Skip to main content
Top
Published in: Respiratory Research 1/2016

Open Access 01-12-2016 | Research

The role of circulating thrombospondin-1 in patients with precapillary pulmonary hypertension

Authors: Ralf Kaiser, Christian Frantz, Robert Bals, Heinrike Wilkens

Published in: Respiratory Research | Issue 1/2016

Login to get access

Abstract

Background

The vasoconstrictive protein TSP-1 is released from endothelial cells upon increased shear stress and hypoxia. Both conditions are prevalent in pulmonary hypertension (PH). TSP-1 damages the local microcirculation by disrupting pathways, which are essential for specific medical therapeutics. Furthermore, TSP-1 induces excessive fibrosis and smooth muscle proliferation - a common finding in advanced PH - via TGF-ß and might promote disease progression. The prognostic impact of circulating TSP-1, influence on hemodynamic parameters and interaction with other biomarkers in patients with PH is incompletely understood.
This study examines prospectively circulating TSP-1 in association with hemodynamic parameters, clinical variables and mortality.

Methods

Circulating TSP-1 was measured prospectively in 93 patients with precapillary PH undergoing right heart catheterization and in 19 subjects without PH. TSP-1 levels were determined by ELISA and examined in the context of hemodynamic variables. For evaluation of survival, patients were monitored for adverse events on a 3-monthly basis and contacted at the end of the study after 5 years. In addition, levels of big-endothelin and humoral cofactors of TSP-1 release were measured.

Results

Patients with PH had significantly increased TSP-1 levels compared to controls without PH (1114 ± 136 ng/mL vs. 82.1 ± 15.8 ng/mL, p < 0.05). Levels were correlated with mean pulmonary artery pressure (PAPm, r = −0.58, p < 0.001) and pulmonary vascular resistance (PVR, r = 0.33, p = 0.002). Survivors had lower TSP-levels as non-survivors and all cause mortality associated with TSP-1 plasma levels above 2051 ng/mL (p = 0.0002, HR 1.49).

Conclusions

High plasma levels of TSP-1 are associated with increased PAPm, increased PVR and decreased survival. Due to its interaction with therapeutic pathways, studies are warranted to clarify the impact of TSP-1 on of specific medications for PH.
Appendix
Available only for authorised users
Literature
2.
go back to reference Frangogiannis NG, Ren G, Dewald O, Zymek P, Haudek S, Koerting A, et al. Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation. 2005;111:2935–42.CrossRefPubMed Frangogiannis NG, Ren G, Dewald O, Zymek P, Haudek S, Koerting A, et al. Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation. 2005;111:2935–42.CrossRefPubMed
3.
go back to reference Laderoute KR, Alarcon RM, Brody MD, Calaoagan JM, Chen EY, Knapp a M, et al. Opposing effects of hypoxia on expression of the angiogenic inhibitor thrombospondin 1 and the angiogenic inducer vascular endothelial growth factor. Clin Cancer Res [Internet]. 2000;6:2941–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10914744. Accessed 26 July 2016. Laderoute KR, Alarcon RM, Brody MD, Calaoagan JM, Chen EY, Knapp a M, et al. Opposing effects of hypoxia on expression of the angiogenic inhibitor thrombospondin 1 and the angiogenic inducer vascular endothelial growth factor. Clin Cancer Res [Internet]. 2000;6:2941–50. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​10914744. Accessed 26 July 2016.
6.
go back to reference Kobayashi S, Yamamoto T. The molecular biologic study of the expression of thrombospondin in vascular smooth muscle cells and mesangial cells. J Diabet Complications UNITED STATES. 1991;5:121–3.CrossRef Kobayashi S, Yamamoto T. The molecular biologic study of the expression of thrombospondin in vascular smooth muscle cells and mesangial cells. J Diabet Complications UNITED STATES. 1991;5:121–3.CrossRef
8.
go back to reference Sezaki S, Hirohata S, Iwabu A, Nakamura K, Toeda K, Miyoshi T, et al. Thrombospondin-1 is induced in rat myocardial infarction and its induction is accelerated by ischemia/reperfusion. Exp Biol Med (Maywood, NJ) [Internet]. 2005;230:621–30. Department of Medicine and Medical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan. http://www.ncbi.nlm.nih.gov/pubmed/16179730. Sezaki S, Hirohata S, Iwabu A, Nakamura K, Toeda K, Miyoshi T, et al. Thrombospondin-1 is induced in rat myocardial infarction and its induction is accelerated by ischemia/reperfusion. Exp Biol Med (Maywood, NJ) [Internet]. 2005;230:621–30. Department of Medicine and Medical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan. http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​16179730.
10.
go back to reference Isenberg JS, Jia Y, Fukuyama J, Switzer CH, Wink DA, Roberts DD. Thrombospondin-1 inhibits nitric oxide signaling via CD36 by inhibiting myristic acid uptake. J Biol Chem [Internet]. 2007;282:15404–15. Available from: papers3://publication/doi/10.1074/jbc.M701638200.CrossRef Isenberg JS, Jia Y, Fukuyama J, Switzer CH, Wink DA, Roberts DD. Thrombospondin-1 inhibits nitric oxide signaling via CD36 by inhibiting myristic acid uptake. J Biol Chem [Internet]. 2007;282:15404–15. Available from: papers3://publication/doi/10.​1074/​jbc.​M701638200.CrossRef
15.
go back to reference Bauer PM, Bauer EM, Rogers NM, Yao M, Feijoo-Cuaresma M, Pilewski JM, et al. Activated CD47 promotes pulmonary arterial hypertension through targeting caveolin-1. Cardiovasc Res [Internet]. 2012;93:682–93. 2012/01/05 ed. Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22215724. Accessed 26 July 2016.CrossRef Bauer PM, Bauer EM, Rogers NM, Yao M, Feijoo-Cuaresma M, Pilewski JM, et al. Activated CD47 promotes pulmonary arterial hypertension through targeting caveolin-1. Cardiovasc Res [Internet]. 2012;93:682–93. 2012/01/05 ed. Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​22215724. Accessed 26 July 2016.CrossRef
16.
go back to reference Labrousse-Arias D, Castillo-González R, Rogers NM, Torres-Capelli M, Barreira B, Aragonés J, et al. HIF-2α-mediated induction of pulmonary thrombospondin-1 contributes to hypoxia-driven vascular remodelling and vasoconstriction. Cardiovasc Res [Internet]. 2015;cvv243. Available from: http://cardiovascres.oxfordjournals.org/lookup/doi/ Accessed 26 July 2016.10.1093/cvr/cvv243. Accessed 26 July 2016. Labrousse-Arias D, Castillo-González R, Rogers NM, Torres-Capelli M, Barreira B, Aragonés J, et al. HIF-2α-mediated induction of pulmonary thrombospondin-1 contributes to hypoxia-driven vascular remodelling and vasoconstriction. Cardiovasc Res [Internet]. 2015;cvv243. Available from: http://​cardiovascres.​oxfordjournals.​org/​lookup/​doi/​ Accessed 26 July 2016.10.​1093/​cvr/​cvv243. Accessed 26 July 2016.
19.
go back to reference Kaiser R, Grotemeyer K, Kalsch T, Graber S, Wilkens H, Elmas E. Decreased TSP-1 following percutaneous coronary intervention is associated with major adverse cardiac events in ST-elevation myocardial infarction. Clin Hemorheol Microcirc [Internet]. 2013;54:59–73. 2012/07/04 ed. Department of Pulmonology, Saarland University, Homburg/Saar, Germany. ralfkaiser@gmx.net. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22750995. Accessed 26 July 2016. Kaiser R, Grotemeyer K, Kalsch T, Graber S, Wilkens H, Elmas E. Decreased TSP-1 following percutaneous coronary intervention is associated with major adverse cardiac events in ST-elevation myocardial infarction. Clin Hemorheol Microcirc [Internet]. 2013;54:59–73. 2012/07/04 ed. Department of Pulmonology, Saarland University, Homburg/Saar, Germany. ralfkaiser@gmx.net. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​22750995. Accessed 26 July 2016.
20.
go back to reference Yao M, Roberts DD, Isenberg JS. Thrombospondin-1 inhibition of vascular smooth muscle cell responses occurs via modulation of both cAMP and cGMP. Pharmacol Res [Internet]. 2011;63:13–22. Elsevier Ltd. Available from: http://dx.doi.org/10.1016/j.phrs.2010.10.014. Accessed 26 July 2016.CrossRef Yao M, Roberts DD, Isenberg JS. Thrombospondin-1 inhibition of vascular smooth muscle cell responses occurs via modulation of both cAMP and cGMP. Pharmacol Res [Internet]. 2011;63:13–22. Elsevier Ltd. Available from: http://​dx.​doi.​org/​10.​1016/​j.​phrs.​2010.​10.​014. Accessed 26 July 2016.CrossRef
21.
go back to reference Kaur S, Martin-Manso G, Pendrak ML, Garfield SH, Isenberg JS, Roberts DD. Thrombospondin-1 inhibits VEGF receptor-2 signaling by disrupting its association with CD47. J Biol Chem. 2010;285:38923–32.CrossRefPubMedPubMedCentral Kaur S, Martin-Manso G, Pendrak ML, Garfield SH, Isenberg JS, Roberts DD. Thrombospondin-1 inhibits VEGF receptor-2 signaling by disrupting its association with CD47. J Biol Chem. 2010;285:38923–32.CrossRefPubMedPubMedCentral
22.
go back to reference Miller TW, Isenberg JS, Roberts DD. Thrombospondin-1 is an inhibitor of pharmacological activation of soluble guanylate cyclase. Br J Pharmacol [Internet]. 2010;159:1542–7. Available from: http://doi.wiley.com/10.1111/j.1476-5381.2009.00631.x. Accessed 26 July 2016.CrossRef Miller TW, Isenberg JS, Roberts DD. Thrombospondin-1 is an inhibitor of pharmacological activation of soluble guanylate cyclase. Br J Pharmacol [Internet]. 2010;159:1542–7. Available from: http://​doi.​wiley.​com/​10.​1111/​j.​1476-5381.​2009.​00631.​x. Accessed 26 July 2016.CrossRef
23.
go back to reference Bauer EM, Qin Y, Miller TW, Bandle RW, Csanyi G, Pagano PJ, et al. Thrombospondin-1 supports blood pressure by limiting eNOS activation and endothelial-dependent vasorelaxation. Cardiovasc Res [Internet]. 2010;88:471–81. 2010/07/09 ed. Vascular Medicine Institute of University of Pittsburgh, Pittsburgh, PA, USA. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20610415. Accessed 26 July 2016.CrossRef Bauer EM, Qin Y, Miller TW, Bandle RW, Csanyi G, Pagano PJ, et al. Thrombospondin-1 supports blood pressure by limiting eNOS activation and endothelial-dependent vasorelaxation. Cardiovasc Res [Internet]. 2010;88:471–81. 2010/07/09 ed. Vascular Medicine Institute of University of Pittsburgh, Pittsburgh, PA, USA. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​20610415. Accessed 26 July 2016.CrossRef
24.
go back to reference Ochoa CD, Yu L, Al-Ansari E, Hales CA, Quinn DA. Thrombospondin-1 null mice are resistant to hypoxia-induced pulmonary hypertension. J Cardiothorac Surg [Internet]. 2010;5:32. Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. cdo701@jaguar1.usouthal.edu. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20441584. Accessed 26 July 2016.CrossRef Ochoa CD, Yu L, Al-Ansari E, Hales CA, Quinn DA. Thrombospondin-1 null mice are resistant to hypoxia-induced pulmonary hypertension. J Cardiothorac Surg [Internet]. 2010;5:32. Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. cdo701@jaguar1.usouthal.edu. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​20441584. Accessed 26 July 2016.CrossRef
Metadata
Title
The role of circulating thrombospondin-1 in patients with precapillary pulmonary hypertension
Authors
Ralf Kaiser
Christian Frantz
Robert Bals
Heinrike Wilkens
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2016
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-016-0412-x

Other articles of this Issue 1/2016

Respiratory Research 1/2016 Go to the issue

Reviewer acknowledgement

Reviewer acknowledgement 2015