Skip to main content
Top
Published in: BMC Medicine 1/2022

Open Access 01-12-2022 | Premature Birth | Research article

Human placental proteomics and exon variant studies link AAT/SERPINA1 with spontaneous preterm birth

Authors: Heli Tiensuu, Antti M. Haapalainen, Pinja Tissarinen, Anu Pasanen, Tomi A. Määttä, Johanna M. Huusko, Steffen Ohlmeier, Ulrich Bergmann, Marja Ojaniemi, Louis J. Muglia, Mikko Hallman, Mika Rämet

Published in: BMC Medicine | Issue 1/2022

Login to get access

Abstract

Background

Preterm birth is defined as live birth before 37 completed weeks of pregnancy, and it is a major problem worldwide. The molecular mechanisms that lead to onset of spontaneous preterm birth are incompletely understood. Prediction and evaluation of the risk of preterm birth is challenging as there is a lack of accurate biomarkers. In this study, our aim was to identify placental proteins that associate with spontaneous preterm birth.

Methods

We analyzed the proteomes from placentas to identify proteins that associate with both gestational age and spontaneous labor. Next, rare and potentially damaging gene variants of the identified protein candidates were sought for from our whole exome sequencing data. Further experiments we performed on placental samples and placenta-associated cells to explore the location and function of the spontaneous preterm labor-associated proteins in placentas.

Results

Exome sequencing data revealed rare damaging variants in SERPINA1 in families with recurrent spontaneous preterm deliveries. Protein and mRNA levels of alpha-1 antitrypsin/SERPINA1 from the maternal side of the placenta were downregulated in spontaneous preterm births. Alpha-1 antitrypsin was expressed by villous trophoblasts in the placenta, and immunoelectron microscopy showed localization in decidual fibrinoid deposits in association with specific extracellular proteins. siRNA knockdown in trophoblast-derived HTR8/SVneo cells revealed that SERPINA1 had a marked effect on regulation of the actin cytoskeleton pathway, Slit–Robo signaling, and extracellular matrix organization.

Conclusions

Alpha-1 antitrypsin is a protease inhibitor. We propose that loss of the protease inhibition effects of alpha-1 antitrypsin renders structures critical to maintaining pregnancy susceptible to proteases and inflammatory activation. This may lead to spontaneous premature birth.

Literature
  1. Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84.PubMedPubMed CentralView Article
  2. Barfield WD. Public health implications of very preterm birth. Clin Perinatol. 2018;45(3):565–77.PubMedPubMed CentralView Article
  3. Parets SE, Knight AK, Smith AK. Insights into genetic susceptibility in the etiology of spontaneous preterm birth. Appl Clin Genet. 2015;8:283–90.PubMedPubMed Central
  4. Zhang G, Srivastava A, Bacelis J, Juodakis J, Jacobsson B, Muglia LJ. Genetic studies of gestational duration and preterm birth. Best Pract Res Clin Obstet Gynaecol. 2018;52:33–47.PubMedPubMed CentralView Article
  5. Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014;345(6198):760–5.PubMedPubMed CentralView Article
  6. Saade GR, Boggess KA, Sullivan SA, Markenson GR, Iams JD, Coonrod DV, et al. Development and validation of a spontaneous preterm delivery predictor in asymptomatic women. Am J Obstet Gynecol. 2016;214(5):633.e1–633.e24.View Article
  7. Oskovi Kaplan ZA, Ozgu-Erdinc AS. Prediction of preterm birth: maternal characteristics, ultrasound markers, and biomarkers: an updated overview. J Pregnancy. 2018;2018:8367571.PubMedPubMed CentralView Article
  8. Lynch AM, Wagner BD, Deterding RR, Giclas PC, Gibbs RS, Janoff EN, et al. The relationship of circulating proteins in early pregnancy with preterm birth. Am J Obstet Gynecol. 2016;214(4):517.e1–8.View Article
  9. Buhimschi IA, Buhimschi CS. Proteomics of the amniotic fluid in assessment of the placenta. Relevance for preterm birth. Placenta. 2008;29 Suppl A:95.View Article
  10. Son M, Miller ES. Predicting preterm birth: cervical length and fetal fibronectin. Semin Perinatol. 2017;41(8):445–51.PubMedPubMed CentralView Article
  11. Ville Y, Rozenberg P. Predictors of preterm birth. Best Pract Res Clin Obstet Gynaecol. 2018;52:23–32.PubMedView Article
  12. Berghella V, Saccone G. Fetal fibronectin testing for reducing the risk of preterm birth. Cochrane Database Syst Rev. 2019;7:CD006843.PubMed
  13. Gunko VO, Pogorelova TN, Linde VA. Proteomic profiling of the blood serum for prediction of premature delivery. Bull Exp Biol Med. 2016;161(6):829–32.PubMedView Article
  14. Turco MY, Moffett A. Development of the human placenta. Development. 2019;146(22). https://​doi.​org/​10.​1242/​dev.​163428.
  15. Menon R. Human fetal membranes at term: dead tissue or signalers of parturition? Placenta. 2016;44:1–5.PubMedPubMed CentralView Article
  16. Yang JI, Kong TW, Kim HS, Kim HY. The proteomic analysis of human placenta with pre-eclampsia and normal pregnancy. J Korean Med Sci. 2015;30(6):770–8.PubMedPubMed CentralView Article
  17. Miao Z, Chen M, Wu H, Ding H, Shi Z. Comparative proteomic profile of the human placenta in normal and fetal growth restriction subjects. Cell Physiol Biochem. 2014;34(5):1701–10.PubMedView Article
  18. Haapalainen AM, Karjalainen MK, Daddali R, Ohlmeier S, Anttonen J, Maatta TA, et al. Expression of CPPED1 in human trophoblasts is associated with timing of term birth. J Cell Mol Med. 2018;22(2):968–81.PubMed
  19. Heywood WE, Preece RL, Pryce J, Hallqvist J, Clayton R, Virasami A, et al. Proteomic profiling reveals sub proteomes of the human placenta. Placenta. 2017;59:69–72.PubMedView Article
  20. Gharesi-Fard B, Zolghadri J, Kamali-Sarvestani E. Proteome differences in the first- and third-trimester human placentas. Reprod Sci. 2015;22(4):462–8.PubMedView Article
  21. Madar T, Shahaf G, Sheiner E, Brazg J, Levinson J, Yaniv Salem S, et al. Low levels of circulating alpha-1 antitrypsin are associated with spontaneous abortions. J Matern Fetal Neonatal Med. 2013;26(18):1782–7.PubMedView Article
  22. Chelbi ST, Mondon F, Jammes H, Buffat C, Mignot TM, Tost J, et al. Expressional and epigenetic alterations of placental serine protease inhibitors: SERPINA3 is a potential marker of preeclampsia. Hypertension. 2007;49(1):76–83.PubMedView Article
  23. Parry S, Zhang H, Biggio J, Bukowski R, Varner M, Xu Y, et al. Maternal serum serpin B7 is associated with early spontaneous preterm birth. Am J Obstet Gynecol. 2014;211(6):678.e1–12.View Article
  24. Chern SR, Li SH, Chiu CL, Chang HH, Chen CP, Tsuen Chen EI. Spatiotemporal expression of SERPINE2 in the human placenta and its role in extravillous trophoblast migration and invasion. Reprod Biol Endocrinol. 2011;9:106.PubMedPubMed CentralView Article
  25. Heit C, Jackson BC, McAndrews M, Wright MW, Thompson DC, Silverman GA, et al. Update of the human and mouse SERPIN gene superfamily. Hum Genomics. 2013;7:22.PubMedPubMed CentralView Article
  26. Law RH, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, et al. An overview of the serpin superfamily. Genome Biol. 2006;7(5):216 Epub 2006 May 30.PubMedPubMed CentralView Article
  27. Brebner JA, Stockley RA. Recent advances in alpha-1-antitrypsin deficiency-related lung disease. Expert Rev Respir Med. 2013;7(3):213–29 quiz 230.PubMedView Article
  28. Janciauskiene SM, Nita IM, Stevens T. Alpha1-antitrypsin, old dog, new tricks. Alpha1-antitrypsin exerts in vitro anti-inflammatory activity in human monocytes by elevating cAMP. J Biol Chem. 2007;282(12):8573–82.PubMedView Article
  29. Buhimschi IA, Nayeri UA, Zhao G, Shook LL, Pensalfini A, Funai EF, et al. Protein misfolding, congophilia, oligomerization, and defective amyloid processing in preeclampsia. Sci Transl Med. 2014;6(245):245ra92.PubMedView Article
  30. Ai F, Li GQ, Jiang J, Dong XD. Neutrophil elastase and fetal fibronectin levels as predictors of single-birth prematurity. Exp Ther Med. 2015;10(2):665–70.PubMedPubMed CentralView Article
  31. Serrano-Perez B, Almeria S, Mur-Novales R, Lopez-Helguera I, Garcia-Ispierto I, Alabart JL, et al. Uterine serpin (SERPINA 14) correlates negatively with cytokine production at the foetal-maternal interface but not in the corpus luteum in pregnant dairy heifers experimentally infected with Neospora caninum. Reprod Domest Anim. 2018;53(2):556–8.PubMedView Article
  32. Wang H, Parry S, Macones G, Sammel MD, Kuivaniemi H, Tromp G, et al. A functional SNP in the promoter of the SERPINH1 gene increases risk of preterm premature rupture of membranes in African Americans. Proc Natl Acad Sci U S A. 2006;103(36):13463–7.PubMedPubMed CentralView Article
  33. Law KP, Han TL, Tong C, Baker PN. Mass spectrometry-based proteomics for pre-eclampsia and preterm birth. Int J Mol Sci. 2015;16(5):10952–85.PubMedPubMed CentralView Article
  34. Huusko JM, Karjalainen MK, Graham BE, Zhang G, Farrow EG, Miller NA, et al. Whole exome sequencing reveals HSPA1L as a genetic risk factor for spontaneous preterm birth. PLoS Genet. 2018;14(7):e1007394.PubMedPubMed CentralView Article
  35. Huusko JM, Tiensuu H, Haapalainen AM, Pasanen A, Tissarinen P, Karjalainen MK, et al. Integrative genetic, genomic and transcriptomic analysis of heat shock protein and nuclear hormone receptor gene associations with spontaneous preterm birth. Sci Rep. 2021;11(1):17115–9.PubMedPubMed CentralView Article
  36. Haataja R, Karjalainen MK, Luukkonen A, Teramo K, Puttonen H, Ojaniemi M, et al. Mapping a new spontaneous preterm birth susceptibility gene, IGF1R, using linkage, haplotype sharing, and association analysis. PLoS Genet. 2011;7(2):e1001293.PubMedPubMed CentralView Article
  37. Karjalainen MK, Huusko JM, Ulvila J, Sotkasiira J, Luukkonen A, Teramo K, et al. A potential novel spontaneous preterm birth gene, AR, identified by linkage and association analysis of X chromosomal markers. PLoS One. 2012;7(12):e51378.PubMedPubMed CentralView Article
  38. Karjalainen MK, Ojaniemi M, Haapalainen AM, Mahlman M, Salminen A, Huusko JM, et al. CXCR3 polymorphism and expression associate with spontaneous preterm birth. J Immunol. 2015;195(5):2187–98.PubMedView Article
  39. Tiensuu H, Haapalainen AM, Karjalainen MK, Pasanen A, Huusko JM, Marttila R, et al. Risk of spontaneous preterm birth and fetal growth associates with fetal SLIT2. PLoS Genet. 2019;15(6):e1008107.PubMedPubMed CentralView Article
  40. Haapalainen AM, Daddali R, Hallman M, Ramet M. Human CPPED1 belongs to calcineurin-like metallophosphoesterase superfamily and dephosphorylates PI3K-AKT pathway component PAK4. J Cell Mol Med. 2021;25(13):6304–17.PubMed CentralView Article
  41. Mahadeva R, Lomas DA. Genetics and respiratory disease. 2. Alpha 1-antitrypsin deficiency, cirrhosis and emphysema. Thorax. 1998;53(6):501–5.PubMedPubMed CentralView Article
  42. Teckman JH, Perlmutter DH. The endoplasmic reticulum degradation pathway for mutant secretory proteins alpha1-antitrypsin Z and S is distinct from that for an unassembled membrane protein. J Biol Chem. 1996;271(22):13215–20.PubMedView Article
  43. Seixas S, Marques PI. Known mutations at the cause of alpha-1 antitrypsin deficiency an updated overview of SERPINA1 variation spectrum. Appl Clin Genet. 2021;14:173–94.PubMedPubMed CentralView Article
  44. Sinden NJ, Koura F, Stockley RA. The significance of the F variant of alpha-1-antitrypsin and unique case report of a PiFF homozygote. BMC Pulm Med. 2014;14:132.PubMedPubMed CentralView Article
  45. Kim S, Woo J, Seo EJ, Yu M, Ryu S. A 2.1 A resolution structure of an uncleaved alpha(1)-antitrypsin shows variability of the reactive center and other loops. J Mol Biol. 2001;306(1):109–19.PubMedView Article
  46. Dementiev A, Simonovic M, Volz K, Gettins PG. Canonical inhibitor-like interactions explain reactivity of alpha1-proteinase inhibitor Pittsburgh and antithrombin with proteinases. J Biol Chem. 2003;278(39):37881–7.PubMedView Article
  47. Mincheva-Nilsson L, Baranov V. Placenta-derived exosomes and syncytiotrophoblast microparticles and their role in human reproduction: immune modulation for pregnancy success. Am J Reprod Immunol. 2014;72(5):440–57.PubMedView Article
  48. Burton GJ, Jones CJ. Syncytial knots, sprouts, apoptosis, and trophoblast deportation from the human placenta. Taiwan J Obstet Gynecol. 2009;48(1):28–37.PubMedView Article
  49. Huppertz B, Kertschanska S, Frank HG, Gaus G, Funayama H, Kaufmann P. Extracellular matrix components of the placental extravillous trophoblast: immunocytochemistry and ultrastructural distribution. Histochem Cell Biol. 1996;106(3):291–301.PubMedView Article
  50. Kaufmann P, Huppertz B, Frank HG. The fibrinoids of the human placenta: origin, composition and functional relevance. Ann Anat. 1996;178(6):485–501.PubMedView Article
  51. Berghella V, Saccone G, Berghella V. Fetal fibronectin testing for reducing the risk of preterm birth. Cochrane Database Syst Rev. 2019;2019(9):CD006843.PubMed Central
  52. Wilcox AJ, Skjaerven R, Lie RT. Familial patterns of preterm delivery: maternal and fetal contributions. Am J Epidemiol. 2008;167(4):474–9.PubMedView Article
  53. DeMeo DL, Silverman EK. Alpha1-antitrypsin deficiency. 2: genetic aspects of alpha(1)-antitrypsin deficiency: phenotypes and genetic modifiers of emphysema risk. Thorax. 2004;59(3):259–64.PubMedPubMed CentralView Article
  54. Bolton JL, Hayward C, Direk N, Lewis JG, Hammond GL, Hill LA, et al. Genome wide association identifies common variants at the SERPINA6/SERPINA1 locus influencing plasma cortisol and corticosteroid binding globulin. PLoS Genet. 2014;10(7):e1004474.PubMedPubMed CentralView Article
  55. Stoller JK, Hupertz V, Aboussouan LS. Alpha-1 antitrypsin deficiency. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews((R)). Seattle: University of Washington, Seattle; 1993. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.
  56. Ogushi F, Fells GA, Hubbard RC, Straus SD, Crystal RG. Z-type alpha 1-antitrypsin is less competent than M1-type alpha 1-antitrypsin as an inhibitor of neutrophil elastase. J Clin Invest. 1987;80(5):1366–74.PubMedPubMed CentralView Article
  57. Baron J, Sheiner E, Abecassis A, Ashkenazi E, Shahaf G, Salem SY, et al. Alpha1-antitrypsin insufficiency is a possible contributor to preterm premature rupture of membranes. J Matern Fetal Neonatal Med. 2012;25(7):934–7.PubMedView Article
  58. Rotondo JC, Oton-Gonzalez L, Selvatici R, Rizzo P, Pavasini R, Campo GC, et al. SERPINA1 gene promoter is differentially methylated in peripheral blood mononuclear cells of pregnant women. Front Cell Dev Biol. 2020;8:550543.PubMedPubMed CentralView Article
  59. Tilg H, Vannier E, Vachino G, Dinarello CA, Mier JW. Antiinflammatory properties of hepatic acute phase proteins: preferential induction of interleukin 1 (IL-1) receptor antagonist over IL-1 beta synthesis by human peripheral blood mononuclear cells. J Exp Med. 1993;178(5):1629–36.PubMedView Article
  60. Vanderpuye OA, Edwards HC, Booth AG. Proteins of the human placental microvillar cytoskeleton. alpha-Actinin. Biochem J. 1986;233(2):351–6.PubMedPubMed CentralView Article
  61. King BF. The organization of actin filaments in human placental villi. J Ultrastruct Res. 1983;85(3):320–8.PubMedView Article
  62. Starodubtseva N, Nizyaeva N, Baev O, Bugrova A, Gapaeva M, Muminova K, et al. SERPINA1 peptides in urine as a potential marker of preeclampsia severity. Int J Mol Sci. 2020;21(3). https://​doi.​org/​10.​3390/​ijms21030914.
  63. Ohmaru-Nakanishi T, Asanoma K, Fujikawa M, Fujita Y, Yagi H, Onoyama I, et al. Fibrosis in preeclamptic placentas is associated with stromal fibroblasts activated by the transforming growth factor-beta1 signaling pathway. Am J Pathol. 2018;188(3):683–95.PubMedView Article
  64. Boelle PY, Debray D, Guillot L, Corvol H, French CF Modifier Gene Study Investigators. SERPINA1 Z allele is associated with cystic fibrosis liver disease. Genet Med. 2019;21(9):2151–5.PubMedView Article
  65. Mayhew TM, Barker BL. Villous trophoblast: morphometric perspectives on growth, differentiation, turnover and deposition of fibrin-type fibrinoid during gestation. Placenta. 2001;22(7):628–38.PubMedView Article
  66. Craven CM, Chedwick LR, Ward K. Placental basal plate formation is associated with fibrin deposition in decidual veins at sites of trophoblast cell invasion. Am J Obstet Gynecol. 2002;186(2):291–6.PubMedView Article
  67. Nizyaeva NV, Sukhacheva TV, Serov RA, Kulikova GV, Nagovitsyna MN, Kan NE, et al. Ultrastructural and immunohistochemical features of telocytes in placental villi in preeclampsia. Sci Rep. 2018;8(1):3453-w.View Article
  68. Strnad P, McElvaney NG, Lomas DA. Alpha1-antitrypsin deficiency. N Engl J Med. 2020;382(15):1443–55.PubMedView Article
  69. Patel D, Teckman JH. Alpha-1-antitrypsin deficiency liver disease. Clin Liver Dis. 2018;22(4):643–55.PubMedView Article
  70. Zhang X, Pham K, Li D, Schutte RJ, Gonzalo DH, Zhang P, et al. A novel small molecule inhibits intrahepatocellular accumulation of Z-variant alpha 1-antitrypsin in vitro and in vivo. Cells. 2019;8(12). https://​doi.​org/​10.​3390/​cells8121586.
  71. Zhang X, Pham K, Li D, Schutte RJ, Brantly M, Liu C, et al. Targeting the site encoded by SERPINA1*E342K for treating alpha-1 antitrypsin deficiency-associated liver diseases. FEBS Lett. 2019;593(14):1849–62.PubMedView Article
  72. Sandhaus RA. Alpha1-antitrypsin deficiency . 6: new and emerging treatments for alpha1-antitrypsin deficiency. Thorax. 2004;59(10):904–9.PubMedPubMed CentralView Article
  73. McCarthy C, Reeves EP, McElvaney NG. The role of neutrophils in alpha-1 antitrypsin deficiency. Ann Am Thorac Soc. 2016;13(Suppl 4):297.View Article
  74. Lewis EC, Mizrahi M, Toledano M, Defelice N, Wright JL, Churg A, et al. Alpha1-antitrypsin monotherapy induces immune tolerance during islet allograft transplantation in mice. Proc Natl Acad Sci U S A. 2008;105(42):16236–41.PubMedPubMed CentralView Article
  75. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10.PubMedPubMed CentralView Article
Metadata
Title
Human placental proteomics and exon variant studies link AAT/SERPINA1 with spontaneous preterm birth
Authors
Heli Tiensuu
Antti M. Haapalainen
Pinja Tissarinen
Anu Pasanen
Tomi A. Määttä
Johanna M. Huusko
Steffen Ohlmeier
Ulrich Bergmann
Marja Ojaniemi
Louis J. Muglia
Mikko Hallman
Mika Rämet
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
Premature Birth
Published in
BMC Medicine / Issue 1/2022
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-022-02339-8

Other articles of this Issue 1/2022

BMC Medicine 1/2022 Go to the issue