Skip to main content
Top
Published in: Respiratory Research 1/2016

Open Access 01-12-2016 | Research

Variable ventilation improves pulmonary function and reduces lung damage without increasing bacterial translocation in a rat model of experimental pneumonia

Authors: Raquel F. de Magalhães, Cynthia S. Samary, Raquel S. Santos, Milena V. de Oliveira, Nazareth N. Rocha, Cintia L. Santos, Jamil Kitoko, Carlos A. M. Silva, Caroline L. Hildebrandt, Cassiano F. Goncalves-de-Albuquerque, Adriana R. Silva, Hugo C. Faria-Neto, Vanessa Martins, Vera L. Capelozzi, Robert Huhle, Marcelo M. Morales, Priscilla Olsen, Paolo Pelosi, Marcelo Gama de Abreu, Patricia R. M. Rocco, Pedro L. Silva

Published in: Respiratory Research | Issue 1/2016

Login to get access

Abstract

Background

Variable ventilation has been shown to improve pulmonary function and reduce lung damage in different models of acute respiratory distress syndrome. Nevertheless, variable ventilation has not been tested during pneumonia. Theoretically, periodic increases in tidal volume (VT) and airway pressures might worsen the impairment of alveolar barrier function usually seen in pneumonia and could increase bacterial translocation into the bloodstream. We investigated the impact of variable ventilation on lung function and histologic damage, as well as markers of lung inflammation, epithelial and endothelial cell damage, and alveolar stress, and bacterial translocation in experimental pneumonia.

Methods

Thirty-two Wistar rats were randomly assigned to receive intratracheal of Pseudomonas aeruginosa (PA) or saline (SAL) (n = 16/group). After 24-h, animals were anesthetized and ventilated for 2 h with either conventional volume-controlled (VCV) or variable volume-controlled ventilation (VV), with mean VT = 6 mL/kg, PEEP = 5cmH2O, and FiO2 = 0.4. During VV, tidal volume varied randomly with a coefficient of variation of 30% and a Gaussian distribution. Additional animals assigned to receive either PA or SAL (n = 8/group) were not ventilated (NV) to serve as controls.

Results

In both SAL and PA, VV improved oxygenation and lung elastance compared to VCV. In SAL, VV decreased interleukin (IL)-6 expression compared to VCV (median [interquartile range]: 1.3 [0.3–2.3] vs. 5.3 [3.6–7.0]; p = 0.02) and increased surfactant protein-D expression compared to NV (2.5 [1.9–3.5] vs. 1.2 [0.8–1.2]; p = 0.0005). In PA, compared to VCV, VV reduced perivascular edema (2.5 [2.0–3.75] vs. 6.0 [4.5–6.0]; p < 0.0001), septum neutrophils (2.0 [1.0–4.0] vs. 5.0 [3.3–6.0]; p = 0.0008), necrotizing vasculitis (3.0 [2.0–5.5] vs. 6.0 [6.0–6.0]; p = 0.0003), and ultrastructural lung damage scores (16 [14–17] vs. 24 [14–27], p < 0.0001). Blood colony-forming-unit (CFU) counts were comparable (7 [0–28] vs. 6 [0–26], p = 0.77). Compared to NV, VCV, but not VV, increased expression amphiregulin, IL-6, and cytokine-induced neutrophil chemoattractant (CINC)-1 (2.1 [1.6–2.5] vs. 0.9 [0.7–1.2], p = 0.025; 12.3 [7.9–22.0] vs. 0.8 [0.6–1.9], p = 0.006; and 4.4 [2.9–5.6] vs. 0.9 [0.8–1.4], p = 0.003, respectively). Angiopoietin-2 expression was lower in VV compared to NV animals (0.5 [0.3–0.8] vs. 1.3 [1.0–1.5], p = 0.01).

Conclusion

In this rat model of pneumonia, VV improved pulmonary function and reduced lung damage as compared to VCV, without increasing bacterial translocation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Herkel T, Uvizl R, Doubravska L, Adamus M, Gabrhelik T, Htoutou Sedlakova M, Kolar M, Hanulik V, Pudova V, Langova K, et al.: Epidemiology of hospital-acquired pneumonia: Results of a Central European multicenter, prospective, observational study compared with data from the European region. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia 2016. Herkel T, Uvizl R, Doubravska L, Adamus M, Gabrhelik T, Htoutou Sedlakova M, Kolar M, Hanulik V, Pudova V, Langova K, et al.: Epidemiology of hospital-acquired pneumonia: Results of a Central European multicenter, prospective, observational study compared with data from the European region. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia 2016.
2.
go back to reference Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800.CrossRefPubMed Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800.CrossRefPubMed
3.
go back to reference Sweeney RM, McAuley DF: Acute respiratory distress syndrome. Lancet 2016. Sweeney RM, McAuley DF: Acute respiratory distress syndrome. Lancet 2016.
4.
go back to reference Dhanireddy S, Altemeier WA, Matute-Bello G, O’Mahony DS, Glenny RW, Martin TR, Liles WC. Mechanical ventilation induces inflammation, lung injury, and extra-pulmonary organ dysfunction in experimental pneumonia. Lab investig j tech meths pathol. 2006;86:790–9.CrossRef Dhanireddy S, Altemeier WA, Matute-Bello G, O’Mahony DS, Glenny RW, Martin TR, Liles WC. Mechanical ventilation induces inflammation, lung injury, and extra-pulmonary organ dysfunction in experimental pneumonia. Lab investig j tech meths pathol. 2006;86:790–9.CrossRef
5.
go back to reference Terragni PP, Del Sorbo L, Mascia L, Urbino R, Martin EL, Birocco A, Faggiano C, Quintel M, Gattinoni L, Ranieri VM. Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology. 2009;111:826–35.CrossRefPubMed Terragni PP, Del Sorbo L, Mascia L, Urbino R, Martin EL, Birocco A, Faggiano C, Quintel M, Gattinoni L, Ranieri VM. Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology. 2009;111:826–35.CrossRefPubMed
6.
go back to reference Wolthuis EK, Vlaar AP, Choi G, Roelofs JJ, Juffermans NP, Schultz MJ. Mechanical ventilation using non-injurious ventilation settings causes lung injury in the absence of pre-existing lung injury in healthy mice. Crit care. 2009;13:R1.CrossRefPubMedPubMedCentral Wolthuis EK, Vlaar AP, Choi G, Roelofs JJ, Juffermans NP, Schultz MJ. Mechanical ventilation using non-injurious ventilation settings causes lung injury in the absence of pre-existing lung injury in healthy mice. Crit care. 2009;13:R1.CrossRefPubMedPubMedCentral
7.
go back to reference Spieth PM, Guldner A, Uhlig C, Bluth T, Kiss T, Schultz MJ, Pelosi P, Koch T, Gama De Abreu M. Variable versus conventional lung protective mechanical ventilation during open abdominal surgery: study protocol for a randomized controlled trial. Trials. 2014;15:155.CrossRefPubMedPubMedCentral Spieth PM, Guldner A, Uhlig C, Bluth T, Kiss T, Schultz MJ, Pelosi P, Koch T, Gama De Abreu M. Variable versus conventional lung protective mechanical ventilation during open abdominal surgery: study protocol for a randomized controlled trial. Trials. 2014;15:155.CrossRefPubMedPubMedCentral
8.
go back to reference Samary CS, Moraes L, Santos CL, Huhle R, Santos RS, Ornellas DS, Felix NS, Capelozzi VL, Schanaider A, Pelosi P, et al. Lung functional and biologic responses to variable ventilation in experimental pulmonary and extrapulmonary acute respiratory distress syndrome. Crit care med. 2016;44:e553–62.CrossRefPubMed Samary CS, Moraes L, Santos CL, Huhle R, Santos RS, Ornellas DS, Felix NS, Capelozzi VL, Schanaider A, Pelosi P, et al. Lung functional and biologic responses to variable ventilation in experimental pulmonary and extrapulmonary acute respiratory distress syndrome. Crit care med. 2016;44:e553–62.CrossRefPubMed
9.
go back to reference Berry CA, Suki B, Polglase GR, Pillow JJ. Variable ventilation enhances ventilation without exacerbating injury in preterm lambs with respiratory distress syndrome. Pediatr res. 2012;72:384–92.CrossRefPubMed Berry CA, Suki B, Polglase GR, Pillow JJ. Variable ventilation enhances ventilation without exacerbating injury in preterm lambs with respiratory distress syndrome. Pediatr res. 2012;72:384–92.CrossRefPubMed
10.
go back to reference Graham MR, Gulati H, Kha L, Girling LG, Goertzen A, Mutch WA. Resolution of pulmonary edema with variable mechanical ventilation in a porcine model of acute lung injury. Can j anaesth j can d’anesth. 2011;58:740–50.CrossRef Graham MR, Gulati H, Kha L, Girling LG, Goertzen A, Mutch WA. Resolution of pulmonary edema with variable mechanical ventilation in a porcine model of acute lung injury. Can j anaesth j can d’anesth. 2011;58:740–50.CrossRef
11.
go back to reference Goncalves-De-Albuquerque CF, Silva AR, Burth P, Rocco PR, Castro-Faria MV, Castro-Faria-Neto HC. Possible mechanisms of pseudomonas aeruginosa-associated lung disease. Int j med microbiol IJMM. 2016;306:20–8.CrossRefPubMed Goncalves-De-Albuquerque CF, Silva AR, Burth P, Rocco PR, Castro-Faria MV, Castro-Faria-Neto HC. Possible mechanisms of pseudomonas aeruginosa-associated lung disease. Int j med microbiol IJMM. 2016;306:20–8.CrossRefPubMed
12.
go back to reference Lin CY, Zhang H, Cheng KC, Slutsky AS. Mechanical ventilation may increase susceptibility to the development of bacteremia. Crit care med. 2003;31:1429–34.CrossRefPubMed Lin CY, Zhang H, Cheng KC, Slutsky AS. Mechanical ventilation may increase susceptibility to the development of bacteremia. Crit care med. 2003;31:1429–34.CrossRefPubMed
13.
go back to reference Lachmann RA, van Kaam AH, Haitsma JJ, Lachmann B. High positive end-expiratory pressure levels promote bacterial translocation in experimental pneumonia. Intensive care med. 2007;33:1800–4.CrossRefPubMed Lachmann RA, van Kaam AH, Haitsma JJ, Lachmann B. High positive end-expiratory pressure levels promote bacterial translocation in experimental pneumonia. Intensive care med. 2007;33:1800–4.CrossRefPubMed
14.
go back to reference Baydur A, Behrakis PK, Zin WA, Jaeger M, Milic-Emili J. A simple method for assessing the validity of the esophageal balloon technique. Am rev respir dis. 1982;126:788–91.PubMed Baydur A, Behrakis PK, Zin WA, Jaeger M, Milic-Emili J. A simple method for assessing the validity of the esophageal balloon technique. Am rev respir dis. 1982;126:788–91.PubMed
15.
go back to reference Huhle R, Spieth PM, Guldner A, Koch T, de Abreu MG. A new adaptive controller for volume-controlled mechanical ventilation in small animals. Exp lung res. 2014;40:186–97.CrossRefPubMed Huhle R, Spieth PM, Guldner A, Koch T, de Abreu MG. A new adaptive controller for volume-controlled mechanical ventilation in small animals. Exp lung res. 2014;40:186–97.CrossRefPubMed
16.
go back to reference Henriques I, Padilha GA, Huhle R, Wierzchon C, Miranda PJ, Ramos IP, Rocha N, Cruz FF, Santos RS, de Oliveira MV, et al. Comparison between variable and conventional volume-controlled ventilation on cardiorespiratory parameters in experimental emphysema. Front physiol. 2016;7:277.PubMedPubMedCentral Henriques I, Padilha GA, Huhle R, Wierzchon C, Miranda PJ, Ramos IP, Rocha N, Cruz FF, Santos RS, de Oliveira MV, et al. Comparison between variable and conventional volume-controlled ventilation on cardiorespiratory parameters in experimental emphysema. Front physiol. 2016;7:277.PubMedPubMedCentral
17.
go back to reference Silva PL, Moraes L, Santos RS, Samary C, Ramos MB, Santos CL, Morales MM, Capelozzi VL, Garcia CS, de Abreu MG, et al. Recruitment maneuvers modulate epithelial and endothelial cell response according to acute lung injury etiology. Crit care med. 2013;41:e256–65.CrossRefPubMed Silva PL, Moraes L, Santos RS, Samary C, Ramos MB, Santos CL, Morales MM, Capelozzi VL, Garcia CS, de Abreu MG, et al. Recruitment maneuvers modulate epithelial and endothelial cell response according to acute lung injury etiology. Crit care med. 2013;41:e256–65.CrossRefPubMed
18.
go back to reference Mizgerd JP, Skerrett SJ. Animal models of human pneumonia. Am j physiol lung cell mol physiol. 2008;294:L387–98.CrossRefPubMed Mizgerd JP, Skerrett SJ. Animal models of human pneumonia. Am j physiol lung cell mol physiol. 2008;294:L387–98.CrossRefPubMed
19.
go back to reference Akamine R, Yamamoto T, Watanabe M, Yamazaki N, Kataoka M, Ishikawa M, Ooie T, Baba Y, Shinohara Y. Usefulness of the 5’ region of the cDNA encoding acidic ribosomal phosphoprotein P0 conserved among rats, mice, and humans as a standard probe for gene expression analysis in different tissues and animal species. J biochem biophys methods. 2007;70:481–6.CrossRefPubMed Akamine R, Yamamoto T, Watanabe M, Yamazaki N, Kataoka M, Ishikawa M, Ooie T, Baba Y, Shinohara Y. Usefulness of the 5’ region of the cDNA encoding acidic ribosomal phosphoprotein P0 conserved among rats, mice, and humans as a standard probe for gene expression analysis in different tissues and animal species. J biochem biophys methods. 2007;70:481–6.CrossRefPubMed
20.
go back to reference Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat protoc. 2008;3:1101–8.CrossRefPubMed Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat protoc. 2008;3:1101–8.CrossRefPubMed
21.
go back to reference Yayan J, Ghebremedhin B, Rasche K. Antibiotic resistance of pseudomonas aeruginosa in pneumonia at a single university hospital center in germany over a 10-year period. Plos one. 2015;10:e0139836.CrossRefPubMedPubMedCentral Yayan J, Ghebremedhin B, Rasche K. Antibiotic resistance of pseudomonas aeruginosa in pneumonia at a single university hospital center in germany over a 10-year period. Plos one. 2015;10:e0139836.CrossRefPubMedPubMedCentral
22.
go back to reference Micek ST, Wunderink RG, Kollef MH, Chen C, Rello J, Chastre J, Antonelli M, Welte T, Clair B, Ostermann H, et al. An international multicenter retrospective study of pseudomonas aeruginosa nosocomial pneumonia: impact of multidrug resistance. Crit care. 2015;19:219.CrossRefPubMedPubMedCentral Micek ST, Wunderink RG, Kollef MH, Chen C, Rello J, Chastre J, Antonelli M, Welte T, Clair B, Ostermann H, et al. An international multicenter retrospective study of pseudomonas aeruginosa nosocomial pneumonia: impact of multidrug resistance. Crit care. 2015;19:219.CrossRefPubMedPubMedCentral
23.
go back to reference Kiss T, Silva PL, Huhle R, Moraes L, Santos RS, Felix NS, Santos CL, Morales MM, Capelozzi VL, Kasper M, et al. Comparison of different degrees of variability in tidal volume to prevent deterioration of respiratory system elastance in experimental acute lung inflammation. Br j anaesth. 2016;116:708–15.CrossRefPubMed Kiss T, Silva PL, Huhle R, Moraes L, Santos RS, Felix NS, Santos CL, Morales MM, Capelozzi VL, Kasper M, et al. Comparison of different degrees of variability in tidal volume to prevent deterioration of respiratory system elastance in experimental acute lung inflammation. Br j anaesth. 2016;116:708–15.CrossRefPubMed
24.
go back to reference Spieth PM, Carvalho AR, Guldner A, Kasper M, Schubert R, Carvalho NC, Beda A, Dassow C, Uhlig S, Koch T, et al. Pressure support improves oxygenation and lung protection compared to pressure-controlled ventilation and is further improved by random variation of pressure support. Crit care med. 2011;39:746–55.CrossRefPubMed Spieth PM, Carvalho AR, Guldner A, Kasper M, Schubert R, Carvalho NC, Beda A, Dassow C, Uhlig S, Koch T, et al. Pressure support improves oxygenation and lung protection compared to pressure-controlled ventilation and is further improved by random variation of pressure support. Crit care med. 2011;39:746–55.CrossRefPubMed
25.
go back to reference Carvalho AR, Spieth PM, Guldner A, Cuevas M, Carvalho NC, Beda A, Spieth S, Stroczynski C, Wiedemann B, Koch T, et al. Distribution of regional lung aeration and perfusion during conventional and noisy pressure support ventilation in experimental lung injury. J appl physiol. 2011;110:1083–92.CrossRefPubMed Carvalho AR, Spieth PM, Guldner A, Cuevas M, Carvalho NC, Beda A, Spieth S, Stroczynski C, Wiedemann B, Koch T, et al. Distribution of regional lung aeration and perfusion during conventional and noisy pressure support ventilation in experimental lung injury. J appl physiol. 2011;110:1083–92.CrossRefPubMed
26.
go back to reference Spieth PM, Carvalho AR, Guldner A, Pelosi P, Kirichuk O, Koch T, de Abreu MG. Effects of different levels of pressure support variability in experimental lung injury. Anesthesiology. 2009;110:342–50.PubMed Spieth PM, Carvalho AR, Guldner A, Pelosi P, Kirichuk O, Koch T, de Abreu MG. Effects of different levels of pressure support variability in experimental lung injury. Anesthesiology. 2009;110:342–50.PubMed
27.
go back to reference Spieth PM, Carvalho AR, Pelosi P, Hoehn C, Meissner C, Kasper M, Hubler M, von Neindorff M, Dassow C, Barrenschee M, et al. Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury. Am j respir crit care med. 2009;179:684–93.CrossRefPubMed Spieth PM, Carvalho AR, Pelosi P, Hoehn C, Meissner C, Kasper M, Hubler M, von Neindorff M, Dassow C, Barrenschee M, et al. Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury. Am j respir crit care med. 2009;179:684–93.CrossRefPubMed
28.
go back to reference Brewster JF, Graham MR, Mutch WA. Convexity, Jensen’s inequality and benefits of noisy mechanical ventilation. J r soc interface r society. 2005;2:393–6.CrossRef Brewster JF, Graham MR, Mutch WA. Convexity, Jensen’s inequality and benefits of noisy mechanical ventilation. J r soc interface r society. 2005;2:393–6.CrossRef
29.
go back to reference Bellardine CL, Hoffman AM, Tsai L, Ingenito EP, Arold SP, Lutchen KR, Suki B. Comparison of variable and conventional ventilation in a sheep saline lavage lung injury model. Crit care med. 2006;34:439–45.CrossRefPubMed Bellardine CL, Hoffman AM, Tsai L, Ingenito EP, Arold SP, Lutchen KR, Suki B. Comparison of variable and conventional ventilation in a sheep saline lavage lung injury model. Crit care med. 2006;34:439–45.CrossRefPubMed
30.
go back to reference Arold SP, Suki B, Alencar AM, Lutchen KR, Ingenito EP. Variable ventilation induces endogenous surfactant release in normal guinea pigs. Am j physiol lung cell mol physiol. 2003;285:L370–5.CrossRefPubMed Arold SP, Suki B, Alencar AM, Lutchen KR, Ingenito EP. Variable ventilation induces endogenous surfactant release in normal guinea pigs. Am j physiol lung cell mol physiol. 2003;285:L370–5.CrossRefPubMed
31.
go back to reference Arold SP, Bartolak-Suki E, Suki B. Variable stretch pattern enhances surfactant secretion in alveolar type II cells in culture. Am j physiol lung cell mol physiol. 2009;296:L574–81.CrossRefPubMedPubMedCentral Arold SP, Bartolak-Suki E, Suki B. Variable stretch pattern enhances surfactant secretion in alveolar type II cells in culture. Am j physiol lung cell mol physiol. 2009;296:L574–81.CrossRefPubMedPubMedCentral
32.
go back to reference Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM. An official American thoracic society workshop report: features and measurements of experimental acute lung injury in animals. Am j respir cell mol biol. 2011;44:725–38.CrossRefPubMed Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM. An official American thoracic society workshop report: features and measurements of experimental acute lung injury in animals. Am j respir cell mol biol. 2011;44:725–38.CrossRefPubMed
34.
go back to reference Yerrapureddy A, Tobias J, Margulies SS. Cyclic stretch magnitude and duration affect rat alveolar epithelial gene expression. Cell physiol biochem. 2010;25:113–22.CrossRefPubMed Yerrapureddy A, Tobias J, Margulies SS. Cyclic stretch magnitude and duration affect rat alveolar epithelial gene expression. Cell physiol biochem. 2010;25:113–22.CrossRefPubMed
35.
36.
go back to reference Zinter MS, Spicer A, Orwoll BO, Alkhouli M, Dvorak CC, Calfee CS, Matthay MA, Sapru A. Plasma angiopoietin-2 outperforms other markers of endothelial injury in prognosticating pediatric ARDS mortality. Am j physiol lung cell mol physiol. 2016;310:L224–31.CrossRefPubMed Zinter MS, Spicer A, Orwoll BO, Alkhouli M, Dvorak CC, Calfee CS, Matthay MA, Sapru A. Plasma angiopoietin-2 outperforms other markers of endothelial injury in prognosticating pediatric ARDS mortality. Am j physiol lung cell mol physiol. 2016;310:L224–31.CrossRefPubMed
37.
go back to reference Hartl D, Griese M. Surfactant protein D in human lung diseases. Eur j clin invest. 2006;36:423–35.CrossRefPubMed Hartl D, Griese M. Surfactant protein D in human lung diseases. Eur j clin invest. 2006;36:423–35.CrossRefPubMed
38.
go back to reference King BA, Kingma PS. Surfactant protein D deficiency increases lung injury during endotoxemia. Am j respir cell mol biol. 2011;44:709–15.CrossRefPubMed King BA, Kingma PS. Surfactant protein D deficiency increases lung injury during endotoxemia. Am j respir cell mol biol. 2011;44:709–15.CrossRefPubMed
39.
go back to reference Vanderbilt JN, Mager EM, Allen L, Sawa T, Wiener-Kronish J, Gonzalez R, Dobbs LG. CXC chemokines and their receptors are expressed in type II cells and upregulated following lung injury. Am j respir cell mol biol. 2003;29:661–8.CrossRefPubMed Vanderbilt JN, Mager EM, Allen L, Sawa T, Wiener-Kronish J, Gonzalez R, Dobbs LG. CXC chemokines and their receptors are expressed in type II cells and upregulated following lung injury. Am j respir cell mol biol. 2003;29:661–8.CrossRefPubMed
41.
go back to reference Fu Z, Costello ML, Tsukimoto K, Prediletto R, Elliott AR, Mathieu-Costello O, West JB. High lung volume increases stress failure in pulmonary capillaries. J appl physiol. 1992;73:123–33.PubMed Fu Z, Costello ML, Tsukimoto K, Prediletto R, Elliott AR, Mathieu-Costello O, West JB. High lung volume increases stress failure in pulmonary capillaries. J appl physiol. 1992;73:123–33.PubMed
42.
go back to reference Schortgen F, Bouadma L, Joly-Guillou ML, Ricard JD, Dreyfuss D, Saumon G. Infectious and inflammatory dissemination are affected by ventilation strategy in rats with unilateral pneumonia. Intensive care med. 2004;30:693–701.CrossRefPubMed Schortgen F, Bouadma L, Joly-Guillou ML, Ricard JD, Dreyfuss D, Saumon G. Infectious and inflammatory dissemination are affected by ventilation strategy in rats with unilateral pneumonia. Intensive care med. 2004;30:693–701.CrossRefPubMed
43.
go back to reference Nahum A, Hoyt J, Schmitz L, Moody J, Shapiro R, Marini JJ. Effect of mechanical ventilation strategy on dissemination of intratracheally instilled escherichia coli in dogs. Crit care med. 1997;25:1733–43.CrossRefPubMed Nahum A, Hoyt J, Schmitz L, Moody J, Shapiro R, Marini JJ. Effect of mechanical ventilation strategy on dissemination of intratracheally instilled escherichia coli in dogs. Crit care med. 1997;25:1733–43.CrossRefPubMed
44.
go back to reference Thammanomai A, Hamakawa H, Bartolak-Suki E, Suki B. Combined effects of ventilation mode and positive end-expiratory pressure on mechanics, gas exchange and the epithelium in mice with acute lung injury. Plos one. 2013;8:e53934.CrossRefPubMedPubMedCentral Thammanomai A, Hamakawa H, Bartolak-Suki E, Suki B. Combined effects of ventilation mode and positive end-expiratory pressure on mechanics, gas exchange and the epithelium in mice with acute lung injury. Plos one. 2013;8:e53934.CrossRefPubMedPubMedCentral
45.
go back to reference Silva PL, Cruz FF, Fujisaki LC, Oliveira GP, Samary CS, Ornellas DS, Maron-Gutierrez T, Rocha NN, Goldenberg R, Garcia CS, et al. Hypervolemia induces and potentiates lung damage after recruitment maneuver in a model of sepsis-induced acute lung injury. Crit care. 2010;14:R114.CrossRefPubMedPubMedCentral Silva PL, Cruz FF, Fujisaki LC, Oliveira GP, Samary CS, Ornellas DS, Maron-Gutierrez T, Rocha NN, Goldenberg R, Garcia CS, et al. Hypervolemia induces and potentiates lung damage after recruitment maneuver in a model of sepsis-induced acute lung injury. Crit care. 2010;14:R114.CrossRefPubMedPubMedCentral
46.
go back to reference Riva DR, Oliveira MB, Rzezinski AF, Rangel G, Capelozzi VL, Zin WA, Morales MM, Pelosi P, Rocco PR. Recruitment maneuver in pulmonary and extrapulmonary experimental acute lung injury. Crit care med. 2008;36:1900–8.CrossRefPubMed Riva DR, Oliveira MB, Rzezinski AF, Rangel G, Capelozzi VL, Zin WA, Morales MM, Pelosi P, Rocco PR. Recruitment maneuver in pulmonary and extrapulmonary experimental acute lung injury. Crit care med. 2008;36:1900–8.CrossRefPubMed
47.
go back to reference Passaro CP, Silva PL, Rzezinski AF, Abrantes S, Santiago VR, Nardelli L, Santos RS, Barbosa CM, Morales MM, Zin WA, et al. Pulmonary lesion induced by low and high positive end-expiratory pressure levels during protective ventilation in experimental acute lung injury. Crit care med. 2009;37:1011–7.CrossRefPubMed Passaro CP, Silva PL, Rzezinski AF, Abrantes S, Santiago VR, Nardelli L, Santos RS, Barbosa CM, Morales MM, Zin WA, et al. Pulmonary lesion induced by low and high positive end-expiratory pressure levels during protective ventilation in experimental acute lung injury. Crit care med. 2009;37:1011–7.CrossRefPubMed
48.
go back to reference Santiago VR, Rzezinski AF, Nardelli LM, Silva JD, Garcia CS, Maron-Gutierrez T, Ornellas DS, Morales MM, Capelozzi VL, Marini J, et al. Recruitment maneuver in experimental acute lung injury: the role of alveolar collapse and edema. Crit care med. 2010;38:2207–14.CrossRefPubMed Santiago VR, Rzezinski AF, Nardelli LM, Silva JD, Garcia CS, Maron-Gutierrez T, Ornellas DS, Morales MM, Capelozzi VL, Marini J, et al. Recruitment maneuver in experimental acute lung injury: the role of alveolar collapse and edema. Crit care med. 2010;38:2207–14.CrossRefPubMed
Metadata
Title
Variable ventilation improves pulmonary function and reduces lung damage without increasing bacterial translocation in a rat model of experimental pneumonia
Authors
Raquel F. de Magalhães
Cynthia S. Samary
Raquel S. Santos
Milena V. de Oliveira
Nazareth N. Rocha
Cintia L. Santos
Jamil Kitoko
Carlos A. M. Silva
Caroline L. Hildebrandt
Cassiano F. Goncalves-de-Albuquerque
Adriana R. Silva
Hugo C. Faria-Neto
Vanessa Martins
Vera L. Capelozzi
Robert Huhle
Marcelo M. Morales
Priscilla Olsen
Paolo Pelosi
Marcelo Gama de Abreu
Patricia R. M. Rocco
Pedro L. Silva
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2016
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-016-0476-7

Other articles of this Issue 1/2016

Respiratory Research 1/2016 Go to the issue