Skip to main content
Top
Published in: BMC Medicine 1/2022

Open Access 01-12-2022 | Ketoconazole | Research article

Identification of a window of androgen sensitivity for somatic cell function in human fetal testis cultured ex vivo

Authors: Malene Lundgaard Riis, Gabriele Matilionyte, John E. Nielsen, Cecilie Melau, David Greenald, Kristine Juul Hare, Lea Langhoff Thuesen, Eva Dreisler, Kasper Aaboe, Pia Tutein Brenøe, Anna-Maria Andersson, Jakob Albrethsen, Hanne Frederiksen, Ewa Rajpert-De Meyts, Anders Juul, Rod T. Mitchell, Anne Jørgensen

Published in: BMC Medicine | Issue 1/2022

Login to get access

Abstract

Background

Reduced androgen action during early fetal development has been suggested as the origin of reproductive disorders comprised within the testicular dysgenesis syndrome (TDS). This hypothesis has been supported by studies in rats demonstrating that normal male development and adult reproductive function depend on sufficient androgen exposure during a sensitive fetal period, called the masculinization programming window (MPW). The main aim of this study was therefore to examine the effects of manipulating androgen production during different timepoints during early human fetal testis development to identify the existence and timing of a possible window of androgen sensitivity resembling the MPW in rats.

Methods

The effects of experimentally reduced androgen exposure during different periods of human fetal testis development and function were examined using an established and validated human ex vivo tissue culture model. The androgen production was reduced by treatment with ketoconazole and validated by treatment with flutamide which blocks the androgen receptor. Testicular hormone production ex vivo was measured by liquid chromatography-tandem mass spectrometry or ELISA assays, and selected protein markers were assessed by immunohistochemistry.

Results

Ketoconazole reduced androgen production in testes from gestational weeks (GW) 7–21, which were subsequently divided into four age groups: GW 7–10, 10–12, 12–16 and 16–21. Additionally, reduced secretion of testicular hormones INSL3, AMH and Inhibin B was observed, but only in the age groups GW 7–10 and 10–12, while a decrease in the total density of germ cells and OCT4+ gonocytes was found in the GW 7–10 age group. Flutamide treatment in specimens aged GW 7–12 did not alter androgen production, but the secretion of INSL3, AMH and Inhibin B was reduced, and a reduced number of pre-spermatogonia was observed.

Conclusions

This study showed that reduced androgen action during early development affects the function and density of several cell types in the human fetal testis, with similar effects observed after ketoconazole and flutamide treatment. The effects were only observed within the GW 7–14 period—thereby indicating the presence of a window of androgen sensitivity in the human fetal testis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Svingen T, Koopman P. Building the mammalian testis: origins, differentiation, and assembly of the component cell populations. Genes Dev. 2013;27:2409–26.PubMedPubMedCentralCrossRef Svingen T, Koopman P. Building the mammalian testis: origins, differentiation, and assembly of the component cell populations. Genes Dev. 2013;27:2409–26.PubMedPubMedCentralCrossRef
2.
go back to reference Jørgensen A, Lindhardt Johansen M, Juul A, Skakkebaek NE, Main KM, Rajpert-De Meyts E. Pathogenesis of germ cell neoplasia in testicular dysgenesis and disorders of sex development. Semin Cell Dev Biol. 2015;45:124–37.PubMedCrossRef Jørgensen A, Lindhardt Johansen M, Juul A, Skakkebaek NE, Main KM, Rajpert-De Meyts E. Pathogenesis of germ cell neoplasia in testicular dysgenesis and disorders of sex development. Semin Cell Dev Biol. 2015;45:124–37.PubMedCrossRef
3.
4.
go back to reference Jørgensen A, Rajpert-De Meyts E. Regulation of meiotic entry and gonadal sex differentiation in the human: normal and disrupted signaling. Biomol Concepts. 2014;5:331–41.PubMedCrossRef Jørgensen A, Rajpert-De Meyts E. Regulation of meiotic entry and gonadal sex differentiation in the human: normal and disrupted signaling. Biomol Concepts. 2014;5:331–41.PubMedCrossRef
5.
go back to reference Flück CE, Meyer-Böni M, Pandey AV, Kempná P, Miller WL, Schoenle EJ, et al. Why boys will be boys: two pathways of fetal testicular androgen biosynthesis are needed for male sexual differentiation. Am J Hum Genet. 2011;89:201–18.PubMedPubMedCentralCrossRef Flück CE, Meyer-Böni M, Pandey AV, Kempná P, Miller WL, Schoenle EJ, et al. Why boys will be boys: two pathways of fetal testicular androgen biosynthesis are needed for male sexual differentiation. Am J Hum Genet. 2011;89:201–18.PubMedPubMedCentralCrossRef
6.
go back to reference O’Shaughnessy PJ, Antignac JP, Le Bizec B, Morvan M-L, Svechnikov K, Söder O, et al. Alternative (backdoor) androgen production and masculinization in the human fetus. PLoS Biol. 2019;17: e3000002.PubMedPubMedCentralCrossRef O’Shaughnessy PJ, Antignac JP, Le Bizec B, Morvan M-L, Svechnikov K, Söder O, et al. Alternative (backdoor) androgen production and masculinization in the human fetus. PLoS Biol. 2019;17: e3000002.PubMedPubMedCentralCrossRef
7.
go back to reference Reisch N, Taylor AE, Nogueira EF, Asby DJ, Dhir V, Berry A, et al. Alternative pathway androgen biosynthesis and human fetal female virilization. Proc Natl Acad Sci U S A. 2019;116:22294–9.PubMedPubMedCentralCrossRef Reisch N, Taylor AE, Nogueira EF, Asby DJ, Dhir V, Berry A, et al. Alternative pathway androgen biosynthesis and human fetal female virilization. Proc Natl Acad Sci U S A. 2019;116:22294–9.PubMedPubMedCentralCrossRef
8.
go back to reference Skakkebaek NE, Rajpert-De Meyts E, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod. 2001;16:972–8.PubMedCrossRef Skakkebaek NE, Rajpert-De Meyts E, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod. 2001;16:972–8.PubMedCrossRef
9.
go back to reference Rajpert-De Meyts E. Developmental model for the pathogenesis of testicular carcinoma in situ: genetic and environmental aspects. Hum Reprod Update. 2006;12:303–23.CrossRef Rajpert-De Meyts E. Developmental model for the pathogenesis of testicular carcinoma in situ: genetic and environmental aspects. Hum Reprod Update. 2006;12:303–23.CrossRef
10.
go back to reference Skakkebaek NE, Rajpert-De Meyts E, Buck Louis GM, Toppari J, Andersson A-M, Eisenberg ML, et al. Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol Rev. 2016;96:55–97.PubMedCrossRef Skakkebaek NE, Rajpert-De Meyts E, Buck Louis GM, Toppari J, Andersson A-M, Eisenberg ML, et al. Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol Rev. 2016;96:55–97.PubMedCrossRef
11.
go back to reference Juul A, Almstrup K, Andersson A-M, Jensen TK, Jørgensen N, Main KM, et al. Possible fetal determinants of male infertility. Nat Rev Endocrinol. 2014;10:553–62.PubMedCrossRef Juul A, Almstrup K, Andersson A-M, Jensen TK, Jørgensen N, Main KM, et al. Possible fetal determinants of male infertility. Nat Rev Endocrinol. 2014;10:553–62.PubMedCrossRef
12.
go back to reference Jørgensen A, Macdonald J, Nielsen JE, Kilcoyne KR, Perlman S, Lundvall L, et al. Nodal signaling regulates germ cell development and establishment of seminiferous cords in the human fetal testis. Cell Rep. 2018;25:1924-1937.e4.PubMedCrossRef Jørgensen A, Macdonald J, Nielsen JE, Kilcoyne KR, Perlman S, Lundvall L, et al. Nodal signaling regulates germ cell development and establishment of seminiferous cords in the human fetal testis. Cell Rep. 2018;25:1924-1937.e4.PubMedCrossRef
13.
go back to reference Rajpert-De Meyts E, Almstrup K, Skakkebæk NE. Testicular dysgenesis syndrome and carcinoma in situ testis. In: Atlas on the human testis. Davor Ježek. London, United Kingdom: Springer-Verlag; 2008. p. 159–78. Rajpert-De Meyts E, Almstrup K, Skakkebæk NE. Testicular dysgenesis syndrome and carcinoma in situ testis. In: Atlas on the human testis. Davor Ježek. London, United Kingdom: Springer-Verlag; 2008. p. 159–78.
14.
go back to reference Welsh M, Saunders PTK, Fisken M, Scott HM, Hutchison GR, Smith LB, et al. Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. J Clin Invest. 2008;118:1479–90.PubMedPubMedCentralCrossRef Welsh M, Saunders PTK, Fisken M, Scott HM, Hutchison GR, Smith LB, et al. Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. J Clin Invest. 2008;118:1479–90.PubMedPubMedCentralCrossRef
15.
go back to reference van den Driesche S, Kolovos P, Platts S, Drake AJ, Sharpe RM. Inter-relationship between testicular dysgenesis and Leydig cell function in the masculinization programming window in the rat. PLoS One. 2012;7: e30111.PubMedPubMedCentralCrossRef van den Driesche S, Kolovos P, Platts S, Drake AJ, Sharpe RM. Inter-relationship between testicular dysgenesis and Leydig cell function in the masculinization programming window in the rat. PLoS One. 2012;7: e30111.PubMedPubMedCentralCrossRef
16.
go back to reference van den Driesche S, Kilcoyne KR, Wagner I, Rebourcet D, Boyle A, Mitchell R, et al. Experimentally induced testicular dysgenesis syndrome originates in the masculinization programming window. JCI insight. 2017;2: e91204.PubMedPubMedCentral van den Driesche S, Kilcoyne KR, Wagner I, Rebourcet D, Boyle A, Mitchell R, et al. Experimentally induced testicular dysgenesis syndrome originates in the masculinization programming window. JCI insight. 2017;2: e91204.PubMedPubMedCentral
17.
go back to reference Dean A, Sharpe RM. Clinical review: anogenital distance or digit length ratio as measures of fetal androgen exposure: relationship to male reproductive development and its disorders. J Clin Endocrinol Metab. 2013;98:2230–8.PubMedCrossRef Dean A, Sharpe RM. Clinical review: anogenital distance or digit length ratio as measures of fetal androgen exposure: relationship to male reproductive development and its disorders. J Clin Endocrinol Metab. 2013;98:2230–8.PubMedCrossRef
18.
go back to reference Jorgensen A, Nielsen JE, Perlman S, Lundvall L, Mitchell RT, Juul A, et al. Ex vivo culture of human fetal gonads: manipulation of meiosis signalling by retinoic acid treatment disrupts testis development. Hum Reprod. 2015;30:2351–63.PubMedCrossRef Jorgensen A, Nielsen JE, Perlman S, Lundvall L, Mitchell RT, Juul A, et al. Ex vivo culture of human fetal gonads: manipulation of meiosis signalling by retinoic acid treatment disrupts testis development. Hum Reprod. 2015;30:2351–63.PubMedCrossRef
19.
go back to reference Harpelunde Poulsen K, Nielsen JE, Frederiksen H, Melau C, Juul Hare K, Langhoff Thuesen L, et al. Dysregulation of FGFR signalling by a selective inhibitor reduces germ cell survival in human fetal gonads of both sexes and alters the somatic niche in fetal testes. Hum Reprod. 2019;34:2228–43.PubMedPubMedCentralCrossRef Harpelunde Poulsen K, Nielsen JE, Frederiksen H, Melau C, Juul Hare K, Langhoff Thuesen L, et al. Dysregulation of FGFR signalling by a selective inhibitor reduces germ cell survival in human fetal gonads of both sexes and alters the somatic niche in fetal testes. Hum Reprod. 2019;34:2228–43.PubMedPubMedCentralCrossRef
20.
go back to reference Evtouchenko L, Studer L, Spenger C, Dreher E, Seiler RW. A mathematical model for the estimation of human embryonic and fetal age. Cell Transplant. 1996;5:453–64.PubMedCrossRef Evtouchenko L, Studer L, Spenger C, Dreher E, Seiler RW. A mathematical model for the estimation of human embryonic and fetal age. Cell Transplant. 1996;5:453–64.PubMedCrossRef
21.
go back to reference Lundgaard Riis M, Nielsen JE, Hagen CP, Rajpert-De Meyts E, Græm N, Jørgensen A, et al. Accelerated loss of oogonia and impaired folliculogenesis in females with turner syndrome start during early fetal development. Hum Reprod. 2021;36:2992–3002.PubMedCrossRef Lundgaard Riis M, Nielsen JE, Hagen CP, Rajpert-De Meyts E, Græm N, Jørgensen A, et al. Accelerated loss of oogonia and impaired folliculogenesis in females with turner syndrome start during early fetal development. Hum Reprod. 2021;36:2992–3002.PubMedCrossRef
22.
go back to reference Søeborg T, Frederiksen H, Johannsen TH, Andersson A-M, Juul A. Isotope-dilution TurboFlow-LC-MS/MS method for simultaneous quantification of ten steroid metabolites in serum. Clin Chim Acta. 2017;468:180–6.PubMedCrossRef Søeborg T, Frederiksen H, Johannsen TH, Andersson A-M, Juul A. Isotope-dilution TurboFlow-LC-MS/MS method for simultaneous quantification of ten steroid metabolites in serum. Clin Chim Acta. 2017;468:180–6.PubMedCrossRef
23.
go back to reference Albrethsen J, Frederiksen H, Andersson A-M, Anand-Ivell R, Nordkap L, Bang AK, et al. Development and validation of a mass spectrometry-based assay for quantification of insulin-like factor 3 in human serum. Clin Chem Lab Med. 2018;56:1913–20.PubMedCrossRef Albrethsen J, Frederiksen H, Andersson A-M, Anand-Ivell R, Nordkap L, Bang AK, et al. Development and validation of a mass spectrometry-based assay for quantification of insulin-like factor 3 in human serum. Clin Chem Lab Med. 2018;56:1913–20.PubMedCrossRef
24.
go back to reference Chen Y, Clegg NJ, Scher HI. Anti-androgens and androgen-depleting therapies in prostate cancer: new agents for an established target. Lancet Oncol. 2009;10:981–91.PubMedPubMedCentralCrossRef Chen Y, Clegg NJ, Scher HI. Anti-androgens and androgen-depleting therapies in prostate cancer: new agents for an established target. Lancet Oncol. 2009;10:981–91.PubMedPubMedCentralCrossRef
25.
go back to reference Macleod DJ, Sharpe RM, Welsh M, Fisken M, Scott HM, Hutchison GR, et al. Androgen action in the masculinization programming window and development of male reproductive organs. Int J Androl. 2010;33:279–87.PubMedCrossRef Macleod DJ, Sharpe RM, Welsh M, Fisken M, Scott HM, Hutchison GR, et al. Androgen action in the masculinization programming window and development of male reproductive organs. Int J Androl. 2010;33:279–87.PubMedCrossRef
26.
go back to reference Pont A, Williams PL, Azhar S, Reitz RE, Bochra C, Smith ER, et al. Ketoconazole blocks testosterone synthesis. Arch Intern Med. 1982;142:2137–40.PubMedCrossRef Pont A, Williams PL, Azhar S, Reitz RE, Bochra C, Smith ER, et al. Ketoconazole blocks testosterone synthesis. Arch Intern Med. 1982;142:2137–40.PubMedCrossRef
27.
go back to reference Schürmeyer T, Nieschlag E. Effect of ketoconazole and other imidazole fungicides on testosterone biosynthesis. Acta Endocrinol (Copenh). 1984;105:275–80.PubMedCrossRef Schürmeyer T, Nieschlag E. Effect of ketoconazole and other imidazole fungicides on testosterone biosynthesis. Acta Endocrinol (Copenh). 1984;105:275–80.PubMedCrossRef
28.
go back to reference Mazaud-Guittot S, Nicolas Nicolaz C, Desdoits-Lethimonier C, Coiffec I, Ben Maamar M, Balaguer P, et al. Paracetamol, aspirin, and indomethacin induce endocrine disturbances in the human fetal testis capable of interfering with testicular descent. J Clin Endocrinol Metab. 2013;98:E1757-67.PubMedCrossRef Mazaud-Guittot S, Nicolas Nicolaz C, Desdoits-Lethimonier C, Coiffec I, Ben Maamar M, Balaguer P, et al. Paracetamol, aspirin, and indomethacin induce endocrine disturbances in the human fetal testis capable of interfering with testicular descent. J Clin Endocrinol Metab. 2013;98:E1757-67.PubMedCrossRef
29.
go back to reference Gaudriault P, Mazaud-Guittot S, Lavoué V, Coiffec I, Lesné L, Dejucq-Rainsford N, et al. Endocrine disruption in human fetal testis explants by individual and combined exposures to selected pharmaceuticals, pesticides, and environmental pollutants. Environ Health Perspect. 2017;125:87004.CrossRef Gaudriault P, Mazaud-Guittot S, Lavoué V, Coiffec I, Lesné L, Dejucq-Rainsford N, et al. Endocrine disruption in human fetal testis explants by individual and combined exposures to selected pharmaceuticals, pesticides, and environmental pollutants. Environ Health Perspect. 2017;125:87004.CrossRef
30.
go back to reference Lambrot R, Muczynski V, Lécureuil C, Angenard G, Coffigny H, Pairault C, et al. Phthalates impair germ cell development in the human fetal testis in vitro without change in testosterone production. Environ Health Perspect. 2009;117:32–7.PubMedCrossRef Lambrot R, Muczynski V, Lécureuil C, Angenard G, Coffigny H, Pairault C, et al. Phthalates impair germ cell development in the human fetal testis in vitro without change in testosterone production. Environ Health Perspect. 2009;117:32–7.PubMedCrossRef
31.
go back to reference Scott HM, Mason JI, Sharpe RM. Steroidogenesis in the fetal testis and its susceptibility to disruption by exogenous compounds. Endocr Rev [Internet]. 2009;30(7):883–925.PubMedCrossRef Scott HM, Mason JI, Sharpe RM. Steroidogenesis in the fetal testis and its susceptibility to disruption by exogenous compounds. Endocr Rev [Internet]. 2009;30(7):883–925.PubMedCrossRef
32.
go back to reference Kjaerstad MB, Taxvig C, Andersen HR, Nellemann C. Mixture effects of endocrine disrupting compounds in vitro. Int J Androl. 2010;33:425–33.PubMedCrossRef Kjaerstad MB, Taxvig C, Andersen HR, Nellemann C. Mixture effects of endocrine disrupting compounds in vitro. Int J Androl. 2010;33:425–33.PubMedCrossRef
33.
go back to reference Xu L-C, Sun H, Chen J-F, Bian Q, Qian J, Song L, et al. Evaluation of androgen receptor transcriptional activities of bisphenol a, octylphenol and nonylphenol in vitro. Toxicology. 2005;216:197–203.PubMedCrossRef Xu L-C, Sun H, Chen J-F, Bian Q, Qian J, Song L, et al. Evaluation of androgen receptor transcriptional activities of bisphenol a, octylphenol and nonylphenol in vitro. Toxicology. 2005;216:197–203.PubMedCrossRef
34.
go back to reference Sonneveld E, Jansen HJ, Riteco JAC, Brouwer A, van der Burg B. Development of androgen- and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays. Toxicol Sci. 2005;83:136–48.PubMedCrossRef Sonneveld E, Jansen HJ, Riteco JAC, Brouwer A, van der Burg B. Development of androgen- and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays. Toxicol Sci. 2005;83:136–48.PubMedCrossRef
35.
go back to reference Duan H, Ge W, Yang S, Lv J, Ding Z, Hu J, et al. Dihydrotestosterone regulates oestrogen secretion, oestrogen receptor expression, and apoptosis in granulosa cells during antral follicle development. J Steroid Biochem Mol Biol. 2021;207: 105819.PubMedCrossRef Duan H, Ge W, Yang S, Lv J, Ding Z, Hu J, et al. Dihydrotestosterone regulates oestrogen secretion, oestrogen receptor expression, and apoptosis in granulosa cells during antral follicle development. J Steroid Biochem Mol Biol. 2021;207: 105819.PubMedCrossRef
36.
go back to reference Rey RA, Musse M, Venara M, Chemes HE. Ontogeny of the androgen receptor expression in the fetal and postnatal testis: its relevance on Sertoli cell maturation and the onset of adult spermatogenesis. Microsc Res Tech. 2009;72:787–95.PubMedCrossRef Rey RA, Musse M, Venara M, Chemes HE. Ontogeny of the androgen receptor expression in the fetal and postnatal testis: its relevance on Sertoli cell maturation and the onset of adult spermatogenesis. Microsc Res Tech. 2009;72:787–95.PubMedCrossRef
37.
go back to reference Chemes HE, Rey RA, Nistal M, Regadera J, Musse M, González-Peramato P, et al. Physiological androgen insensitivity of the fetal, neonatal, and early infantile testis is explained by the ontogeny of the androgen receptor expression in Sertoli cells. J Clin Endocrinol Metab. 2008;93:4408–12.PubMedCrossRef Chemes HE, Rey RA, Nistal M, Regadera J, Musse M, González-Peramato P, et al. Physiological androgen insensitivity of the fetal, neonatal, and early infantile testis is explained by the ontogeny of the androgen receptor expression in Sertoli cells. J Clin Endocrinol Metab. 2008;93:4408–12.PubMedCrossRef
38.
go back to reference Boukari K, Meduri G, Brailly-Tabard S, Guibourdenche J, Ciampi ML, Massin N, et al. Lack of androgen receptor expression in Sertoli cells accounts for the absence of anti-Mullerian hormone repression during early human testis development. J Clin Endocrinol Metab. 2009;94:1818–25.PubMedCrossRef Boukari K, Meduri G, Brailly-Tabard S, Guibourdenche J, Ciampi ML, Massin N, et al. Lack of androgen receptor expression in Sertoli cells accounts for the absence of anti-Mullerian hormone repression during early human testis development. J Clin Endocrinol Metab. 2009;94:1818–25.PubMedCrossRef
39.
go back to reference H Ostrer HY Huang RJ Masch E Shapiro 2007 A cellular study of human testis development Sex Dev Genet Mol Biol Evol Endocrinol Embryol Pathol sex Determ Differ. 1 286 92 H Ostrer HY Huang RJ Masch E Shapiro 2007 A cellular study of human testis development Sex Dev Genet Mol Biol Evol Endocrinol Embryol Pathol sex Determ Differ. 1 286 92
40.
go back to reference Bay K, Virtanen HE, Hartung S, Ivell R, Main KM, Skakkebaek NE, et al. Insulin-like factor 3 levels in cord blood and serum from children: effects of age, postnatal hypothalamic-pituitary-gonadal axis activation, and cryptorchidism. J Clin Endocrinol Metab. 2007;92:4020–7.PubMedCrossRef Bay K, Virtanen HE, Hartung S, Ivell R, Main KM, Skakkebaek NE, et al. Insulin-like factor 3 levels in cord blood and serum from children: effects of age, postnatal hypothalamic-pituitary-gonadal axis activation, and cryptorchidism. J Clin Endocrinol Metab. 2007;92:4020–7.PubMedCrossRef
41.
go back to reference Fénichel P, Lahlou N, Coquillard P, Panaïa-Ferrari P, Wagner-Mahler K, Brucker-Davis F. Cord blood insulin-like peptide 3 (INSL3) but not testosterone is reduced in idiopathic cryptorchidism. Clin Endocrinol (Oxf). 2015;82:242–7.PubMedCrossRef Fénichel P, Lahlou N, Coquillard P, Panaïa-Ferrari P, Wagner-Mahler K, Brucker-Davis F. Cord blood insulin-like peptide 3 (INSL3) but not testosterone is reduced in idiopathic cryptorchidism. Clin Endocrinol (Oxf). 2015;82:242–7.PubMedCrossRef
Metadata
Title
Identification of a window of androgen sensitivity for somatic cell function in human fetal testis cultured ex vivo
Authors
Malene Lundgaard Riis
Gabriele Matilionyte
John E. Nielsen
Cecilie Melau
David Greenald
Kristine Juul Hare
Lea Langhoff Thuesen
Eva Dreisler
Kasper Aaboe
Pia Tutein Brenøe
Anna-Maria Andersson
Jakob Albrethsen
Hanne Frederiksen
Ewa Rajpert-De Meyts
Anders Juul
Rod T. Mitchell
Anne Jørgensen
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2022
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-022-02602-y

Other articles of this Issue 1/2022

BMC Medicine 1/2022 Go to the issue