Skip to main content
Top
Published in: Respiratory Research 1/2016

Open Access 01-12-2016 | Research

Investigating the role of MRGPRC11 and capsaicin-sensitive afferent nerves in the anti-influenza effects exerted by SLIGRL-amide in murine airways

Authors: Amy Y. Chang, Tracy S. Mann, Peter K. McFawn, Liang Han, Xinzhong Dong, Peter J. Henry

Published in: Respiratory Research | Issue 1/2016

Login to get access

Abstract

Background

The hexapeptide SLIGRL-amide activates protease-activated receptor-2 (PAR-2) and mas-related G protein-coupled receptor C11 (MRGPRC11), both of which are known to be expressed on populations of sensory nerves. SLIGRL-amide has recently been reported to inhibit influenza A (IAV) infection in mice independently of PAR-2 activation, however the explicit roles of MRGPRC11 and sensory nerves in this process are unknown. Thus, the principal aim of this study was to determine whether SLIGRL-amide-induced inhibition of influenza infection is mediated by MRGPRC11 and/or by capsaicin-sensitive sensory nerves.

Methods

The inhibitory effect of SLIGRL-amide on IAV infection observed in control mice in vivo was compared to effects produced in mice that did not express MRGPRC11 (mrgpr-cluster∆ −/− mice) or had impaired sensory nerve function (induced by chronic pre-treatment with capsaicin). Complementary mechanistic studies using both in vivo and ex vivo approaches investigated whether the anti-IAV activity of SLIGRL-amide was (1) mimicked by either activators of MRGPRC11 (BAM8-22) or by activators (acute capsaicin) or selected mediators (substance P, CGRP) of sensory nerve function, or (2) suppressed by inhibitors of sensory nerve function (e.g. NK1 receptor antagonists).

Results

SLIGRL-amide and BAM8-22 dose-dependently inhibited IAV infection in mrgpr-cluster∆ −/− mice that do not express MRGPRC11. In addition, SLIGRL-amide and BAM8-22 each inhibited IAV infection in capsaicin-pre-treated mice that lack functional sensory nerves. Furthermore, the anti-IAV activity of SLIGRL-amide was not mimicked by the sensory neuropeptides substance P or CGRP, nor blocked by either NK1 (L-703,606, RP67580) and CGRP receptor (CGRP8-37) antagonists. Direct stimulation of airway sensory nerves through acute exposure to the TRPV1 activator capsaicin also failed to mimic SLIGRL-amide-induced inhibition of IAV infectivity. The anti-IAV activity of SLIGRL-amide was mimicked by the purinoceptor agonist ATP, a direct activator of mucus secretion from airway epithelial cells. Additionally, both SLIGRL-amide and ATP stimulated mucus secretion and inhibited IAV infectivity in mouse isolated tracheal segments.

Conclusions

SLIGRL-amide inhibits IAV infection independently of MRGPRC11 and independently of capsaicin-sensitive, neuropeptide-releasing sensory nerves, and its secretory action on epithelial cells warrants further investigation.
Literature
3.
go back to reference Hayden F. Developing new antiviral agents for influenza treatment: what does the future hold? Clin Infect Dis. 2009;48 Suppl 1:S3–S13.CrossRefPubMed Hayden F. Developing new antiviral agents for influenza treatment: what does the future hold? Clin Infect Dis. 2009;48 Suppl 1:S3–S13.CrossRefPubMed
4.
go back to reference Bright RA, Medina MJ, Xu X, Perez-Oronoz G, Wallis TR, Davis XM, Povinelli L, Cox NJ, Klimov AI. Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern. Lancet. 2005;366:1175–81.CrossRefPubMed Bright RA, Medina MJ, Xu X, Perez-Oronoz G, Wallis TR, Davis XM, Povinelli L, Cox NJ, Klimov AI. Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern. Lancet. 2005;366:1175–81.CrossRefPubMed
6.
go back to reference Spanakis N, Pitiriga V, Gennimata V, Tsakris A. A review of neuraminidase inhibitor susceptibility in influenza strains. Expert Rev Anti Infect Ther. 2014;12:1325–36.CrossRefPubMed Spanakis N, Pitiriga V, Gennimata V, Tsakris A. A review of neuraminidase inhibitor susceptibility in influenza strains. Expert Rev Anti Infect Ther. 2014;12:1325–36.CrossRefPubMed
7.
go back to reference Betts RJ, Mann TS, Henry PJ. Inhibitory influence of the hexapeptidic sequence SLIGRL on influenza A virus infection in mice. J Pharmacol Exp Ther. 2012;343:725–35.CrossRefPubMed Betts RJ, Mann TS, Henry PJ. Inhibitory influence of the hexapeptidic sequence SLIGRL on influenza A virus infection in mice. J Pharmacol Exp Ther. 2012;343:725–35.CrossRefPubMed
8.
go back to reference Liu Q, Weng HJ, Patel KN, Tang Z, Bai H, Steinhoff M, Dong X. The distinct roles of two GPCRs, MrgprC11 and PAR2, in itch and hyperalgesia. Sci Signal. 2011;4:ra45.PubMedPubMedCentral Liu Q, Weng HJ, Patel KN, Tang Z, Bai H, Steinhoff M, Dong X. The distinct roles of two GPCRs, MrgprC11 and PAR2, in itch and hyperalgesia. Sci Signal. 2011;4:ra45.PubMedPubMedCentral
9.
go back to reference Lee MG, Dong X, Liu Q, Patel KN, Choi OH, Vonakis B, Undem BJ. Agonists of the MAS-related gene (Mrgs) orphan receptors as novel mediators of mast cell-sensory nerve interactions. J Immunol. 2008;180:2251–5.CrossRefPubMed Lee MG, Dong X, Liu Q, Patel KN, Choi OH, Vonakis B, Undem BJ. Agonists of the MAS-related gene (Mrgs) orphan receptors as novel mediators of mast cell-sensory nerve interactions. J Immunol. 2008;180:2251–5.CrossRefPubMed
10.
go back to reference Solinski HJ, Gudermann T, Breit A. Pharmacology and signaling of MAS-related G protein-coupled receptors. Pharmacol Rev. 2014;66:570–97.CrossRefPubMed Solinski HJ, Gudermann T, Breit A. Pharmacology and signaling of MAS-related G protein-coupled receptors. Pharmacol Rev. 2014;66:570–97.CrossRefPubMed
11.
go back to reference Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ. A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell. 2001;106:619–32.CrossRefPubMed Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ. A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell. 2001;106:619–32.CrossRefPubMed
12.
go back to reference Grazzini E, Puma C, Roy MO, Yu XH, O'Donnell D, Schmidt R, Dautrey S, Ducharme J, Perkins M, Panetta R. Sensory neuron-specific receptor activation elicits central and peripheral nociceptive effects in rats. Proc Natl Acad Sci U S A. 2004;101:7175–80.CrossRefPubMedPubMedCentral Grazzini E, Puma C, Roy MO, Yu XH, O'Donnell D, Schmidt R, Dautrey S, Ducharme J, Perkins M, Panetta R. Sensory neuron-specific receptor activation elicits central and peripheral nociceptive effects in rats. Proc Natl Acad Sci U S A. 2004;101:7175–80.CrossRefPubMedPubMedCentral
13.
go back to reference Han SK, Dong X, Hwang JI, Zylka MJ, Anderson DJ, Simon MI. Orphan G protein-coupled receptors MrgA1 and MrgC11 are distinctively activated by RF-amide-related peptides through the Galpha q/11 pathway. Proc Natl Acad Sci U S A. 2002;99:14740–5.CrossRefPubMedPubMedCentral Han SK, Dong X, Hwang JI, Zylka MJ, Anderson DJ, Simon MI. Orphan G protein-coupled receptors MrgA1 and MrgC11 are distinctively activated by RF-amide-related peptides through the Galpha q/11 pathway. Proc Natl Acad Sci U S A. 2002;99:14740–5.CrossRefPubMedPubMedCentral
14.
go back to reference Lembo PM, Grazzini E, Groblewski T, O'Donnell D, Roy MO, Zhang J, Hoffert C, Cao J, Schmidt R, Pelletier M, et al. Proenkephalin A gene products activate a new family of sensory neuron--specific GPCRs. Nat Neurosci. 2002;5:201–9.CrossRefPubMed Lembo PM, Grazzini E, Groblewski T, O'Donnell D, Roy MO, Zhang J, Hoffert C, Cao J, Schmidt R, Pelletier M, et al. Proenkephalin A gene products activate a new family of sensory neuron--specific GPCRs. Nat Neurosci. 2002;5:201–9.CrossRefPubMed
15.
go back to reference Burstein ES, Ott TR, Feddock M, Ma JN, Fuhs S, Wong S, Schiffer HH, Brann MR, Nash NR. Characterization of the Mas-related gene family: structural and functional conservation of human and rhesus MrgX receptors. Br J Pharmacol. 2006;147:73–82.CrossRefPubMedPubMedCentral Burstein ES, Ott TR, Feddock M, Ma JN, Fuhs S, Wong S, Schiffer HH, Brann MR, Nash NR. Characterization of the Mas-related gene family: structural and functional conservation of human and rhesus MrgX receptors. Br J Pharmacol. 2006;147:73–82.CrossRefPubMedPubMedCentral
16.
go back to reference Guan Y, Liu Q, Tang Z, Raja SN, Anderson DJ, Dong X. Mas-related G-protein-coupled receptors inhibit pathological pain in mice. Proc Natl Acad Sci U S A. 2010;107:15933–8.CrossRefPubMedPubMedCentral Guan Y, Liu Q, Tang Z, Raja SN, Anderson DJ, Dong X. Mas-related G-protein-coupled receptors inhibit pathological pain in mice. Proc Natl Acad Sci U S A. 2010;107:15933–8.CrossRefPubMedPubMedCentral
17.
go back to reference Verhein KC, Fryer AD, Jacoby DB. Neural control of airway inflammation. Curr Allergy Asthma Rep. 2009;9:484–90.CrossRefPubMed Verhein KC, Fryer AD, Jacoby DB. Neural control of airway inflammation. Curr Allergy Asthma Rep. 2009;9:484–90.CrossRefPubMed
19.
go back to reference Potenzieri C, Meeker S, Undem BJ. Activation of mouse bronchopulmonary C-fibres by serotonin and allergen-ovalbumin challenge. J Physiol. 2012;590:5449–59.CrossRefPubMedPubMedCentral Potenzieri C, Meeker S, Undem BJ. Activation of mouse bronchopulmonary C-fibres by serotonin and allergen-ovalbumin challenge. J Physiol. 2012;590:5449–59.CrossRefPubMedPubMedCentral
20.
go back to reference Nassenstein C, Taylor-Clark TE, Myers AC, Ru F, Nandigama R, Bettner W, Undem BJ. Phenotypic distinctions between neural crest and placodal derived vagal C-fibres in mouse lungs. J Physiol. 2010;588:4769–83.CrossRefPubMedPubMedCentral Nassenstein C, Taylor-Clark TE, Myers AC, Ru F, Nandigama R, Bettner W, Undem BJ. Phenotypic distinctions between neural crest and placodal derived vagal C-fibres in mouse lungs. J Physiol. 2010;588:4769–83.CrossRefPubMedPubMedCentral
21.
go back to reference Canning BJ, Spina D: Sensory nerves and airway irritability. Handb Exp Pharmacol. 2009:194;139–183.CrossRefPubMed Canning BJ, Spina D: Sensory nerves and airway irritability. Handb Exp Pharmacol. 2009:194;139–183.CrossRefPubMed
22.
go back to reference Lamb JP, Sparrow MP. Three-dimensional mapping of sensory innervation with substance p in porcine bronchial mucosa: comparison with human airways. Am J Respir Crit Care Med. 2002;166:1269–81.CrossRefPubMed Lamb JP, Sparrow MP. Three-dimensional mapping of sensory innervation with substance p in porcine bronchial mucosa: comparison with human airways. Am J Respir Crit Care Med. 2002;166:1269–81.CrossRefPubMed
23.
go back to reference White MR, Helmerhorst EJ, Ligtenberg A, Karpel M, Tecle T, Siqueira WL, Oppenheim FG, Hartshorn KL. Multiple components contribute to ability of saliva to inhibit influenza viruses. Oral Microbiol Immunol. 2009;24:18–24.CrossRefPubMedPubMedCentral White MR, Helmerhorst EJ, Ligtenberg A, Karpel M, Tecle T, Siqueira WL, Oppenheim FG, Hartshorn KL. Multiple components contribute to ability of saliva to inhibit influenza viruses. Oral Microbiol Immunol. 2009;24:18–24.CrossRefPubMedPubMedCentral
24.
go back to reference Liu Q, Tang Z, Surdenikova L, Kim S, Patel KN, Kim A, Ru F, Guan Y, Weng HJ, Geng Y, et al. Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell. 2009;139:1353–65.CrossRefPubMedPubMedCentral Liu Q, Tang Z, Surdenikova L, Kim S, Patel KN, Kim A, Ru F, Guan Y, Weng HJ, Geng Y, et al. Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell. 2009;139:1353–65.CrossRefPubMedPubMedCentral
25.
go back to reference Williams K, Mackenzie JS. Influenza infections during pregnancy in the mouse. J Hyg (Lond). 1977;79:249–57.CrossRef Williams K, Mackenzie JS. Influenza infections during pregnancy in the mouse. J Hyg (Lond). 1977;79:249–57.CrossRef
26.
go back to reference Fazekas De St Groth S, White DO. An improved assay for the infectivity of in influenza viruses. J Hyg (Lond). 1958;56:151–62.CrossRef Fazekas De St Groth S, White DO. An improved assay for the infectivity of in influenza viruses. J Hyg (Lond). 1958;56:151–62.CrossRef
27.
go back to reference Buckley TL, Nijkamp FP. Airways hyperreactivity and cellular accumulation in a delayed-type hypersensitivity reaction in the mouse. Modulation by capsaicin-sensitive nerves. Am J Respir Crit Care Med. 1994;149:400–7.CrossRefPubMed Buckley TL, Nijkamp FP. Airways hyperreactivity and cellular accumulation in a delayed-type hypersensitivity reaction in the mouse. Modulation by capsaicin-sensitive nerves. Am J Respir Crit Care Med. 1994;149:400–7.CrossRefPubMed
28.
go back to reference Kawabata A, Oono Y, Yonezawa D, Hiramatsu K, Inoi N, Sekiguchi F, Honjo M, Hirofuchi M, Kanke T, Ishiwata H. 2-Furoyl-LIGRL-NH2, a potent agonist for proteinase-activated receptor-2, as a gastric mucosal cytoprotective agent in mice. Br J Pharmacol. 2005;144:212–9.CrossRefPubMedPubMedCentral Kawabata A, Oono Y, Yonezawa D, Hiramatsu K, Inoi N, Sekiguchi F, Honjo M, Hirofuchi M, Kanke T, Ishiwata H. 2-Furoyl-LIGRL-NH2, a potent agonist for proteinase-activated receptor-2, as a gastric mucosal cytoprotective agent in mice. Br J Pharmacol. 2005;144:212–9.CrossRefPubMedPubMedCentral
29.
go back to reference Morris JB, Symanowicz PT, Olsen JE, Thrall RS, Cloutier MM, Hubbard AK. Immediate sensory nerve-mediated respiratory responses to irritants in healthy and allergic airway-diseased mice. J Appl Physiol (1985). 2003;94:1563–71.CrossRef Morris JB, Symanowicz PT, Olsen JE, Thrall RS, Cloutier MM, Hubbard AK. Immediate sensory nerve-mediated respiratory responses to irritants in healthy and allergic airway-diseased mice. J Appl Physiol (1985). 2003;94:1563–71.CrossRef
30.
go back to reference Scheerens H, Buckley TL, Muis T, Van Loveren H, Nijkamp FP. The involvement of sensory neuropeptides in toluene diisocyanate-induced tracheal hyperreactivity in the mouse airways. Br J Pharmacol. 1996;119:1665–71.CrossRefPubMedPubMedCentral Scheerens H, Buckley TL, Muis T, Van Loveren H, Nijkamp FP. The involvement of sensory neuropeptides in toluene diisocyanate-induced tracheal hyperreactivity in the mouse airways. Br J Pharmacol. 1996;119:1665–71.CrossRefPubMedPubMedCentral
31.
go back to reference Cheah EY, Burcham PC, Mann TS, Henry PJ. Acrolein relaxes mouse isolated tracheal smooth muscle via a TRPA1-dependent mechanism. Biochem Pharmacol. 2014;89:148–56.CrossRefPubMed Cheah EY, Burcham PC, Mann TS, Henry PJ. Acrolein relaxes mouse isolated tracheal smooth muscle via a TRPA1-dependent mechanism. Biochem Pharmacol. 2014;89:148–56.CrossRefPubMed
32.
go back to reference Taylor SJ, Mann TS, Henry PJ. Influence of influenza A infection on capsaicin-induced responses in murine airways. J Pharmacol Exp Ther. 2012;340:377–85.CrossRefPubMed Taylor SJ, Mann TS, Henry PJ. Influence of influenza A infection on capsaicin-induced responses in murine airways. J Pharmacol Exp Ther. 2012;340:377–85.CrossRefPubMed
33.
go back to reference Agrawal A, Rengarajan S, Adler KB, Ram A, Ghosh B, Fahim M, Dickey BF. Inhibition of mucin secretion with MARCKS-related peptide improves airway obstruction in a mouse model of asthma. J Appl Physiol (1985). 2007;102:399–405.CrossRef Agrawal A, Rengarajan S, Adler KB, Ram A, Ghosh B, Fahim M, Dickey BF. Inhibition of mucin secretion with MARCKS-related peptide improves airway obstruction in a mouse model of asthma. J Appl Physiol (1985). 2007;102:399–405.CrossRef
34.
go back to reference Evans CM, Williams OW, Tuvim MJ, Nigam R, Mixides GP, Blackburn MR, DeMayo FJ, Burns AR, Smith C, Reynolds SD, et al. Mucin is produced by clara cells in the proximal airways of antigen-challenged mice. Am J Respir Cell Mol Biol. 2004;31:382–94.CrossRefPubMed Evans CM, Williams OW, Tuvim MJ, Nigam R, Mixides GP, Blackburn MR, DeMayo FJ, Burns AR, Smith C, Reynolds SD, et al. Mucin is produced by clara cells in the proximal airways of antigen-challenged mice. Am J Respir Cell Mol Biol. 2004;31:382–94.CrossRefPubMed
35.
go back to reference Hollenberg MD, Saifeddine M. al-Ani B: Proteinase-activated receptor-2 in rat aorta: structural requirements for agonist activity of receptor-activating peptides. Mol Pharmacol. 1996;49:229–33.PubMed Hollenberg MD, Saifeddine M. al-Ani B: Proteinase-activated receptor-2 in rat aorta: structural requirements for agonist activity of receptor-activating peptides. Mol Pharmacol. 1996;49:229–33.PubMed
36.
go back to reference Cattaruzza F, Cenac N, Barocelli E, Impicciatore M, Hyun E, Vergnolle N, Sternini C. Protective effect of proteinase-activated receptor 2 activation on motility impairment and tissue damage induced by intestinal ischemia/reperfusion in rodents. Am J Pathol. 2006;169:177–88.CrossRefPubMedPubMedCentral Cattaruzza F, Cenac N, Barocelli E, Impicciatore M, Hyun E, Vergnolle N, Sternini C. Protective effect of proteinase-activated receptor 2 activation on motility impairment and tissue damage induced by intestinal ischemia/reperfusion in rodents. Am J Pathol. 2006;169:177–88.CrossRefPubMedPubMedCentral
37.
go back to reference Elekes K, Helyes Z, Nemeth J, Sandor K, Pozsgai G, Kereskai L, Borzsei R, Pinter E, Szabo A, Szolcsanyi J. Role of capsaicin-sensitive afferents and sensory neuropeptides in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity in the mouse. Regul Pept. 2007;141:44–54.CrossRefPubMed Elekes K, Helyes Z, Nemeth J, Sandor K, Pozsgai G, Kereskai L, Borzsei R, Pinter E, Szabo A, Szolcsanyi J. Role of capsaicin-sensitive afferents and sensory neuropeptides in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity in the mouse. Regul Pept. 2007;141:44–54.CrossRefPubMed
38.
go back to reference Morris JB, Wilkie WS, Shusterman DJ. Acute respiratory responses of the mouse to chlorine. Toxicol Sci. 2005;83:380–7.CrossRefPubMed Morris JB, Wilkie WS, Shusterman DJ. Acute respiratory responses of the mouse to chlorine. Toxicol Sci. 2005;83:380–7.CrossRefPubMed
39.
go back to reference Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev. 2014;94:265–301.CrossRefPubMedPubMedCentral Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev. 2014;94:265–301.CrossRefPubMedPubMedCentral
40.
go back to reference Chauhan VS, Kluttz JM, Bost KL, Marriott I. Prophylactic and therapeutic targeting of the neurokinin-1 receptor limits neuroinflammation in a murine model of pneumococcal meningitis. J Immunol. 2011;186:7255–63.CrossRefPubMedPubMedCentral Chauhan VS, Kluttz JM, Bost KL, Marriott I. Prophylactic and therapeutic targeting of the neurokinin-1 receptor limits neuroinflammation in a murine model of pneumococcal meningitis. J Immunol. 2011;186:7255–63.CrossRefPubMedPubMedCentral
41.
go back to reference Yang Y, Yan M, Zhang H, Wang X. Substance P participates in immune-mediated hepatic injury induced by concanavalin A in mice and stimulates cytokine synthesis in Kupffer cells. Exp Ther Med. 2013;6:459–64.PubMedPubMedCentral Yang Y, Yan M, Zhang H, Wang X. Substance P participates in immune-mediated hepatic injury induced by concanavalin A in mice and stimulates cytokine synthesis in Kupffer cells. Exp Ther Med. 2013;6:459–64.PubMedPubMedCentral
42.
go back to reference Nystedt S, Emilsson K, Wahlestedt C, Sundelin J. Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci U S A. 1994;91:9208–12.CrossRefPubMedPubMedCentral Nystedt S, Emilsson K, Wahlestedt C, Sundelin J. Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci U S A. 1994;91:9208–12.CrossRefPubMedPubMedCentral
43.
go back to reference Ossovskaya VS, Bunnett NW. Protease-activated receptors: contribution to physiology and disease. Physiol Rev. 2004;84:579–621.CrossRefPubMed Ossovskaya VS, Bunnett NW. Protease-activated receptors: contribution to physiology and disease. Physiol Rev. 2004;84:579–621.CrossRefPubMed
44.
go back to reference Ramachandran R, Noorbakhsh F, Defea K, Hollenberg MD. Targeting proteinase-activated receptors: therapeutic potential and challenges. Nat Rev Drug Discov. 2012;11:69–86.CrossRefPubMed Ramachandran R, Noorbakhsh F, Defea K, Hollenberg MD. Targeting proteinase-activated receptors: therapeutic potential and challenges. Nat Rev Drug Discov. 2012;11:69–86.CrossRefPubMed
45.
go back to reference Rothmeier AS, Ruf W. Protease-activated receptor 2 signaling in inflammation. Semin Immunopathol. 2012;34:133–49.CrossRefPubMed Rothmeier AS, Ruf W. Protease-activated receptor 2 signaling in inflammation. Semin Immunopathol. 2012;34:133–49.CrossRefPubMed
46.
go back to reference Abey HT, Fairlie DP, Moffatt JD, Balzary RW, Cocks TM. Protease-activated receptor-2 peptides activate neurokinin-1 receptors in the mouse isolated trachea. J Pharmacol Exp Ther. 2006;317:598–605.CrossRefPubMed Abey HT, Fairlie DP, Moffatt JD, Balzary RW, Cocks TM. Protease-activated receptor-2 peptides activate neurokinin-1 receptors in the mouse isolated trachea. J Pharmacol Exp Ther. 2006;317:598–605.CrossRefPubMed
47.
go back to reference Zhao A, Shea-Donohue T. PAR-2 agonists induce contraction of murine small intestine through neurokinin receptors. Am J Physiol Gastrointest Liver Physiol. 2003;285:G696–703.CrossRefPubMed Zhao A, Shea-Donohue T. PAR-2 agonists induce contraction of murine small intestine through neurokinin receptors. Am J Physiol Gastrointest Liver Physiol. 2003;285:G696–703.CrossRefPubMed
48.
go back to reference Bowden JJ, Baluk P, Lefevre PM, Schoeb TR, Lindsey JR, McDonald DM. Sensory denervation by neonatal capsaicin treatment exacerbates Mycoplasma pulmonis infection in rat airways. Am J Physiol. 1996;270:L393–403.PubMed Bowden JJ, Baluk P, Lefevre PM, Schoeb TR, Lindsey JR, McDonald DM. Sensory denervation by neonatal capsaicin treatment exacerbates Mycoplasma pulmonis infection in rat airways. Am J Physiol. 1996;270:L393–403.PubMed
49.
go back to reference Raemdonck K, de Alba J, Birrell MA, Grace M, Maher SA, Irvin CG, Fozard JR, O'Byrne PM, Belvisi MG. A role for sensory nerves in the late asthmatic response. Thorax. 2012;67:19–25.CrossRefPubMed Raemdonck K, de Alba J, Birrell MA, Grace M, Maher SA, Irvin CG, Fozard JR, O'Byrne PM, Belvisi MG. A role for sensory nerves in the late asthmatic response. Thorax. 2012;67:19–25.CrossRefPubMed
50.
go back to reference Schelegle ES, Walby WF. Vagal afferents contribute to exacerbated airway responses following ozone and allergen challenge. Respir Physiol Neurobiol. 2012;181:277–85.CrossRefPubMedPubMedCentral Schelegle ES, Walby WF. Vagal afferents contribute to exacerbated airway responses following ozone and allergen challenge. Respir Physiol Neurobiol. 2012;181:277–85.CrossRefPubMedPubMedCentral
51.
go back to reference Kollarik M, Dinh QT, Fischer A, Undem BJ. Capsaicin-sensitive and -insensitive vagal bronchopulmonary C-fibres in the mouse. J Physiol. 2003;551:869–79.CrossRefPubMedPubMedCentral Kollarik M, Dinh QT, Fischer A, Undem BJ. Capsaicin-sensitive and -insensitive vagal bronchopulmonary C-fibres in the mouse. J Physiol. 2003;551:869–79.CrossRefPubMedPubMedCentral
52.
go back to reference Kunzelmann K, Sun J, Markovich D, Konig J, Murle B, Mall M, Schreiber R. Control of ion transport in mammalian airways by protease activated receptors type 2 (PAR-2). FASEB J. 2005;19:969–70.PubMed Kunzelmann K, Sun J, Markovich D, Konig J, Murle B, Mall M, Schreiber R. Control of ion transport in mammalian airways by protease activated receptors type 2 (PAR-2). FASEB J. 2005;19:969–70.PubMed
53.
go back to reference Lee HJ, Yang YM, Kim K, Shin DM, Yoon JH, Cho HJ, Choi JY. Protease-activated receptor 2 mediates mucus secretion in the airway submucosal gland. PLoS One. 2012;7, e43188.CrossRefPubMedPubMedCentral Lee HJ, Yang YM, Kim K, Shin DM, Yoon JH, Cho HJ, Choi JY. Protease-activated receptor 2 mediates mucus secretion in the airway submucosal gland. PLoS One. 2012;7, e43188.CrossRefPubMedPubMedCentral
54.
go back to reference Lin KW, Park J, Crews AL, Li Y, Adler KB. Protease-activated receptor-2 (PAR-2) is a weak enhancer of mucin secretion by human bronchial epithelial cells in vitro. Int J Biochem Cell Biol. 2008;40:1379–88.CrossRefPubMedPubMedCentral Lin KW, Park J, Crews AL, Li Y, Adler KB. Protease-activated receptor-2 (PAR-2) is a weak enhancer of mucin secretion by human bronchial epithelial cells in vitro. Int J Biochem Cell Biol. 2008;40:1379–88.CrossRefPubMedPubMedCentral
55.
go back to reference Ehre C, Worthington EN, Liesman RM, Grubb BR, Barbier D, O'Neal WK, Sallenave JM, Pickles RJ, Boucher RC. Overexpressing mouse model demonstrates the protective role of Muc5ac in the lungs. Proc Natl Acad Sci U S A. 2012;109:16528–33.CrossRefPubMedPubMedCentral Ehre C, Worthington EN, Liesman RM, Grubb BR, Barbier D, O'Neal WK, Sallenave JM, Pickles RJ, Boucher RC. Overexpressing mouse model demonstrates the protective role of Muc5ac in the lungs. Proc Natl Acad Sci U S A. 2012;109:16528–33.CrossRefPubMedPubMedCentral
56.
go back to reference Adler KB, Tuvim MJ, Dickey BF. Regulated mucin secretion from airway epithelial cells. Front Endocrinol (Lausanne). 2013;4:129. Adler KB, Tuvim MJ, Dickey BF. Regulated mucin secretion from airway epithelial cells. Front Endocrinol (Lausanne). 2013;4:129.
58.
go back to reference Kreda SM, Okada SF, van Heusden CA, O'Neal W, Gabriel S, Abdullah L, Davis CW, Boucher RC, Lazarowski ER. Coordinated release of nucleotides and mucin from human airway epithelial Calu-3 cells. J Physiol. 2007;584:245–59.CrossRefPubMedPubMedCentral Kreda SM, Okada SF, van Heusden CA, O'Neal W, Gabriel S, Abdullah L, Davis CW, Boucher RC, Lazarowski ER. Coordinated release of nucleotides and mucin from human airway epithelial Calu-3 cells. J Physiol. 2007;584:245–59.CrossRefPubMedPubMedCentral
60.
go back to reference Numata M, Kandasamy P, Nagashima Y, Posey J, Hartshorn K, Woodland D, Voelker DR. Phosphatidylglycerol suppresses influenza A virus infection. Am J Respir Cell Mol Biol. 2012;46:479–87.CrossRefPubMedPubMedCentral Numata M, Kandasamy P, Nagashima Y, Posey J, Hartshorn K, Woodland D, Voelker DR. Phosphatidylglycerol suppresses influenza A virus infection. Am J Respir Cell Mol Biol. 2012;46:479–87.CrossRefPubMedPubMedCentral
Metadata
Title
Investigating the role of MRGPRC11 and capsaicin-sensitive afferent nerves in the anti-influenza effects exerted by SLIGRL-amide in murine airways
Authors
Amy Y. Chang
Tracy S. Mann
Peter K. McFawn
Liang Han
Xinzhong Dong
Peter J. Henry
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2016
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-016-0378-8

Other articles of this Issue 1/2016

Respiratory Research 1/2016 Go to the issue