Skip to main content
Top
Published in: BMC Medicine 1/2022

Open Access 01-12-2022 | Type 1 Diabetes | Research article

Epigenetic and transcriptomic alterations in offspring born to women with type 1 diabetes (the EPICOM study)

Authors: Sine Knorr, Anne Skakkebæk, Jesper Just, Emma B. Johannsen, Christian Trolle, Søren Vang, Zuzana Lohse, Birgitte Bytoft, Peter Damm, Kurt Højlund, Dorte M. Jensen, Claus H. Gravholt

Published in: BMC Medicine | Issue 1/2022

Login to get access

Abstract

Background

Offspring born to women with pregestational type 1 diabetes (T1DM) are exposed to an intrauterine hyperglycemic milieu and has an increased risk of metabolic disease later in life. In this present study, we hypothesize that in utero exposure to T1DM alters offspring DNA methylation and gene expression, thereby altering their risk of future disease.

Methods

Follow-up study using data from the Epigenetic, Genetic and Environmental Effects on Growth, Metabolism and Cognitive Functions in Offspring of Women with Type 1 Diabetes (EPICOM) collected between 2012 and 2013.

Setting

Exploratory sub-study using data from the nationwide EPICOM study.

Participants

Adolescent offspring born to women with T1DM (n=20) and controls (n=20) matched on age, sex, and postal code.

Main outcome measures

This study investigates DNA methylation using the 450K-Illumina Infinium assay and RNA expression (RNA sequencing) of leucocytes from peripheral blood samples.

Results

We identified 9 hypomethylated and 5 hypermethylated positions (p < 0.005, |ΔM-value| > 1) and 38 up- and 1 downregulated genes (p < 0.005, log2FC ≥ 0.3) in adolescent offspring born to women with T1DM compared to controls. None of these findings remained significant after correction for multiple testing. However, we identified differences in gene co-expression networks, which could be of biological significance, using weighted gene correlation network analysis. Interestingly, one of these modules was significantly associated with offspring born to women with T1DM.
Functional enrichment analysis, using the identified changes in methylation and gene expression as input, revealed enrichment in disease ontologies related to diabetes, carbohydrate and glucose metabolism, pathways including MAPK1/MAPK3 and MAPK family signaling, and genes related to T1DM, obesity, atherosclerosis, and vascular pathologies. Lastly, by integrating the DNA methylation and RNA expression data, we identified six genes where relevant methylation changes corresponded with RNA expression (CIITA, TPM1, PXN, ST8SIA1, LIPA, DAXX).

Conclusions

These findings suggest the possibility for intrauterine exposure to maternal T1DM to impact later in life methylation and gene expression in the offspring, a profile that may be linked to the increased risk of vascular and metabolic disease later in life.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hochberg Z, Feil R, Constancia M, Fraga M, Junien C, Carel JC, et al. Child health, developmental plasticity, and epigenetic programming. Endocr Rev. 2011;32:159–224.PubMedCrossRef Hochberg Z, Feil R, Constancia M, Fraga M, Junien C, Carel JC, et al. Child health, developmental plasticity, and epigenetic programming. Endocr Rev. 2011;32:159–224.PubMedCrossRef
2.
go back to reference Clausen TD, Mathiesen ER, Hansen T, Pedersen O, Jensen DM, Lauenborg J, et al. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes. Diabetes Care. 2008;31:340–36.PubMedCrossRef Clausen TD, Mathiesen ER, Hansen T, Pedersen O, Jensen DM, Lauenborg J, et al. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes. Diabetes Care. 2008;31:340–36.PubMedCrossRef
3.
go back to reference Rijpert M, Evers I, de Vroede MAMJ, de Valk HW, Heijnen CJ, Visser GHA. Risk factors for childhood overweight in offspring of type 1 diabetic women with adequate glycemic control during pregnancy. Diabetes Care. 2009;32:2099–104.PubMedPubMedCentralCrossRef Rijpert M, Evers I, de Vroede MAMJ, de Valk HW, Heijnen CJ, Visser GHA. Risk factors for childhood overweight in offspring of type 1 diabetic women with adequate glycemic control during pregnancy. Diabetes Care. 2009;32:2099–104.PubMedPubMedCentralCrossRef
4.
go back to reference Manderson JG, Mullan B, Patterson CC, Hadden DR, Traub AI, McCance DR. Cardiovascular and metabolic abnormalities in the offspring of diabetic pregnancy. Diabetologia. 2002;45:991–6.PubMedCrossRef Manderson JG, Mullan B, Patterson CC, Hadden DR, Traub AI, McCance DR. Cardiovascular and metabolic abnormalities in the offspring of diabetic pregnancy. Diabetologia. 2002;45:991–6.PubMedCrossRef
5.
go back to reference Hjort L, Novakovic B, Grunnet LG, Maple-Brown L, Damm P, Desoye G, et al. Diabetes in pregnancy and epigenetic mechanisms—how the first 9 months from conception might affect the child’s epigenome and later risk of disease. Lancet Diabetes Endocrinol. 2019;7:796–806.PubMedCrossRef Hjort L, Novakovic B, Grunnet LG, Maple-Brown L, Damm P, Desoye G, et al. Diabetes in pregnancy and epigenetic mechanisms—how the first 9 months from conception might affect the child’s epigenome and later risk of disease. Lancet Diabetes Endocrinol. 2019;7:796–806.PubMedCrossRef
7.
go back to reference Szyf M, Bick J. DNA methylation: a mechanism for embedding early life experiences in the genome. Child Dev. 2013;84:49–57.PubMedCrossRef Szyf M, Bick J. DNA methylation: a mechanism for embedding early life experiences in the genome. Child Dev. 2013;84:49–57.PubMedCrossRef
8.
go back to reference Jones PA. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–92.PubMedCrossRef Jones PA. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–92.PubMedCrossRef
9.
go back to reference Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, et al. The DNA methylation landscape of human early embryos. Nature. 2014;511:606–10.PubMedCrossRef Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, et al. The DNA methylation landscape of human early embryos. Nature. 2014;511:606–10.PubMedCrossRef
11.
go back to reference Jönsson J, Renault KM, García-Calzón S, Perfilyev A, Estampador AC, Nørgaard K, et al. Lifestyle Intervention in Pregnant Women With Obesity Impacts Cord Blood DNA Methylation, Which Associates With Body Composition in the Offspring. Diabetes. 2021;70(4):854–66. https://doi.org/10.2337/db20-0487. Epub 2021 Jan 11. PMID: 33431374; PMCID: PMC7980200. Jönsson J, Renault KM, García-Calzón S, Perfilyev A, Estampador AC, Nørgaard K, et al. Lifestyle Intervention in Pregnant Women With Obesity Impacts Cord Blood DNA Methylation, Which Associates With Body Composition in the Offspring. Diabetes. 2021;70(4):854–66. https://​doi.​org/​10.​2337/​db20-0487. Epub 2021 Jan 11. PMID: 33431374; PMCID: PMC7980200.
12.
go back to reference Kelstrup L, Hjort L, Houshmand-Oeregaard A, Clausen TD, Ninna S. Gene expression and DNA methylation of PPARGC1A in muscle and adipose tissue from adult offspring of women with diabetes in pregnancy. Diabetes. 2016;3:1–41. Kelstrup L, Hjort L, Houshmand-Oeregaard A, Clausen TD, Ninna S. Gene expression and DNA methylation of PPARGC1A in muscle and adipose tissue from adult offspring of women with diabetes in pregnancy. Diabetes. 2016;3:1–41.
13.
go back to reference Hjort L, Martino D, Grunnet LG, Naeem H, Maksimovic J. Gestational diabetes and maternal obesity are associated with epigenome-wide methylation changes in children. JCI insight. 2018;3:e122572.PubMedCentralCrossRef Hjort L, Martino D, Grunnet LG, Naeem H, Maksimovic J. Gestational diabetes and maternal obesity are associated with epigenome-wide methylation changes in children. JCI insight. 2018;3:e122572.PubMedCentralCrossRef
14.
go back to reference Houshmand-Oeregaard A, Schrölkamp M, Kelstrup L, Hansen NS, Hjort L, Thuesen ACB, et al. Increased expression of microRNA-15a and microRNA-15b in skeletal muscle from adult offspring of women with diabetes in pregnancy. Hum Mol Genet. 2018;27:1763–71.PubMedCrossRef Houshmand-Oeregaard A, Schrölkamp M, Kelstrup L, Hansen NS, Hjort L, Thuesen ACB, et al. Increased expression of microRNA-15a and microRNA-15b in skeletal muscle from adult offspring of women with diabetes in pregnancy. Hum Mol Genet. 2018;27:1763–71.PubMedCrossRef
15.
go back to reference Hansen NS, Strasko KS, Hjort L, Kelstrup L, Houshmand-ØRegaard A, Schrölkamp M, et al. Fetal hyperglycemia changes human preadipocyte function in adult life. J Clin Endocrinol Metab. 2017;102:1141–50.PubMedCrossRef Hansen NS, Strasko KS, Hjort L, Kelstrup L, Houshmand-ØRegaard A, Schrölkamp M, et al. Fetal hyperglycemia changes human preadipocyte function in adult life. J Clin Endocrinol Metab. 2017;102:1141–50.PubMedCrossRef
16.
go back to reference Houshmand-Oeregaard A, Hansen NS, Hjort L, Kelstrup L, Broholm C, Mathiesen ER, et al. Differential adipokine DNA methylation and gene expression in subcutaneous adipose tissue from adult offspring of women with diabetes in pregnancy. Clin Epigenetics. 2017;9:1–12.CrossRef Houshmand-Oeregaard A, Hansen NS, Hjort L, Kelstrup L, Broholm C, Mathiesen ER, et al. Differential adipokine DNA methylation and gene expression in subcutaneous adipose tissue from adult offspring of women with diabetes in pregnancy. Clin Epigenetics. 2017;9:1–12.CrossRef
17.
go back to reference Houshmand-Oeregaard A, Hjort L, Kelstrup L, Hansen NS, Broholm C, Gillberg L, et al. DNA methylation and gene expression of TXNIP in adult offspring of women with diabetes in pregnancy. PLoS One. 2017;12:1–18.CrossRef Houshmand-Oeregaard A, Hjort L, Kelstrup L, Hansen NS, Broholm C, Gillberg L, et al. DNA methylation and gene expression of TXNIP in adult offspring of women with diabetes in pregnancy. PLoS One. 2017;12:1–18.CrossRef
18.
go back to reference Gautier JF, Porcher R, Abi Khalil C, Bellili-Munoz N, Fetita LS, Travert F, et al. Kidney Dysfunction in Adult Offspring Exposed In Utero to Type 1 Diabetes Is Associated with Alterations in Genome-Wide DNA Methylation. PLoS One. 2015;10(8):e0134654. https://doi.org/10.1371/journal.pone.0134654. PMID: 26258530; PMCID: PMC4530883. Gautier JF, Porcher R, Abi Khalil C, Bellili-Munoz N, Fetita LS, Travert F, et al. Kidney Dysfunction in Adult Offspring Exposed In Utero to Type 1 Diabetes Is Associated with Alterations in Genome-Wide DNA Methylation. PLoS One. 2015;10(8):e0134654. https://​doi.​org/​10.​1371/​journal.​pone.​0134654. PMID: 26258530; PMCID: PMC4530883.
19.
go back to reference Jensen DM, Damm P, Moelsted-Pedersen L, Ovesen P, Westergaard JG, Moeller M, et al. Outcomes in type 1 diabetic pregnancies: a nationwide, population-based study. Diabetes Care. 2004;27:2819–23.PubMedCrossRef Jensen DM, Damm P, Moelsted-Pedersen L, Ovesen P, Westergaard JG, Moeller M, et al. Outcomes in type 1 diabetic pregnancies: a nationwide, population-based study. Diabetes Care. 2004;27:2819–23.PubMedCrossRef
20.
go back to reference Vlachová Z, Bytoft B, Knorr S, Clausen TD, Jensen RB, Mathiesen ER, et al. Increased metabolic risk in adolescent offspring of mothers with type 1 diabetes: the EPICOM study. Diabetologia. 2015;58:1454–63.PubMedCrossRef Vlachová Z, Bytoft B, Knorr S, Clausen TD, Jensen RB, Mathiesen ER, et al. Increased metabolic risk in adolescent offspring of mothers with type 1 diabetes: the EPICOM study. Diabetologia. 2015;58:1454–63.PubMedCrossRef
21.
go back to reference Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.PubMedCrossRef Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.PubMedCrossRef
22.
go back to reference Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30:1363–9.PubMedPubMedCentralCrossRef Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30:1363–9.PubMedPubMedCentralCrossRef
23.
go back to reference Maksimovic J, Gordon L, Oshlack A. SWAN: Subset-quantile within array normalization for illumina infinium HumanMethylation450 BeadChips. Genome Biol. 2012;13:R44.PubMedPubMedCentralCrossRef Maksimovic J, Gordon L, Oshlack A. SWAN: Subset-quantile within array normalization for illumina infinium HumanMethylation450 BeadChips. Genome Biol. 2012;13:R44.PubMedPubMedCentralCrossRef
24.
go back to reference Du P, Zhang X, Huang C-C, Jafari N, Kibbe WA, Hou L, et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics. 2010;11:587.PubMedPubMedCentralCrossRef Du P, Zhang X, Huang C-C, Jafari N, Kibbe WA, Hou L, et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics. 2010;11:587.PubMedPubMedCentralCrossRef
25.
go back to reference Price ME, Cotton AM, Lam LL, Farré P, Emberly E, Brown CJ, et al. Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array. Epigenetics and Chromatin. 2013;6:1–15.CrossRef Price ME, Cotton AM, Lam LL, Farré P, Emberly E, Brown CJ, et al. Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array. Epigenetics and Chromatin. 2013;6:1–15.CrossRef
26.
27.
go back to reference Smyth GK. limma: Linear Models for Microarray Data. In: Gentleman R, Carey VJ, Huber W, Irizarry RA, Dudoit S, editors. Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Statistics for Biology and Health. New York: Springer; 2005. https://doi.org/10.1007/0-387-29362-0_23. Smyth GK. limma: Linear Models for Microarray Data. In: Gentleman R, Carey VJ, Huber W, Irizarry RA, Dudoit S, editors. Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Statistics for Biology and Health. New York: Springer; 2005. https://​doi.​org/​10.​1007/​0-387-29362-0_​23.
28.
go back to reference Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, Lord RV, et al. De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin. 2015;8:6. https://doi.org/10.1186/1756-8935-8-6. PMID: 25972926; PMCID: PMC4429355. Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, Lord RV, et al. De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin. 2015;8:6. https://​doi.​org/​10.​1186/​1756-8935-8-6. PMID: 25972926; PMCID: PMC4429355.
29.
go back to reference Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78.PubMedPubMedCentralCrossRef Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78.PubMedPubMedCentralCrossRef
30.
go back to reference Anders S, Pyl PT, Huber W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.PubMedCrossRef Anders S, Pyl PT, Huber W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.PubMedCrossRef
32.
go back to reference Yu G, Wang LG, Han Y, He QY. ClusterProfiler: an R package for comparing biological themes among gene clusters. Omi A J Integr Biol. 2012;16:284–7.CrossRef Yu G, Wang LG, Han Y, He QY. ClusterProfiler: an R package for comparing biological themes among gene clusters. Omi A J Integr Biol. 2012;16:284–7.CrossRef
33.
go back to reference Ren X, Kuan PF. methylGSA: a Bioconductor package and Shiny app for DNA methylation data length bias adjustment in gene set testing. Bioinformatics. 2019;35:1958–9.PubMedCrossRef Ren X, Kuan PF. methylGSA: a Bioconductor package and Shiny app for DNA methylation data length bias adjustment in gene set testing. Bioinformatics. 2019;35:1958–9.PubMedCrossRef
35.
go back to reference Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S, Smyth GK. Bioinformatics and computational biology solutions using R and Biocunductor; 2015. p. 397–420. Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S, Smyth GK. Bioinformatics and computational biology solutions using R and Biocunductor; 2015. p. 397–420.
36.
go back to reference Yu Y, Arah OA, Liew Z, Cnattingius S, Olsen J, Sørensen HT, et al. Maternal diabetes during pregnancy and early onset of cardiovascular disease in offspring: population based cohort study with 40 years of follow-up. BMJ. 2019;367 Cvd:1–4. Yu Y, Arah OA, Liew Z, Cnattingius S, Olsen J, Sørensen HT, et al. Maternal diabetes during pregnancy and early onset of cardiovascular disease in offspring: population based cohort study with 40 years of follow-up. BMJ. 2019;367 Cvd:1–4.
38.
go back to reference Maachi H, Fergusson G, Ethier M, Brill GN, Katz LS, Honig LB, et al. HB-EGF signaling is required for glucose-induced pancreatic β-cell proliferation in rats. Diabetes. 2020;69:369–80.PubMedPubMedCentralCrossRef Maachi H, Fergusson G, Ethier M, Brill GN, Katz LS, Honig LB, et al. HB-EGF signaling is required for glucose-induced pancreatic β-cell proliferation in rats. Diabetes. 2020;69:369–80.PubMedPubMedCentralCrossRef
39.
go back to reference Kos K, Wilding JPH. SPARC: A key player in the pathologies associated with obesity and diabetes. Nat Rev Endocrinol. 2010;6:225–35.PubMedCrossRef Kos K, Wilding JPH. SPARC: A key player in the pathologies associated with obesity and diabetes. Nat Rev Endocrinol. 2010;6:225–35.PubMedCrossRef
40.
go back to reference King GL, Park K, Li Q. Selective insulin resistance and the development of cardiovascular diseases in diabetes: The 2015 Edwin Bierman Award Lecture. Diabetes. 2016;65:1462–71.PubMedPubMedCentralCrossRef King GL, Park K, Li Q. Selective insulin resistance and the development of cardiovascular diseases in diabetes: The 2015 Edwin Bierman Award Lecture. Diabetes. 2016;65:1462–71.PubMedPubMedCentralCrossRef
41.
go back to reference Diéz-Villanueva A, Sanz-Pamplona R, Carreras-Torres R, Moratalla-Navarro F, Henar Alonso M, Paré-Brunet L, et al. DNA methylation events in transcription factors and gene expression changes in colon cancer. Epigenomics. 2020;12:1593–610.PubMedCrossRef Diéz-Villanueva A, Sanz-Pamplona R, Carreras-Torres R, Moratalla-Navarro F, Henar Alonso M, Paré-Brunet L, et al. DNA methylation events in transcription factors and gene expression changes in colon cancer. Epigenomics. 2020;12:1593–610.PubMedCrossRef
42.
go back to reference Prashanth G, Vastrad B, Tengli A, Vastrad C, Kotturshetti I. Identification of hub genes related to the progression of type 1 diabetes by computational analysis. BMC Endocr Disord. 2021;21:1–65.CrossRef Prashanth G, Vastrad B, Tengli A, Vastrad C, Kotturshetti I. Identification of hub genes related to the progression of type 1 diabetes by computational analysis. BMC Endocr Disord. 2021;21:1–65.CrossRef
43.
go back to reference Arnaboldi L, Ossoli A, Giorgio E, Pisciotta L, Lucchi T, Grigore L, et al. LIPA gene mutations affect the composition of lipoproteins: enrichment in ACAT-derived cholesteryl esters. Atherosclerosis. 2020;297(2019):8–15.PubMedCrossRef Arnaboldi L, Ossoli A, Giorgio E, Pisciotta L, Lucchi T, Grigore L, et al. LIPA gene mutations affect the composition of lipoproteins: enrichment in ACAT-derived cholesteryl esters. Atherosclerosis. 2020;297(2019):8–15.PubMedCrossRef
44.
go back to reference Savill SA, Leitch HF, Harvey JN, Thomas TH. Inflammatory adipokines decrease expression of two high molecular weight isoforms of tropomyosin similar to the change in type 2 diabetic patients. PLoS One. 2016;11:1–13.CrossRef Savill SA, Leitch HF, Harvey JN, Thomas TH. Inflammatory adipokines decrease expression of two high molecular weight isoforms of tropomyosin similar to the change in type 2 diabetic patients. PLoS One. 2016;11:1–13.CrossRef
45.
go back to reference Mazzarotto F, Tayal U, Buchan RJ, Midwinter W, Wilk A, Whiffin N, et al. Reevaluating the genetic contribution of monogenic dilated cardiomyopathy. Circulation. 2020;Dcm:387–98.CrossRef Mazzarotto F, Tayal U, Buchan RJ, Midwinter W, Wilk A, Whiffin N, et al. Reevaluating the genetic contribution of monogenic dilated cardiomyopathy. Circulation. 2020;Dcm:387–98.CrossRef
46.
go back to reference Zhang SY, Lv Y, Zhang H, Gao S, Wang T, Feng J, et al. Adrenomedullin 2 improves early obesity-induced adipose insulin resistance by inhibiting the class II MHC in adipocytes. Diabetes. 2016;65:2342–55.PubMedCrossRef Zhang SY, Lv Y, Zhang H, Gao S, Wang T, Feng J, et al. Adrenomedullin 2 improves early obesity-induced adipose insulin resistance by inhibiting the class II MHC in adipocytes. Diabetes. 2016;65:2342–55.PubMedCrossRef
47.
go back to reference Fang M, Fan Z, Tian W, Zhao Y, Li P, Xu H, et al. HDAC4 mediates IFN-γ induced disruption of energy expenditure-related gene expression by repressing SIRT1 transcription in skeletal muscle cells. Biochim Biophys Acta - Gene Regul Mech. 2016;1859:294–305.CrossRef Fang M, Fan Z, Tian W, Zhao Y, Li P, Xu H, et al. HDAC4 mediates IFN-γ induced disruption of energy expenditure-related gene expression by repressing SIRT1 transcription in skeletal muscle cells. Biochim Biophys Acta - Gene Regul Mech. 2016;1859:294–305.CrossRef
48.
go back to reference Merid SK, Novoloaca A, Sharp GC, Küpers LK, Kho AT, Roy R, et al. Epigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age. Genome Med. 2020;12:1–17.CrossRef Merid SK, Novoloaca A, Sharp GC, Küpers LK, Kho AT, Roy R, et al. Epigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age. Genome Med. 2020;12:1–17.CrossRef
49.
50.
go back to reference Li CCY, Young PE, Maloney CA, Eaton SA, Cowley MJ, Buckland ME, et al. Maternal obesity and diabetes induces latent metabolic defects and widespread epigenetic changes in isogenic mice. Epigenetics. 2013;8:602–11.PubMedPubMedCentralCrossRef Li CCY, Young PE, Maloney CA, Eaton SA, Cowley MJ, Buckland ME, et al. Maternal obesity and diabetes induces latent metabolic defects and widespread epigenetic changes in isogenic mice. Epigenetics. 2013;8:602–11.PubMedPubMedCentralCrossRef
51.
go back to reference Quilter CR, Cooper WN, Cliffe KM, Skinner BM, Prentice PM, Nelson L, et al. Impact on offspring methylation patterns of maternal gestational diabetes mellitus and intrauterine growth restraint suggest common genes and pathways linked to subsequent type 2 diabetes risk. FASEB J. 2014;28:4868–79.PubMedCrossRef Quilter CR, Cooper WN, Cliffe KM, Skinner BM, Prentice PM, Nelson L, et al. Impact on offspring methylation patterns of maternal gestational diabetes mellitus and intrauterine growth restraint suggest common genes and pathways linked to subsequent type 2 diabetes risk. FASEB J. 2014;28:4868–79.PubMedCrossRef
52.
go back to reference Slieker RC, Bos SD, Goeman JJ, Bovée JV, Talens RP, van der Breggen R, et al. Identification and systematic annotation of tissue-specific differentially methylated regions using the Illumina 450k array. Epigenetics Chromatin. 2013;6:26.PubMedPubMedCentralCrossRef Slieker RC, Bos SD, Goeman JJ, Bovée JV, Talens RP, van der Breggen R, et al. Identification and systematic annotation of tissue-specific differentially methylated regions using the Illumina 450k array. Epigenetics Chromatin. 2013;6:26.PubMedPubMedCentralCrossRef
53.
go back to reference Byun HM, Siegmund KD, Pan F, Weisenberger DJ, Kanel G, Laird PW, et al. Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Hum Mol Genet. 2009;18:4808–17.PubMedPubMedCentralCrossRef Byun HM, Siegmund KD, Pan F, Weisenberger DJ, Kanel G, Laird PW, et al. Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Hum Mol Genet. 2009;18:4808–17.PubMedPubMedCentralCrossRef
54.
go back to reference Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A. 2005;102:10604–9.PubMedPubMedCentralCrossRef Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A. 2005;102:10604–9.PubMedPubMedCentralCrossRef
55.
go back to reference Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13:97–109.PubMedCrossRef Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13:97–109.PubMedCrossRef
56.
go back to reference West NA, Kechris K, Dabelea D. Exposure to maternal diabetes in utero and DNA methylation patterns in the offspring. Immunometabolism. 2013;3:1–9.CrossRef West NA, Kechris K, Dabelea D. Exposure to maternal diabetes in utero and DNA methylation patterns in the offspring. Immunometabolism. 2013;3:1–9.CrossRef
Metadata
Title
Epigenetic and transcriptomic alterations in offspring born to women with type 1 diabetes (the EPICOM study)
Authors
Sine Knorr
Anne Skakkebæk
Jesper Just
Emma B. Johannsen
Christian Trolle
Søren Vang
Zuzana Lohse
Birgitte Bytoft
Peter Damm
Kurt Højlund
Dorte M. Jensen
Claus H. Gravholt
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2022
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-022-02514-x

Other articles of this Issue 1/2022

BMC Medicine 1/2022 Go to the issue