Skip to main content
Top
Published in: BMC Proceedings 9/2018

Open Access 01-09-2018 | Proceedings

A Bayesian mixed modeling approach for estimating heritability

Authors: Haakon E. Nustad, Christian M. Page, Andrew H. Reiner, Manuela Zucknick, Marissa LeBlanc

Published in: BMC Proceedings | Special Issue 9/2018

Login to get access

Abstract

Background

A Bayesian mixed model approach using integrated nested Laplace approximations (INLA) allows us to construct flexible models that can account for pedigree structure. Using these models, we estimate genome-wide patterns of DNA methylation heritability (h2), which are currently not well understood, as well as h2 of blood lipid measurements.

Methods

We included individuals from the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study with Infinium 450 K cytosine-phosphate-guanine (CpG) methylation and blood lipid data pre- and posttreatment with fenofibrate in families with up to three-generation pedigrees. For genome-wide patterns, we constructed 1 model per CpG with methylation as the response variable, with a random effect to model kinship, and age and gender as fixed effects.

Results

In total, 425,791 CpG sites pre-, but only 199,027 CpG sites posttreatment were found to have nonzero heritability. Across these CpG sites, the distributions of h2 estimates are similar in pre- and posttreatment (pre: median = 0.31, interquartile range [IQR] = 0.16; post: median = 0.34, IQR = 0.20). Blood lipid h2 estimates were similar pre- and posttreatment with overlapping 95% credibility intervals. Heritability was nonzero for treatment effect, that is, the difference between pre- and posttreatment blood lipids. Estimates for triglycerides h2 are 0.48 (pre), 0.42 (post), and 0.21 (difference); likewise for high-density lipoprotein cholesterol h2 the estimates are 0.61, 0.68, and 0.10.

Conclusions

We show that with INLA, a fully Bayesian approach to estimate DNA methylation h2 is possible on a genome-wide scale. This provides uncertainty assessment of the estimates, and allows us to perform model selection via deviance information criterion (DIC) to identify CpGs with strong evidence for nonzero heritability.
Literature
1.
go back to reference Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet. 1998;62(5):1198–211.CrossRef Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet. 1998;62(5):1198–211.CrossRef
2.
go back to reference Holand AM, Steinsland I, Martino S, Jensen H. Animal models and integrated nested Laplace approximations. G3 (Bethesda). 2013;3(8):1241–51.CrossRef Holand AM, Steinsland I, Martino S, Jensen H. Animal models and integrated nested Laplace approximations. G3 (Bethesda). 2013;3(8):1241–51.CrossRef
3.
go back to reference Ralston SH, Uitterlinden AG. Genetics of osteoporosis. Endocr Rev. 2010;31(5):629–62.CrossRef Ralston SH, Uitterlinden AG. Genetics of osteoporosis. Endocr Rev. 2010;31(5):629–62.CrossRef
4.
go back to reference Slatkin M. Epigenetic inheritance and the missing heritability problem. Genetics. 2009;182(3):845–50.CrossRef Slatkin M. Epigenetic inheritance and the missing heritability problem. Genetics. 2009;182(3):845–50.CrossRef
5.
go back to reference McRae AF, Powell JE, Henders AK, Bowdler L, Hemani G, Shah S, Painter JN, Martin NG, Visscher PM, Montgomery GW. Contribution of genetic variation to transgenerational inheritance of DNA methylation. Genome Biol. 2014;15(5):R73.CrossRef McRae AF, Powell JE, Henders AK, Bowdler L, Hemani G, Shah S, Painter JN, Martin NG, Visscher PM, Montgomery GW. Contribution of genetic variation to transgenerational inheritance of DNA methylation. Genome Biol. 2014;15(5):R73.CrossRef
6.
go back to reference Quon G, Lippert C, Heckerman D, Listgarten J. Patterns of methylation heritability in a genome-wide analysis of four brain regions. Nucleic Acids Res. 2013;41(4):2095–104.CrossRef Quon G, Lippert C, Heckerman D, Listgarten J. Patterns of methylation heritability in a genome-wide analysis of four brain regions. Nucleic Acids Res. 2013;41(4):2095–104.CrossRef
7.
go back to reference Kulkarni H, Kos MZ, Neary J, Dyer TD, Kent JW Jr, Goring HH, Cole SA, Comuzzie AG, Almasy L, Mahaney MC, et al. Novel epigenetic determinants of type 2 diabetes in Mexican-American families. Hum Mol Genet. 2015;24(18):5330–44.CrossRef Kulkarni H, Kos MZ, Neary J, Dyer TD, Kent JW Jr, Goring HH, Cole SA, Comuzzie AG, Almasy L, Mahaney MC, et al. Novel epigenetic determinants of type 2 diabetes in Mexican-American families. Hum Mol Genet. 2015;24(18):5330–44.CrossRef
8.
go back to reference Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Series B Stat Methodol. 2009;71:319–92.CrossRef Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Series B Stat Methodol. 2009;71:319–92.CrossRef
9.
go back to reference Irvin MR, Kabagambe EK, Tiwari HK, Parnell LD, Straka RJ, Tsai M, Ordovas JM, Arnett DK. Apolipoprotein E polymorphisms and postprandial triglyceridemia before and after fenofibrate treatment in the genetics of lipid lowering and diet network (GOLDN) study. Circ Cardiovasc Genet. 2010;3(5):462–7.CrossRef Irvin MR, Kabagambe EK, Tiwari HK, Parnell LD, Straka RJ, Tsai M, Ordovas JM, Arnett DK. Apolipoprotein E polymorphisms and postprandial triglyceridemia before and after fenofibrate treatment in the genetics of lipid lowering and diet network (GOLDN) study. Circ Cardiovasc Genet. 2010;3(5):462–7.CrossRef
10.
go back to reference Weiss LA, Pan L, Abney M, Ober C. The sex-specific genetic architecture of quantitative traits in humans. Nat Genet. 2006;38(2):218–22.CrossRef Weiss LA, Pan L, Abney M, Ober C. The sex-specific genetic architecture of quantitative traits in humans. Nat Genet. 2006;38(2):218–22.CrossRef
11.
go back to reference Das M, Irvin MR, Sha J, Aslibekyan S, Hidalgo B, Perry RT, Zhi D, Tiwari HK, Absher D, Ordovas JM, et al. Lipid changes due to fenofibrate treatment are not associated with changes in DNA methylation patterns in the GOLDN study. Front Genet. 2015;6:304.CrossRef Das M, Irvin MR, Sha J, Aslibekyan S, Hidalgo B, Perry RT, Zhi D, Tiwari HK, Absher D, Ordovas JM, et al. Lipid changes due to fenofibrate treatment are not associated with changes in DNA methylation patterns in the GOLDN study. Front Genet. 2015;6:304.CrossRef
12.
go back to reference Pidsley R, Wong CCY, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genomics. 2013;14:293.CrossRef Pidsley R, Wong CCY, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genomics. 2013;14:293.CrossRef
14.
go back to reference Spiegelhalter DJ, Best NG, Carlin BR, van der Linde A. Bayesian measures of model complexity and fit. J R Stat Soc Series B Stat Methodol. 2002;64:583–616.CrossRef Spiegelhalter DJ, Best NG, Carlin BR, van der Linde A. Bayesian measures of model complexity and fit. J R Stat Soc Series B Stat Methodol. 2002;64:583–616.CrossRef
15.
go back to reference Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis, vol. 2. Boca Raton: Chapman & Hall/CRC; 2014. Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis, vol. 2. Boca Raton: Chapman & Hall/CRC; 2014.
16.
go back to reference Kathiresan S, Manning AK, Demissie S, D’Agostino RB, Surti A, Guiducci C, Gianniny L, Burtt NP, Melander O, Orho-Melander M, et al. A genome-wide association study for blood lipid phenotypes in the Framingham heart study. BMC Med Genet. 2007;8(Suppl 1):S17.CrossRef Kathiresan S, Manning AK, Demissie S, D’Agostino RB, Surti A, Guiducci C, Gianniny L, Burtt NP, Melander O, Orho-Melander M, et al. A genome-wide association study for blood lipid phenotypes in the Framingham heart study. BMC Med Genet. 2007;8(Suppl 1):S17.CrossRef
Metadata
Title
A Bayesian mixed modeling approach for estimating heritability
Authors
Haakon E. Nustad
Christian M. Page
Andrew H. Reiner
Manuela Zucknick
Marissa LeBlanc
Publication date
01-09-2018
Publisher
BioMed Central
Published in
BMC Proceedings / Issue Special Issue 9/2018
Electronic ISSN: 1753-6561
DOI
https://doi.org/10.1186/s12919-018-0131-z

Other articles of this Special Issue 9/2018

BMC Proceedings 9/2018 Go to the issue