Skip to main content
Top
Published in: BMC Medicine 1/2022

Open Access 01-12-2022 | Research article

Associations between consumption of three types of beverages and risk of cardiometabolic multimorbidity in UK Biobank participants: a prospective cohort study

Authors: Yi Luo, Lingfang He, Tianqi Ma, Jinchen Li, Yongping Bai, Xunjie Cheng, Guogang Zhang

Published in: BMC Medicine | Issue 1/2022

Login to get access

Abstract

Background

Although the association between beverages and a single cardiometabolic disease has been well studied, their role in disease progression from the single cardiometabolic disease state to cardiometabolic multimorbidity (CMM) state remains unclear. This study examined the associations between three types of beverages: sugar-sweetened beverages (SSBs), artificially sweetened beverages (ASBs), and pure fruit/vegetable juices, and the incidence of CMM in patients with a single cardiometabolic disease.

Methods

Our analysis included 37,994 participants from the UK Biobank who completed at least one dietary questionnaire and were diagnosed with only one cardiometabolic disease at the time of recruitment. Competing risk models were used to examine the association between the three types of beverages and incidence of CMM. We conducted analysis both in patients with any single cardiometabolic disease and in patients with specific cardiometabolic disease.

Results

During a median follow-up of 9.1 years (interquartile range [IQR] 9.0–9.8), a total of 6399 participants developed CMM. The consumption of SSBs and ASBs (>1 serving per day) was associated with a higher risk of CMM (SSBs: hazard ratio [HR] 1.19, 95% confidence interval [95% CI] 1.08–1.31; ASBs: HR 1.15, 95% CI 1.04–1.27). Intake of pure fruit/vegetable juices was inversely associated with the incidence of CMM (0–1 serving per day: HR 0.90, 95% CI 0.85–0.94; >1 serving per day: HR 0.90, 95% CI 0.81–0.99). However, the association of the high-level consumption of pure fruit/vegetable juices (>1 serving per day) was not statistically significant after correcting for multiple testing. In the analysis of patients with specific cardiometabolic diseases, positive associations were observed in patients with hypertension for SSBs consumption, while inverse associations persisted in patients with cardiovascular disease (coronary heart disease or stroke) and in hypertensive patients for pure fruit/vegetable juice consumption.

Conclusions

Consuming >1 serving of SSBs and ASBs per day was associated with a higher risk of CMM in patients with a single cardiometabolic disease. In contrast, intake of pure fruit/vegetable juices was inversely associated with the risk of CMM. Our findings highlight the need to limit the use of SSBs and ASBs in patients with a single cardiometabolic disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Smith SM, Soubhi H, Fortin M, Hudon C, O'Dowd T. Managing patients with multimorbidity: systematic review of interventions in primary care and community settings. BMJ. 2012;345:e5205.PubMedPubMedCentralCrossRef Smith SM, Soubhi H, Fortin M, Hudon C, O'Dowd T. Managing patients with multimorbidity: systematic review of interventions in primary care and community settings. BMJ. 2012;345:e5205.PubMedPubMedCentralCrossRef
2.
go back to reference Organization WH. Global status report on noncommunicable diseases 2014. Geneva: WHO; 2014. p. 176. Organization WH. Global status report on noncommunicable diseases 2014. Geneva: WHO; 2014. p. 176.
3.
go back to reference Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet. 2012;380(9836):37–43.PubMedCrossRef Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet. 2012;380(9836):37–43.PubMedCrossRef
4.
go back to reference Sakakibara BM, Obembe AO, Eng JJ. The prevalence of cardiometabolic multimorbidity and its association with physical activity, diet, and stress in Canada: evidence from a population-based cross-sectional study. BMC Public Health. 2019;19(1):1361.PubMedPubMedCentralCrossRef Sakakibara BM, Obembe AO, Eng JJ. The prevalence of cardiometabolic multimorbidity and its association with physical activity, diet, and stress in Canada: evidence from a population-based cross-sectional study. BMC Public Health. 2019;19(1):1361.PubMedPubMedCentralCrossRef
6.
go back to reference Wolff JL, Starfield B, Anderson G. Prevalence, expenditures, and complications of multiple chronic conditions in the elderly. Arch Intern Med. 2002;162(20):2269–76.PubMedCrossRef Wolff JL, Starfield B, Anderson G. Prevalence, expenditures, and complications of multiple chronic conditions in the elderly. Arch Intern Med. 2002;162(20):2269–76.PubMedCrossRef
7.
go back to reference Boyd CM, Fortin M. Future of multimorbidity research: how should understanding of multimorbidity inform health system design? Public Health Rev. 2010;32(2):451–74.CrossRef Boyd CM, Fortin M. Future of multimorbidity research: how should understanding of multimorbidity inform health system design? Public Health Rev. 2010;32(2):451–74.CrossRef
8.
go back to reference Wolff JL, Boult C, Boyd C, Anderson G. Newly reported chronic conditions and onset of functional dependency. J Am Geriatr Soc. 2005;53(5):851–5.PubMedCrossRef Wolff JL, Boult C, Boyd C, Anderson G. Newly reported chronic conditions and onset of functional dependency. J Am Geriatr Soc. 2005;53(5):851–5.PubMedCrossRef
9.
go back to reference Zhang D, Tang X, Shen P, Si Y, Liu X, Xu Z, et al. Multimorbidity of cardiometabolic diseases: prevalence and risk for mortality from one million Chinese adults in a longitudinal cohort study. BMJ Open. 2019;9(3):e024476.PubMedPubMedCentralCrossRef Zhang D, Tang X, Shen P, Si Y, Liu X, Xu Z, et al. Multimorbidity of cardiometabolic diseases: prevalence and risk for mortality from one million Chinese adults in a longitudinal cohort study. BMJ Open. 2019;9(3):e024476.PubMedPubMedCentralCrossRef
10.
go back to reference Jani BD, Hanlon P, Nicholl BI, McQueenie R, Gallacher KI, Lee D, et al. Relationship between multimorbidity, demographic factors and mortality: findings from the UK Biobank cohort. BMC Med. 2019;17(1):74.PubMedPubMedCentralCrossRef Jani BD, Hanlon P, Nicholl BI, McQueenie R, Gallacher KI, Lee D, et al. Relationship between multimorbidity, demographic factors and mortality: findings from the UK Biobank cohort. BMC Med. 2019;17(1):74.PubMedPubMedCentralCrossRef
11.
go back to reference Emerging Risk Factors C, Di Angelantonio E, Kaptoge S, Wormser D, Willeit P, Butterworth AS, et al. Association of cardiometabolic multimorbidity with mortality. JAMA. 2015;314(1):52–60.CrossRef Emerging Risk Factors C, Di Angelantonio E, Kaptoge S, Wormser D, Willeit P, Butterworth AS, et al. Association of cardiometabolic multimorbidity with mortality. JAMA. 2015;314(1):52–60.CrossRef
12.
go back to reference Singh-Manoux A, Fayosse A, Sabia S, Tabak A, Shipley M, Dugravot A, et al. Clinical, socioeconomic, and behavioural factors at age 50 years and risk of cardiometabolic multimorbidity and mortality: a cohort study. PLoS Med. 2018;15(5):e1002571.PubMedPubMedCentralCrossRef Singh-Manoux A, Fayosse A, Sabia S, Tabak A, Shipley M, Dugravot A, et al. Clinical, socioeconomic, and behavioural factors at age 50 years and risk of cardiometabolic multimorbidity and mortality: a cohort study. PLoS Med. 2018;15(5):e1002571.PubMedPubMedCentralCrossRef
13.
go back to reference Han Y, Hu Y, Yu C, Guo Y, Pei P, Yang L, et al. Lifestyle, cardiometabolic disease, and multimorbidity in a prospective Chinese study. Eur Heart J. 2021;42(34):3374–84.PubMedPubMedCentralCrossRef Han Y, Hu Y, Yu C, Guo Y, Pei P, Yang L, et al. Lifestyle, cardiometabolic disease, and multimorbidity in a prospective Chinese study. Eur Heart J. 2021;42(34):3374–84.PubMedPubMedCentralCrossRef
14.
go back to reference Anari R, Amani R, Veissi M. Sugary beverages are associated with cardiovascular risk factors in diabetic patients. J Diabetes Metab Disord. 2019;18(1):7–13.PubMedPubMedCentralCrossRef Anari R, Amani R, Veissi M. Sugary beverages are associated with cardiovascular risk factors in diabetic patients. J Diabetes Metab Disord. 2019;18(1):7–13.PubMedPubMedCentralCrossRef
15.
go back to reference Freisling H, Viallon V, Lennon H, Bagnardi V, Ricci C, Butterworth AS, et al. Lifestyle factors and risk of multimorbidity of cancer and cardiometabolic diseases: a multinational cohort study. BMC Med. 2020;18(1):5.PubMedPubMedCentralCrossRef Freisling H, Viallon V, Lennon H, Bagnardi V, Ricci C, Butterworth AS, et al. Lifestyle factors and risk of multimorbidity of cancer and cardiometabolic diseases: a multinational cohort study. BMC Med. 2020;18(1):5.PubMedPubMedCentralCrossRef
16.
17.
go back to reference Malik VS, Hu FB. Fructose and cardiometabolic health: what the evidence from sugar-sweetened beverages tells us. J Am Coll Cardiol. 2015;66(14):1615–24.PubMedPubMedCentralCrossRef Malik VS, Hu FB. Fructose and cardiometabolic health: what the evidence from sugar-sweetened beverages tells us. J Am Coll Cardiol. 2015;66(14):1615–24.PubMedPubMedCentralCrossRef
18.
go back to reference Schlesinger S, Neuenschwander M, Schwedhelm C, Hoffmann G, Bechthold A, Boeing H, et al. Food groups and risk of overweight, obesity, and weight gain: a systematic review and dose-response meta-analysis of prospective studies. Adv Nutr. 2019;10(2):205–18.PubMedPubMedCentralCrossRef Schlesinger S, Neuenschwander M, Schwedhelm C, Hoffmann G, Bechthold A, Boeing H, et al. Food groups and risk of overweight, obesity, and weight gain: a systematic review and dose-response meta-analysis of prospective studies. Adv Nutr. 2019;10(2):205–18.PubMedPubMedCentralCrossRef
19.
go back to reference Liu Q, Ayoub-Charette S, Khan TA, Au-Yeung F, Blanco Mejia S, de Souza RJ, et al. Important food sources of fructose-containing sugars and incident hypertension: a systematic review and dose-response meta-analysis of prospective cohort studies. J Am Heart Assoc. 2019;8(24):e010977.PubMedPubMedCentralCrossRef Liu Q, Ayoub-Charette S, Khan TA, Au-Yeung F, Blanco Mejia S, de Souza RJ, et al. Important food sources of fructose-containing sugars and incident hypertension: a systematic review and dose-response meta-analysis of prospective cohort studies. J Am Heart Assoc. 2019;8(24):e010977.PubMedPubMedCentralCrossRef
20.
go back to reference Kwak JH, Jo G, Chung HK, Shin MJ. Association between sugar-sweetened beverage consumption and incident hypertension in Korean adults: a prospective study. Eur J Nutr. 2019;58(3):1009–17.PubMedCrossRef Kwak JH, Jo G, Chung HK, Shin MJ. Association between sugar-sweetened beverage consumption and incident hypertension in Korean adults: a prospective study. Eur J Nutr. 2019;58(3):1009–17.PubMedCrossRef
21.
go back to reference Qin P, Li Q, Zhao Y, Chen Q, Sun X, Liu Y, et al. Sugar and artificially sweetened beverages and risk of obesity, type 2 diabetes mellitus, hypertension, and all-cause mortality: a dose-response meta-analysis of prospective cohort studies. Eur J Epidemiol. 2020;35(7):655–71.PubMedCrossRef Qin P, Li Q, Zhao Y, Chen Q, Sun X, Liu Y, et al. Sugar and artificially sweetened beverages and risk of obesity, type 2 diabetes mellitus, hypertension, and all-cause mortality: a dose-response meta-analysis of prospective cohort studies. Eur J Epidemiol. 2020;35(7):655–71.PubMedCrossRef
22.
go back to reference Drouin-Chartier JP, Zheng Y, Li Y, Malik V, Pan A, Bhupathiraju SN, et al. Changes in consumption of sugary beverages and artificially sweetened beverages and subsequent risk of type 2 diabetes: results from three large prospective U.S. cohorts of women and men. Diabetes Care. 2019;42(12):2181–9.PubMedPubMedCentralCrossRef Drouin-Chartier JP, Zheng Y, Li Y, Malik V, Pan A, Bhupathiraju SN, et al. Changes in consumption of sugary beverages and artificially sweetened beverages and subsequent risk of type 2 diabetes: results from three large prospective U.S. cohorts of women and men. Diabetes Care. 2019;42(12):2181–9.PubMedPubMedCentralCrossRef
23.
go back to reference Hirahatake KM, Jacobs DR, Shikany JM, Jiang L, Wong ND, Steffen LM, et al. Cumulative intake of artificially sweetened and sugar-sweetened beverages and risk of incident type 2 diabetes in young adults: the Coronary Artery Risk Development In Young Adults (CARDIA) Study. Am J Clin Nutr. 2019;110(3):733–41.PubMedPubMedCentralCrossRef Hirahatake KM, Jacobs DR, Shikany JM, Jiang L, Wong ND, Steffen LM, et al. Cumulative intake of artificially sweetened and sugar-sweetened beverages and risk of incident type 2 diabetes in young adults: the Coronary Artery Risk Development In Young Adults (CARDIA) Study. Am J Clin Nutr. 2019;110(3):733–41.PubMedPubMedCentralCrossRef
24.
go back to reference Yin J, Zhu Y, Malik V, Li X, Peng X, Zhang FF, et al. Intake of sugar-sweetened and low-calorie sweetened beverages and risk of cardiovascular disease: a meta-analysis and systematic review. Adv Nutr. 2021;12(1):89–101.PubMedCrossRef Yin J, Zhu Y, Malik V, Li X, Peng X, Zhang FF, et al. Intake of sugar-sweetened and low-calorie sweetened beverages and risk of cardiovascular disease: a meta-analysis and systematic review. Adv Nutr. 2021;12(1):89–101.PubMedCrossRef
25.
go back to reference Pacheco LS, Lacey JV Jr, Martinez ME, Lemus H, Araneta MRG, Sears DD, et al. Sugar-sweetened beverage intake and cardiovascular disease risk in the California Teachers Study. J Am Heart Assoc. 2020;9(10):e014883.PubMedPubMedCentralCrossRef Pacheco LS, Lacey JV Jr, Martinez ME, Lemus H, Araneta MRG, Sears DD, et al. Sugar-sweetened beverage intake and cardiovascular disease risk in the California Teachers Study. J Am Heart Assoc. 2020;9(10):e014883.PubMedPubMedCentralCrossRef
26.
go back to reference Malik VS, Li Y, Pan A, De Koning L, Schernhammer E, Willett WC, et al. Long-term consumption of sugar-sweetened and artificially sweetened beverages and risk of mortality in US adults. Circulation. 2019;139(18):2113–25.PubMedPubMedCentralCrossRef Malik VS, Li Y, Pan A, De Koning L, Schernhammer E, Willett WC, et al. Long-term consumption of sugar-sweetened and artificially sweetened beverages and risk of mortality in US adults. Circulation. 2019;139(18):2113–25.PubMedPubMedCentralCrossRef
27.
go back to reference Chazelas E, Srour B, Desmetz E, Kesse-Guyot E, Julia C, Deschamps V, et al. Sugary drink consumption and risk of cancer: results from NutriNet-Sante prospective cohort. BMJ. 2019;366:l2408.PubMedPubMedCentralCrossRef Chazelas E, Srour B, Desmetz E, Kesse-Guyot E, Julia C, Deschamps V, et al. Sugary drink consumption and risk of cancer: results from NutriNet-Sante prospective cohort. BMJ. 2019;366:l2408.PubMedPubMedCentralCrossRef
28.
go back to reference Ebrahimpour-Koujan S, Saneei P, Larijani B, Esmaillzadeh A. Consumption of sugar sweetened beverages and dietary fructose in relation to risk of gout and hyperuricemia: a systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2020;60(1):1–10.PubMedCrossRef Ebrahimpour-Koujan S, Saneei P, Larijani B, Esmaillzadeh A. Consumption of sugar sweetened beverages and dietary fructose in relation to risk of gout and hyperuricemia: a systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2020;60(1):1–10.PubMedCrossRef
29.
go back to reference Pase MP, Himali JJ, Beiser AS, Aparicio HJ, Satizabal CL, Vasan RS, et al. Sugar- and artificially sweetened beverages and the risks of incident stroke and dementia: a prospective cohort study. Stroke. 2017;48(5):1139–46.PubMedPubMedCentralCrossRef Pase MP, Himali JJ, Beiser AS, Aparicio HJ, Satizabal CL, Vasan RS, et al. Sugar- and artificially sweetened beverages and the risks of incident stroke and dementia: a prospective cohort study. Stroke. 2017;48(5):1139–46.PubMedPubMedCentralCrossRef
30.
go back to reference Imamura F, O'Connor L, Ye Z, Mursu J, Hayashino Y, Bhupathiraju SN, et al. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. Br J Sports Med. 2016;50(8):496–504.PubMedCrossRef Imamura F, O'Connor L, Ye Z, Mursu J, Hayashino Y, Bhupathiraju SN, et al. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. Br J Sports Med. 2016;50(8):496–504.PubMedCrossRef
31.
go back to reference Toews I, Lohner S, Kullenberg de Gaudry D, Sommer H, Meerpohl JJ. Association between intake of non-sugar sweeteners and health outcomes: systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies. BMJ. 2019;364:k4718.PubMedPubMedCentralCrossRef Toews I, Lohner S, Kullenberg de Gaudry D, Sommer H, Meerpohl JJ. Association between intake of non-sugar sweeteners and health outcomes: systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies. BMJ. 2019;364:k4718.PubMedPubMedCentralCrossRef
32.
go back to reference Gardener H, Moon YP, Rundek T, Elkind MSV, Sacco RL. Diet soda and sugar-sweetened soda consumption in relation to incident diabetes in the Northern Manhattan study. Curr Dev Nutr. 2018;2(5):nzy008.PubMedPubMedCentralCrossRef Gardener H, Moon YP, Rundek T, Elkind MSV, Sacco RL. Diet soda and sugar-sweetened soda consumption in relation to incident diabetes in the Northern Manhattan study. Curr Dev Nutr. 2018;2(5):nzy008.PubMedPubMedCentralCrossRef
33.
go back to reference Anderson JJ, Gray SR, Welsh P, Mackay DF, Celis-Morales CA, Lyall DM, et al. The associations of sugar-sweetened, artificially sweetened and naturally sweet juices with all-cause mortality in 198,285 UK Biobank participants: a prospective cohort study. BMC Med. 2020;18(1):97.PubMedPubMedCentralCrossRef Anderson JJ, Gray SR, Welsh P, Mackay DF, Celis-Morales CA, Lyall DM, et al. The associations of sugar-sweetened, artificially sweetened and naturally sweet juices with all-cause mortality in 198,285 UK Biobank participants: a prospective cohort study. BMC Med. 2020;18(1):97.PubMedPubMedCentralCrossRef
34.
go back to reference D'Elia L, Dinu M, Sofi F, Volpe M, Strazzullo P. Sinu Working Group EbS. 100% fruit juice intake and cardiovascular risk: a systematic review and meta-analysis of prospective and randomised controlled studies. Eur J Nutr. 2021;60(5):2449–67.PubMedCrossRef D'Elia L, Dinu M, Sofi F, Volpe M, Strazzullo P. Sinu Working Group EbS. 100% fruit juice intake and cardiovascular risk: a systematic review and meta-analysis of prospective and randomised controlled studies. Eur J Nutr. 2021;60(5):2449–67.PubMedCrossRef
35.
go back to reference Greenwood DC, Hardie LJ, Frost GS, Alwan NA, Bradbury KE, Carter M, et al. Validation of the Oxford WebQ online 24-hour dietary questionnaire using biomarkers. Am J Epidemiol. 2019;188(10):1858–67.PubMedPubMedCentralCrossRef Greenwood DC, Hardie LJ, Frost GS, Alwan NA, Bradbury KE, Carter M, et al. Validation of the Oxford WebQ online 24-hour dietary questionnaire using biomarkers. Am J Epidemiol. 2019;188(10):1858–67.PubMedPubMedCentralCrossRef
36.
go back to reference Galante J, Adamska L, Young A, Young H, Littlejohns TJ, Gallacher J, et al. The acceptability of repeat Internet-based hybrid diet assessment of previous 24-h dietary intake: administration of the Oxford WebQ in UK Biobank. Br J Nutr. 2016;115(4):681–6.PubMedCrossRef Galante J, Adamska L, Young A, Young H, Littlejohns TJ, Gallacher J, et al. The acceptability of repeat Internet-based hybrid diet assessment of previous 24-h dietary intake: administration of the Oxford WebQ in UK Biobank. Br J Nutr. 2016;115(4):681–6.PubMedCrossRef
37.
go back to reference Agency FS. McCance and Widdowson’s the composition of foods, 6th ed. Cambridge: Royal Society of Chemistry; 2002. Agency FS. McCance and Widdowson’s the composition of foods, 6th ed. Cambridge: Royal Society of Chemistry; 2002.
38.
go back to reference Said MA, Verweij N, van der Harst P. Associations of combined genetic and lifestyle risks with incident cardiovascular disease and diabetes in the UK Biobank study. JAMA Cardiol. 2018;3(8):693–702.PubMedPubMedCentralCrossRef Said MA, Verweij N, van der Harst P. Associations of combined genetic and lifestyle risks with incident cardiovascular disease and diabetes in the UK Biobank study. JAMA Cardiol. 2018;3(8):693–702.PubMedPubMedCentralCrossRef
39.
go back to reference Wreede LC, Fiocco M, Putter H. Mstate: an R package for the analysis of competing risks and multi-state models. J Stat Softw. 2011;38(7):1–30.CrossRef Wreede LC, Fiocco M, Putter H. Mstate: an R package for the analysis of competing risks and multi-state models. J Stat Softw. 2011;38(7):1–30.CrossRef
40.
go back to reference Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state models. Stat Med. 2007;26(11):2389–430.PubMedCrossRef Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state models. Stat Med. 2007;26(11):2389–430.PubMedCrossRef
41.
go back to reference Tey SL, Salleh NB, Henry J, Forde CG. Effects of aspartame-, monk fruit-, stevia- and sucrose-sweetened beverages on postprandial glucose, insulin and energy intake. Int J Obes. 2017;41(3):450–7.CrossRef Tey SL, Salleh NB, Henry J, Forde CG. Effects of aspartame-, monk fruit-, stevia- and sucrose-sweetened beverages on postprandial glucose, insulin and energy intake. Int J Obes. 2017;41(3):450–7.CrossRef
42.
go back to reference Geidl-Flueck B, Hochuli M, Nemeth A, Eberl A, Derron N, Kofeler HC, et al. Fructose- and sucrose- but not glucose-sweetened beverages promote hepatic de novo lipogenesis: a randomized controlled trial. J Hepatol. 2021;75(1):46–54.PubMedCrossRef Geidl-Flueck B, Hochuli M, Nemeth A, Eberl A, Derron N, Kofeler HC, et al. Fructose- and sucrose- but not glucose-sweetened beverages promote hepatic de novo lipogenesis: a randomized controlled trial. J Hepatol. 2021;75(1):46–54.PubMedCrossRef
44.
go back to reference Nettleton JE, Reimer RA, Shearer J. Reshaping the gut microbiota: impact of low calorie sweeteners and the link to insulin resistance? Physiol Behav. 2016;164(Pt B):488–93.PubMedCrossRef Nettleton JE, Reimer RA, Shearer J. Reshaping the gut microbiota: impact of low calorie sweeteners and the link to insulin resistance? Physiol Behav. 2016;164(Pt B):488–93.PubMedCrossRef
45.
go back to reference Carter JL, Lewington S, Piernas C, Bradbury K, Key TJ, Jebb SA, et al. Reproducibility of dietary intakes of macronutrients, specific food groups, and dietary patterns in 211 050 adults in the UK Biobank study. J Nutr Sci. 2019;8:e34.PubMedPubMedCentralCrossRef Carter JL, Lewington S, Piernas C, Bradbury K, Key TJ, Jebb SA, et al. Reproducibility of dietary intakes of macronutrients, specific food groups, and dietary patterns in 211 050 adults in the UK Biobank study. J Nutr Sci. 2019;8:e34.PubMedPubMedCentralCrossRef
46.
go back to reference Ma Y, Olendzki BC, Pagoto SL, Hurley TG, Magner RP, Ockene IS, et al. Number of 24-hour diet recalls needed to estimate energy intake. Ann Epidemiol. 2009;19(8):553–9.PubMedPubMedCentralCrossRef Ma Y, Olendzki BC, Pagoto SL, Hurley TG, Magner RP, Ockene IS, et al. Number of 24-hour diet recalls needed to estimate energy intake. Ann Epidemiol. 2009;19(8):553–9.PubMedPubMedCentralCrossRef
Metadata
Title
Associations between consumption of three types of beverages and risk of cardiometabolic multimorbidity in UK Biobank participants: a prospective cohort study
Authors
Yi Luo
Lingfang He
Tianqi Ma
Jinchen Li
Yongping Bai
Xunjie Cheng
Guogang Zhang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2022
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-022-02456-4

Other articles of this Issue 1/2022

BMC Medicine 1/2022 Go to the issue