergy. 2012;67:958–61. 2012/05/16 ed.CrossRefPubMed James A, Gyllfors P, Henriksson E, Dahlen SE, Adner M, Nilsson G, et al. Corticosteroid treatment selectively decreases mast cells in the smooth muscle and epithelium of asthmatic bronchi. Allergy. 2012;67:958–61. 2012/05/16 ed.CrossRefPubMed
61.
go back to reference Cockcroft DW, Murdock KY. Comparative effects of inhaled salbutamol, sodium cromoglycate, and beclomethasone dipropionate on allergen-induced early asthmatic responses, late asthmatic responses, and increased bronchial responsiveness to histamine. J Allergy Clin Immunol. 1987;79:734–40. 1987/05/01 ed.CrossRefPubMed Cockcroft DW, Murdock KY. Comparative effects of inhaled salbutamol, sodium cromoglycate, and beclomethasone dipropionate on allergen-induced early asthmatic responses, late asthmatic responses, and increased bronchial responsiveness to histamine. J Allergy Clin Immunol. 1987;79:734–40. 1987/05/01 ed.CrossRefPubMed
62.
go back to reference Pepys J, Hargreave FE, Chan M, McCarthy DS. Inhibitory effects of disodium cromoglycate on allergen-inhalation tests. Lancet. 1968;2:134–7. 1968/07/20 ed.CrossRefPubMed Pepys J, Hargreave FE, Chan M, McCarthy DS. Inhibitory effects of disodium cromoglycate on allergen-inhalation tests. Lancet. 1968;2:134–7. 1968/07/20 ed.CrossRefPubMed
63.
go back to reference Pepys J, Davies RJ, Breslin AB, Hendrick DJ, Hutchcroft BJ. The effects of inhaled beclomethasone dipropionate (Becotide) and sodium cromoglycate on asthmatic reactions to provocation tests. Clin Allergy. 1974;4:13–24. 1974/03/01 ed.CrossRefPubMed Pepys J, Davies RJ, Breslin AB, Hendrick DJ, Hutchcroft BJ. The effects of inhaled beclomethasone dipropionate (Becotide) and sodium cromoglycate on asthmatic reactions to provocation tests. Clin Allergy. 1974;4:13–24. 1974/03/01 ed.CrossRefPubMed
64.
go back to reference Cieslewicz G, Tomkinson A, Adler A, Duez C, Schwarze J, Takeda K, et al. The late, but not early, asthmatic response is dependent on IL-5 and correlates with eosinophil infiltration. J Clin Invest. 1999;104:301–8. 1999/08/03 ed.CrossRefPubMedPubMedCentral Cieslewicz G, Tomkinson A, Adler A, Duez C, Schwarze J, Takeda K, et al. The late, but not early, asthmatic response is dependent on IL-5 and correlates with eosinophil infiltration. J Clin Invest. 1999;104:301–8. 1999/08/03 ed.CrossRefPubMedPubMedCentral
65.
go back to reference Busse W, Corren J, Lanier BQ, McAlary M, Fowler-Taylor A, Cioppa GD, et al. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J Allergy Clin Immunol. 2001;108:184–90. 2001/08/10 ed.CrossRefPubMed Busse W, Corren J, Lanier BQ, McAlary M, Fowler-Taylor A, Cioppa GD, et al. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J Allergy Clin Immunol. 2001;108:184–90. 2001/08/10 ed.CrossRefPubMed
66.
go back to reference Holgate S, Casale T, Wenzel S, Bousquet J, Deniz Y, Reisner C. The anti-inflammatory effects of omalizumab confirm the central role of IgE in allergic inflammation. J Allergy Clin Immunol. 2005;115:459–65. 2005/03/09 ed.CrossRefPubMed Holgate S, Casale T, Wenzel S, Bousquet J, Deniz Y, Reisner C. The anti-inflammatory effects of omalizumab confirm the central role of IgE in allergic inflammation. J Allergy Clin Immunol. 2005;115:459–65. 2005/03/09 ed.CrossRefPubMed
67.
go back to reference Fahy JV, Fleming HE, Wong HH, Liu JT, Su JQ, Reimann J, et al. The effect of an anti-IgE monoclonal antibody on the early- and late-phase responses to allergen inhalation in asthmatic subjects. Am J Respir Crit Care Med. 1997;155:1828–34. 1997/06/01 ed.CrossRefPubMed Fahy JV, Fleming HE, Wong HH, Liu JT, Su JQ, Reimann J, et al. The effect of an anti-IgE monoclonal antibody on the early- and late-phase responses to allergen inhalation in asthmatic subjects. Am J Respir Crit Care Med. 1997;155:1828–34. 1997/06/01 ed.CrossRefPubMed
68.
go back to reference Durham SR, Lee TH, Cromwell O, Shaw RJ, Merrett TG, Merrett J, et al. Immunologic studies in allergen-induced late-phase asthmatic reactions. J Allergy Clin Immunol. 1984;74:49–60.CrossRefPubMed Durham SR, Lee TH, Cromwell O, Shaw RJ, Merrett TG, Merrett J, et al. Immunologic studies in allergen-induced late-phase asthmatic reactions. J Allergy Clin Immunol. 1984;74:49–60.CrossRefPubMed
69.
go back to reference Tschopp JM, Sistek D, Schindler C, Leuenberger P, Perruchoud AP, Wüthrich B, et al. Current allergic asthma and rhinitis: diagnostic efficiency of three commonly used atopic markers (IgE, skin prick tests, and Phadiatop). Results from 8329 randomized adults from the SAPALDIA Study. Swiss Study on Air Pollution and Lung Diseases in Adults. Allergy. 1998;53:608–13.CrossRefPubMed Tschopp JM, Sistek D, Schindler C, Leuenberger P, Perruchoud AP, Wüthrich B, et al. Current allergic asthma and rhinitis: diagnostic efficiency of three commonly used atopic markers (IgE, skin prick tests, and Phadiatop). Results from 8329 randomized adults from the SAPALDIA Study. Swiss Study on Air Pollution and Lung Diseases in Adults. Allergy. 1998;53:608–13.CrossRefPubMed
70.
go back to reference Scrivener S, Britton J. Immunoglobulin E and allergic disease in Africa. Clin Exp Allergy. 2000;30:304–7.CrossRefPubMed Scrivener S, Britton J. Immunoglobulin E and allergic disease in Africa. Clin Exp Allergy. 2000;30:304–7.CrossRefPubMed
71.
go back to reference Ali FR, Oldfield WLG, Higashi N, Larché M, Kay AB. Late asthmatic reactions induced by inhalation of allergen-derived T cell peptides. Am J Respir Crit Care Med. 2004;169:20–6.CrossRefPubMed Ali FR, Oldfield WLG, Higashi N, Larché M, Kay AB. Late asthmatic reactions induced by inhalation of allergen-derived T cell peptides. Am J Respir Crit Care Med. 2004;169:20–6.CrossRefPubMed
72.
go back to reference Khan LN, Kon OM, Macfarlane AJ, Meng Q, Ying S, Barnes NC, et al. Attenuation of the allergen-induced late asthmatic reaction by cyclosporin A is associated with inhibition of bronchial eosinophils, interleukin-5, granulocyte macrophage colony-stimulating factor, and eotaxin. Am J Respir Crit Care Med. 2000;162:1377–82.CrossRefPubMed Khan LN, Kon OM, Macfarlane AJ, Meng Q, Ying S, Barnes NC, et al. Attenuation of the allergen-induced late asthmatic reaction by cyclosporin A is associated with inhibition of bronchial eosinophils, interleukin-5, granulocyte macrophage colony-stimulating factor, and eotaxin. Am J Respir Crit Care Med. 2000;162:1377–82.CrossRefPubMed
73.
go back to reference Kojima T, Obata K, Mukai K, Sato S, Takai T, Minegishi Y, et al. Mast cells and basophils are selectively activated in vitro and in vivo through CD200R3 in an IgE-independent manner. J Immunol. 2007;179:7093–100.CrossRefPubMed Kojima T, Obata K, Mukai K, Sato S, Takai T, Minegishi Y, et al. Mast cells and basophils are selectively activated in vitro and in vivo through CD200R3 in an IgE-independent manner. J Immunol. 2007;179:7093–100.CrossRefPubMed
74.
go back to reference Ohnmacht C, Schwartz C, Panzer M, Schiedewitz I, Naumann R, Voehringer D. Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity. 2010;33:364–74.CrossRefPubMed Ohnmacht C, Schwartz C, Panzer M, Schiedewitz I, Naumann R, Voehringer D. Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity. 2010;33:364–74.CrossRefPubMed
75.
go back to reference Voehringer D. Protective and pathological roles of mast cells and basophils. Nat Rev Immunol. 2013;13:362–75.CrossRefPubMed Voehringer D. Protective and pathological roles of mast cells and basophils. Nat Rev Immunol. 2013;13:362–75.CrossRefPubMed
76.
go back to reference Lei Y, Gregory JA, Nilsson GP, Adner M. Insights into mast cell functions in asthma using mouse models. Pulm Pharmacol Ther. 2013;26(5):532–9. 2013/04/16 ed.CrossRefPubMed Lei Y, Gregory JA, Nilsson GP, Adner M. Insights into mast cell functions in asthma using mouse models. Pulm Pharmacol Ther. 2013;26(5):532–9. 2013/04/16 ed.CrossRefPubMed
77.
go back to reference Krug N, Rabe KF. Animal models for human asthma: the perspective of a clinician. Curr Drug Targets. 2008;9:438–42.CrossRefPubMed Krug N, Rabe KF. Animal models for human asthma: the perspective of a clinician. Curr Drug Targets. 2008;9:438–42.CrossRefPubMed
78.
go back to reference Andersson CK, Mori M, Bjermer L, Löfdahl C-G, Erjefält JS. Novel site-specific mast cell subpopulations in the human lung. Thorax. 2009;64:297–305.CrossRefPubMed Andersson CK, Mori M, Bjermer L, Löfdahl C-G, Erjefält JS. Novel site-specific mast cell subpopulations in the human lung. Thorax. 2009;64:297–305.CrossRefPubMed
79.
go back to reference Xing W, Austen KF, Gurish MF, Jones TG. Protease phenotype of constitutive connective tissue and of induced mucosal mast cells in mice is regulated by the tissue. Proc Natl Acad Sci U S A. 2011;108:14210–5.CrossRefPubMedPubMedCentral Xing W, Austen KF, Gurish MF, Jones TG. Protease phenotype of constitutive connective tissue and of induced mucosal mast cells in mice is regulated by the tissue. Proc Natl Acad Sci U S A. 2011;108:14210–5.CrossRefPubMedPubMedCentral
Metadata
Title
Characterisation of a murine model of the late asthmatic response
Authors
Katie Baker
Kristof Raemdonck
Robert J. Snelgrove
Maria G. Belvisi
Mark A. Birrell
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2017
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-017-0541-x

Other articles of this Issue 1/2017

Respiratory Research 1/2017 Go to the issue