Skip to main content
Top
Published in: BMC Medicine 1/2021

Open Access 01-12-2021 | Research article

A combined genome-wide association and molecular study of age-related hearing loss in H. sapiens

Authors: Wei Liu, Åsa Johansson, Helge Rask-Andersen, Mathias Rask-Andersen

Published in: BMC Medicine | Issue 1/2021

Login to get access

Abstract

Background

Sensorineural hearing loss is one of the most common sensory deficiencies. However, the molecular contribution to age-related hearing loss is not fully elucidated.

Methods

We performed genome-wide association studies (GWAS) for hearing loss-related traits in the UK Biobank (N = 362,396) and selected a high confidence set of ten hearing-associated gene products for staining in human cochlear samples: EYA4, LMX1A, PTK2/FAK, UBE3B, MMP2, SYNJ2, GRM5, TRIOBP, LMO-7, and NOX4.

Results

All proteins were found to be expressed in human cochlear structures. Our findings illustrate cochlear structures that mediate mechano-electric transduction of auditory stimuli, neuronal conductance, and neuronal plasticity to be involved in age-related hearing loss.

Conclusions

Our results suggest common genetic variation to influence structural resilience to damage as well as cochlear recovery after trauma, which protect against accumulated damage to cochlear structures and the development of hearing loss over time.
Appendix
Available only for authorised users
Literature
1.
go back to reference Vos T, Barber RM, Bell B, Bertozzi-Villa A, Biryukov S, Bolliger I, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386:743–800.CrossRef Vos T, Barber RM, Bell B, Bertozzi-Villa A, Biryukov S, Bolliger I, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386:743–800.CrossRef
2.
go back to reference Karlsson KK, Harris JR, Svartengren M. Description and primary results from an audiometric study of male twins. Ear and Hear. 1997;18:114–20.CrossRef Karlsson KK, Harris JR, Svartengren M. Description and primary results from an audiometric study of male twins. Ear and Hear. 1997;18:114–20.CrossRef
3.
go back to reference Christensen K, Frederiksen H, Hoffman HJ. Genetic and environmental influences on self-reported reduced hearing in the old and oldest old. 2001; J Am Geriatr Soc. Nov;49:1512-7. doi: 10.1046/j.1532-5415.2001.4911245.x. Christensen K, Frederiksen H, Hoffman HJ. Genetic and environmental influences on self-reported reduced hearing in the old and oldest old. 2001; J Am Geriatr Soc. Nov;49:1512-7. doi: 10.1046/j.1532-5415.2001.4911245.x.
4.
go back to reference Bogo R, Farah A, Johnson AC, Karlsson KK, Pedersen NL, Svartengren M, et al. The role of genetic factors for hearing deterioration across 20 years: a twin study. J Gerontol A Biol Sci Med Sci. 2015;70:647–53.PubMedCrossRef Bogo R, Farah A, Johnson AC, Karlsson KK, Pedersen NL, Svartengren M, et al. The role of genetic factors for hearing deterioration across 20 years: a twin study. J Gerontol A Biol Sci Med Sci. 2015;70:647–53.PubMedCrossRef
5.
go back to reference Duan H, Zhang D, Liang Y, Xu C, Wu Y, Tian X, et al. Heritability of age-related hearing loss in middle-aged and elderly Chinese: a population-based twin study. Ear and Hear. 2019;40:253–9.CrossRef Duan H, Zhang D, Liang Y, Xu C, Wu Y, Tian X, et al. Heritability of age-related hearing loss in middle-aged and elderly Chinese: a population-based twin study. Ear and Hear. 2019;40:253–9.CrossRef
6.
go back to reference Wingfield A, Panizzon M, Grant MD, Toomey R, Kremen WS, Franz CE, et al. A twin-study of genetic contributions to hearing acuity in late middle age. J Gerontol A Biol Sci Med Sci. 2007;62:1294–9.PubMedCrossRef Wingfield A, Panizzon M, Grant MD, Toomey R, Kremen WS, Franz CE, et al. A twin-study of genetic contributions to hearing acuity in late middle age. J Gerontol A Biol Sci Med Sci. 2007;62:1294–9.PubMedCrossRef
7.
go back to reference Wells HRR, Freidin MB, Zainul Abidin FN, Payton A, Dawes P, Munro KJ, et al. GWAS identifies 44 independent associated genomic loci for self-reported adult hearing difficulty in UK Biobank. Am J Hum Genet. 2019;105:788–802.PubMedPubMedCentralCrossRef Wells HRR, Freidin MB, Zainul Abidin FN, Payton A, Dawes P, Munro KJ, et al. GWAS identifies 44 independent associated genomic loci for self-reported adult hearing difficulty in UK Biobank. Am J Hum Genet. 2019;105:788–802.PubMedPubMedCentralCrossRef
8.
go back to reference Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, et al. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature. 1997;387:80–3.PubMedCrossRef Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, et al. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature. 1997;387:80–3.PubMedCrossRef
9.
go back to reference Liu XZ, Ouyang XM, Xia XJ, Zheng J, Pandya A, Li F, et al. Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss. Hum Mol Genet. 2003;12:1155–62.PubMedCrossRef Liu XZ, Ouyang XM, Xia XJ, Zheng J, Pandya A, Li F, et al. Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss. Hum Mol Genet. 2003;12:1155–62.PubMedCrossRef
11.
go back to reference Murillo-Cuesta S, Contreras J, Zurita E, Cediel R, Cantero M, Varela-Nieto I, et al. Melanin precursors prevent premature age-related and noise-induced hearing loss in albino mice. Pigment Cell and Melanoma Res. 2010;23:72–83.CrossRef Murillo-Cuesta S, Contreras J, Zurita E, Cediel R, Cantero M, Varela-Nieto I, et al. Melanin precursors prevent premature age-related and noise-induced hearing loss in albino mice. Pigment Cell and Melanoma Res. 2010;23:72–83.CrossRef
12.
go back to reference Morioka S, Sakaguchi H, Yamaguchi T, Ninoyu Y, Mohri H, Nakamura T, et al. Hearing vulnerability after noise exposure in a mouse model of reactive oxygen species overproduction. J Neurochem. 2018;146:459–73.PubMedCrossRef Morioka S, Sakaguchi H, Yamaguchi T, Ninoyu Y, Mohri H, Nakamura T, et al. Hearing vulnerability after noise exposure in a mouse model of reactive oxygen species overproduction. J Neurochem. 2018;146:459–73.PubMedCrossRef
13.
go back to reference Wayne S, Robertson NG, DeClau F, Chen N, Verhoeven K, Prasad S, et al. Mutations in the transcriptional activator EYA4 cause late-onset deafness at the DFNA10 locus. Hum Mol Genet. 2001;10:195–200.PubMedCrossRef Wayne S, Robertson NG, DeClau F, Chen N, Verhoeven K, Prasad S, et al. Mutations in the transcriptional activator EYA4 cause late-onset deafness at the DFNA10 locus. Hum Mol Genet. 2001;10:195–200.PubMedCrossRef
14.
go back to reference Varga L, Danis D, Skopkova M, Masindova I, Slobodova Z, Demesova L, et al. Novel EYA4 variant in Slovak family with late onset autosomal dominant hearing loss: a case report. BMC Med Genet. 2019;20. Varga L, Danis D, Skopkova M, Masindova I, Slobodova Z, Demesova L, et al. Novel EYA4 variant in Slovak family with late onset autosomal dominant hearing loss: a case report. BMC Med Genet. 2019;20.
15.
go back to reference Pfister M, Tóth T, Thiele H, Haack B, Blin N, Zenner H-P, et al. A 4-bp insertion in the eya-homologous region (eyaHR) of EYA4 causes hearing impairment in a Hungarian family linked to DFNA10. Mol Med. 2002;8:607–11.PubMedPubMedCentralCrossRef Pfister M, Tóth T, Thiele H, Haack B, Blin N, Zenner H-P, et al. A 4-bp insertion in the eya-homologous region (eyaHR) of EYA4 causes hearing impairment in a Hungarian family linked to DFNA10. Mol Med. 2002;8:607–11.PubMedPubMedCentralCrossRef
16.
go back to reference Schönberger J, Wang L, Shin JT, Sang DK, Depreux FFS, Zhu H, et al. Mutation in the transcriptional coactivator EYA4 causes dilated cardiomyopathy and sensorineural hearing loss. Nat Genet. 2005;37:418–22.PubMedCrossRef Schönberger J, Wang L, Shin JT, Sang DK, Depreux FFS, Zhu H, et al. Mutation in the transcriptional coactivator EYA4 causes dilated cardiomyopathy and sensorineural hearing loss. Nat Genet. 2005;37:418–22.PubMedCrossRef
17.
go back to reference Makishima T, Madeo AC, Brewer CC, Zalewski CK, Butman JA, Sachdev V, et al. Nonsyndromic hearing loss DFNA10 and a novel mutation of EYA4: evidence for correlation of normal cardiac phenotype with truncating mutations of the Eya domain. Am J Med Genet A. 2007;143:1592–8.CrossRef Makishima T, Madeo AC, Brewer CC, Zalewski CK, Butman JA, Sachdev V, et al. Nonsyndromic hearing loss DFNA10 and a novel mutation of EYA4: evidence for correlation of normal cardiac phenotype with truncating mutations of the Eya domain. Am J Med Genet A. 2007;143:1592–8.CrossRef
18.
go back to reference Hildebrand MS, Coman D, Yang T, Gardner RJMK, Rose E, Smith RJH, et al. A novel splice site mutation in EYA4 causes DFNA10 hearing loss. Am J Med Genet A. 2007;143:1599–604.CrossRef Hildebrand MS, Coman D, Yang T, Gardner RJMK, Rose E, Smith RJH, et al. A novel splice site mutation in EYA4 causes DFNA10 hearing loss. Am J Med Genet A. 2007;143:1599–604.CrossRef
19.
go back to reference Tan M, Shen X, Yao J, Wei Q, Lu Y, Cao X, et al. Identification of I411K, a novel missense EYA4 mutation causing autosomal dominant non-syndromic hearing loss. Int J Mol Med. 2014;34:1467–72.PubMedPubMedCentralCrossRef Tan M, Shen X, Yao J, Wei Q, Lu Y, Cao X, et al. Identification of I411K, a novel missense EYA4 mutation causing autosomal dominant non-syndromic hearing loss. Int J Mol Med. 2014;34:1467–72.PubMedPubMedCentralCrossRef
20.
go back to reference Kim YR, Kim MA, Sagong B, Bae SH, Lee HJ, Kim HJ, et al. Evaluation of the contribution of the EYA4 and GRHL2 genes in Korean patients with autosomal dominant non-syndromic hearing loss. PLoS One. 2015;10. Kim YR, Kim MA, Sagong B, Bae SH, Lee HJ, Kim HJ, et al. Evaluation of the contribution of the EYA4 and GRHL2 genes in Korean patients with autosomal dominant non-syndromic hearing loss. PLoS One. 2015;10.
21.
go back to reference Liu F, Hu J, Xia W, Hao L, Ma J, Ma D, et al. Exome sequencing identifies a mutation in EYA4 as a novel cause of autosomal dominant non-syndromic hearing loss. PLoS One. 2015;10. Liu F, Hu J, Xia W, Hao L, Ma J, Ma D, et al. Exome sequencing identifies a mutation in EYA4 as a novel cause of autosomal dominant non-syndromic hearing loss. PLoS One. 2015;10.
22.
go back to reference Huang A, Yuan Y, Liu Y, Zhu Q, Dai P. A novel EYA4 mutation causing hearing loss in a Chinese DFNA family and genotype-phenotype review of EYA4 in deafness. J Transl Med. 2015;13. Huang A, Yuan Y, Liu Y, Zhu Q, Dai P. A novel EYA4 mutation causing hearing loss in a Chinese DFNA family and genotype-phenotype review of EYA4 in deafness. J Transl Med. 2015;13.
23.
go back to reference Frykholm C, Klar J, Arnesson H, Rehnman AC, Lodahl M, Wedén U, et al. Phenotypic variability in a seven-generation Swedish family segregating autosomal dominant hearing impairment due to a novel EYA4 frameshift mutation. Gene. 2015;563:10–6.PubMedCrossRef Frykholm C, Klar J, Arnesson H, Rehnman AC, Lodahl M, Wedén U, et al. Phenotypic variability in a seven-generation Swedish family segregating autosomal dominant hearing impairment due to a novel EYA4 frameshift mutation. Gene. 2015;563:10–6.PubMedCrossRef
24.
go back to reference Sun Y, Zhang Z, Cheng J, Lu Y, Yang CL, Luo YY, et al. A novel mutation of EYA4 in a large Chinese family with autosomal dominant middle-frequency sensorineural hearing loss by targeted exome sequencing. J Hum Genet. 2015;60:299–304.PubMedCrossRef Sun Y, Zhang Z, Cheng J, Lu Y, Yang CL, Luo YY, et al. A novel mutation of EYA4 in a large Chinese family with autosomal dominant middle-frequency sensorineural hearing loss by targeted exome sequencing. J Hum Genet. 2015;60:299–304.PubMedCrossRef
25.
go back to reference Zhang X, Liu Y, Zhang L, Yang Z, Yang L, Wang X, et al. Associations of genetic variations in EYA4, GRHL2 and DFNA5 with noise-induced hearing loss in Chinese population: A case- control study. Environ Health: A Global Access Science Source. 2015;14. Zhang X, Liu Y, Zhang L, Yang Z, Yang L, Wang X, et al. Associations of genetic variations in EYA4, GRHL2 and DFNA5 with noise-induced hearing loss in Chinese population: A case- control study. Environ Health: A Global Access Science Source. 2015;14.
26.
go back to reference Yang Q, Xu X, Jiao J, Zheng Y, Gu G, Chen G, et al. Genetic variation in EYA4 on the risk of noise-induced hearing loss in Chinese steelworks firm sample. Occup Environ Med. 2016;73:823–8.PubMed Yang Q, Xu X, Jiao J, Zheng Y, Gu G, Chen G, et al. Genetic variation in EYA4 on the risk of noise-induced hearing loss in Chinese steelworks firm sample. Occup Environ Med. 2016;73:823–8.PubMed
27.
go back to reference Yang Q, Xu X, Jiao J, Zheng Y, HE L, Yu S, et al. Association between eye absent homolog 4 gene polymorphisms and occupational noise-induced hearing loss. Zhonghua Yu Fang Yi Xue Za Zhi. 2017;51:27–33.PubMed Yang Q, Xu X, Jiao J, Zheng Y, HE L, Yu S, et al. Association between eye absent homolog 4 gene polymorphisms and occupational noise-induced hearing loss. Zhonghua Yu Fang Yi Xue Za Zhi. 2017;51:27–33.PubMed
28.
go back to reference Zhang X, Ni Y, Liu Y, Zhang L, Zhang M, Fang X, et al. Screening of noise-induced hearing loss (NIHL)-associated SNPs and the assessment of its genetic susceptibility. Environ Health. 2019;18. Zhang X, Ni Y, Liu Y, Zhang L, Zhang M, Fang X, et al. Screening of noise-induced hearing loss (NIHL)-associated SNPs and the assessment of its genetic susceptibility. Environ Health. 2019;18.
29.
go back to reference Choi HS, Kim AR, Kim SH, Choi BY. Identification of a novel truncation mutation of EYA4 in moderate degree hearing loss by targeted exome sequencing. Eur Arch Otorhinolaryngol. 2016;273:1123–9.PubMedCrossRef Choi HS, Kim AR, Kim SH, Choi BY. Identification of a novel truncation mutation of EYA4 in moderate degree hearing loss by targeted exome sequencing. Eur Arch Otorhinolaryngol. 2016;273:1123–9.PubMedCrossRef
30.
go back to reference Cesca F, Bettella E, Polli R, Cama E, Scimemi P, Santarelli R, et al. A novel mutation of the EYA4 gene associated with post-lingual hearing loss in a proband is co-segregating with a novel PAX3 mutation in two congenitally deaf family members. Int J Pediatr Otorhinolaryngol. 2018;104:88–93.PubMedCrossRef Cesca F, Bettella E, Polli R, Cama E, Scimemi P, Santarelli R, et al. A novel mutation of the EYA4 gene associated with post-lingual hearing loss in a proband is co-segregating with a novel PAX3 mutation in two congenitally deaf family members. Int J Pediatr Otorhinolaryngol. 2018;104:88–93.PubMedCrossRef
32.
go back to reference Matsuzaki S, Hosoya M, Okano H, Fujioka M, Ogawa K. Expression pattern of EYA4 in the common marmoset (Callithrix jacchus) cochlea. Neurosci Lett. 2018;662:185–8.PubMedCrossRef Matsuzaki S, Hosoya M, Okano H, Fujioka M, Ogawa K. Expression pattern of EYA4 in the common marmoset (Callithrix jacchus) cochlea. Neurosci Lett. 2018;662:185–8.PubMedCrossRef
33.
go back to reference Riazuddin S, Khan SN, Ahmed ZM, Ghosh M, Caution K, Nazli S, et al. Mutations in TRIOBP, which encodes a putative cytoskeletal-organizing protein, are associated with nonsyndromic recessive deafness. Am J Hum Genet. 2006;78:137–43.PubMedCrossRef Riazuddin S, Khan SN, Ahmed ZM, Ghosh M, Caution K, Nazli S, et al. Mutations in TRIOBP, which encodes a putative cytoskeletal-organizing protein, are associated with nonsyndromic recessive deafness. Am J Hum Genet. 2006;78:137–43.PubMedCrossRef
34.
go back to reference Shahin H, Walsh T, Sobe T, Sa’ed JA, Rayan AA, Lynch ED, et al. Mutations in a novel isoform of TRIOBP that encodes a filamentous-actin binding protein are responsible for DFNB28 recessive nonsyndromic hearing loss. Am J Hum Genet. 2006;78:144–52.PubMedCrossRef Shahin H, Walsh T, Sobe T, Sa’ed JA, Rayan AA, Lynch ED, et al. Mutations in a novel isoform of TRIOBP that encodes a filamentous-actin binding protein are responsible for DFNB28 recessive nonsyndromic hearing loss. Am J Hum Genet. 2006;78:144–52.PubMedCrossRef
35.
go back to reference Diaz-Horta O, Duman D, Foster J, Sirmaci A, Gonzalez M, Mahdieh N, et al. Whole-exome sequencing efficiently detects rare mutations in autosomal recessive nonsyndromic hearing loss. PLoS One. 2012;7. Diaz-Horta O, Duman D, Foster J, Sirmaci A, Gonzalez M, Mahdieh N, et al. Whole-exome sequencing efficiently detects rare mutations in autosomal recessive nonsyndromic hearing loss. PLoS One. 2012;7.
36.
go back to reference Shang H, Yan D, Tayebi N, Saeidi K, Sahebalzamani A, Feng Y, et al. Targeted next-generation sequencing of a deafness gene panel (MiamiOtoGenes) analysis in families unsuitable for linkage analysis. Biomed Res Int. 2018;2018. Shang H, Yan D, Tayebi N, Saeidi K, Sahebalzamani A, Feng Y, et al. Targeted next-generation sequencing of a deafness gene panel (MiamiOtoGenes) analysis in families unsuitable for linkage analysis. Biomed Res Int. 2018;2018.
37.
go back to reference Fardaei M, Sarrafzadeh S, Ghafouri-Fard S, Miryounesi M. Autosomal recessive nonsyndromic hearing loss: a case report with a mutation in TRIOBP gene. Int J Mol Cell Med. 2015;4:245–7.PubMedPubMedCentral Fardaei M, Sarrafzadeh S, Ghafouri-Fard S, Miryounesi M. Autosomal recessive nonsyndromic hearing loss: a case report with a mutation in TRIOBP gene. Int J Mol Cell Med. 2015;4:245–7.PubMedPubMedCentral
38.
go back to reference Gu X, Guo L, Ji H, Sun S, Chai R, Wang L, et al. Genetic testing for sporadic hearing loss using targeted massively parallel sequencing identifies 10 novel mutations. Clin Genet. 2015;87:588–93.PubMedCrossRef Gu X, Guo L, Ji H, Sun S, Chai R, Wang L, et al. Genetic testing for sporadic hearing loss using targeted massively parallel sequencing identifies 10 novel mutations. Clin Genet. 2015;87:588–93.PubMedCrossRef
39.
go back to reference Wesdorp M, van de Kamp JM, Hensen EF, Schraders M, Oostrik J, Yntema HG, et al. Broadening the phenotype of DFNB28: mutations in TRIOBP are associated with moderate, stable hereditary hearing impairment. Hear Res. 2017;347:56–62.PubMedCrossRef Wesdorp M, van de Kamp JM, Hensen EF, Schraders M, Oostrik J, Yntema HG, et al. Broadening the phenotype of DFNB28: mutations in TRIOBP are associated with moderate, stable hereditary hearing impairment. Hear Res. 2017;347:56–62.PubMedCrossRef
40.
go back to reference Sagong B, Baek JI, Bok J, Lee KY, Kim UK. Identification of a nonsense mutation in the STRC gene in a Korean family with moderate hearing loss. Int J Pediatr Otorhinolaryngol. 2016;80:78–81.PubMedCrossRef Sagong B, Baek JI, Bok J, Lee KY, Kim UK. Identification of a nonsense mutation in the STRC gene in a Korean family with moderate hearing loss. Int J Pediatr Otorhinolaryngol. 2016;80:78–81.PubMedCrossRef
41.
go back to reference Yan D, Tekin D, Bademci G, Foster J, Cengiz FB, Kannan-Sundhari A, et al. Spectrum of DNA variants for non-syndromic deafness in a large cohort from multiple continents. Hum Genet. 2016;135:953–61.PubMedPubMedCentralCrossRef Yan D, Tekin D, Bademci G, Foster J, Cengiz FB, Kannan-Sundhari A, et al. Spectrum of DNA variants for non-syndromic deafness in a large cohort from multiple continents. Hum Genet. 2016;135:953–61.PubMedPubMedCentralCrossRef
42.
go back to reference Kitajiri SI, Sakamoto T, Belyantseva IA, Goodyear RJ, Stepanyan R, Fujiwara I, et al. Actin-bundling protein TRIOBP forms resilient rootlets of hair cell stereocilia essential for hearing. Cell. 2010;141:786–98.PubMedPubMedCentralCrossRef Kitajiri SI, Sakamoto T, Belyantseva IA, Goodyear RJ, Stepanyan R, Fujiwara I, et al. Actin-bundling protein TRIOBP forms resilient rootlets of hair cell stereocilia essential for hearing. Cell. 2010;141:786–98.PubMedPubMedCentralCrossRef
44.
go back to reference Manji SSM, Williams LH, Miller KA, Ooms LM, Bahlo M, Mitchell CA, et al. A mutation in synaptojanin 2 causes progressive hearing loss in the ENU-mutagenised mouse strain Mozart. PLoS One. 2011;6. Manji SSM, Williams LH, Miller KA, Ooms LM, Bahlo M, Mitchell CA, et al. A mutation in synaptojanin 2 causes progressive hearing loss in the ENU-mutagenised mouse strain Mozart. PLoS One. 2011;6.
45.
go back to reference Maas RR, Iwanicka-Pronicka K, Kalkan Ucar S, Alhaddad B, AlSayed M, Al-Owain MA, et al. Progressive deafness–dystonia due to SERAC1 mutations: a study of 67 cases. Ann Neurol. 2017;82:1004–15.PubMedPubMedCentralCrossRef Maas RR, Iwanicka-Pronicka K, Kalkan Ucar S, Alhaddad B, AlSayed M, Al-Owain MA, et al. Progressive deafness–dystonia due to SERAC1 mutations: a study of 67 cases. Ann Neurol. 2017;82:1004–15.PubMedPubMedCentralCrossRef
46.
go back to reference Lumish HS, Yang Y, Xia F, Wilson A, Chung WK. The expanding MEGDEL phenotype: optic nerve atrophy, microcephaly, and myoclonic epilepsy in a child with SERAC1 mutations. JIMD Rep. 2014;16:75–9.PubMedPubMedCentralCrossRef Lumish HS, Yang Y, Xia F, Wilson A, Chung WK. The expanding MEGDEL phenotype: optic nerve atrophy, microcephaly, and myoclonic epilepsy in a child with SERAC1 mutations. JIMD Rep. 2014;16:75–9.PubMedPubMedCentralCrossRef
47.
go back to reference Dweikat IM, Abdelrazeq S, Ayesh S, Jundi T. MEGDEL syndrome in a child from Palestine: report of a novel mutation in SERAC1 gene. J Child Neurol. 2015;30:1053–6.PubMedCrossRef Dweikat IM, Abdelrazeq S, Ayesh S, Jundi T. MEGDEL syndrome in a child from Palestine: report of a novel mutation in SERAC1 gene. J Child Neurol. 2015;30:1053–6.PubMedCrossRef
48.
go back to reference Iwanicka-Pronicka K, Ciara E, Piekutowska-Abramczuk D, Halat P, Pajdowska M, Pronicki M. Congenital cochlear deafness in mitochondrial diseases related to RRM2B and SERAC1 gene defects. A study of the mitochondrial patients of the CMHI hospital in Warsaw, Poland. Int J Pediatr Otorhinolaryngol. 2019;121:143–9.PubMedCrossRef Iwanicka-Pronicka K, Ciara E, Piekutowska-Abramczuk D, Halat P, Pajdowska M, Pronicki M. Congenital cochlear deafness in mitochondrial diseases related to RRM2B and SERAC1 gene defects. A study of the mitochondrial patients of the CMHI hospital in Warsaw, Poland. Int J Pediatr Otorhinolaryngol. 2019;121:143–9.PubMedCrossRef
49.
go back to reference Pronicka E, Piekutowska-Abramczuk D, Ciara E, Trubicka J, Rokicki D, Karkucinska-Wieckowska A, et al. New perspective in diagnostics of mitochondrial disorders: two years’ experience with whole-exome sequencing at a national paediatric centre. J Transl Med. 2016;14. Pronicka E, Piekutowska-Abramczuk D, Ciara E, Trubicka J, Rokicki D, Karkucinska-Wieckowska A, et al. New perspective in diagnostics of mitochondrial disorders: two years’ experience with whole-exome sequencing at a national paediatric centre. J Transl Med. 2016;14.
50.
go back to reference Han SY, Kim S, Shin DH, Cho JH, Nam SI. The expression of AGO2 and DGCR8 in idiopathic sudden sensorineural hearing loss. Clin Exp Otorhinolaryngol. 2014;7:269–74.PubMedPubMedCentralCrossRef Han SY, Kim S, Shin DH, Cho JH, Nam SI. The expression of AGO2 and DGCR8 in idiopathic sudden sensorineural hearing loss. Clin Exp Otorhinolaryngol. 2014;7:269–74.PubMedPubMedCentralCrossRef
51.
go back to reference Littlewood Evans A, Müller U. Stereocilia defects in the sensory hair cells of the inner ear in mice deficient in integrin α8β1. Nat Genet. 2000;24:424–8.PubMedCrossRef Littlewood Evans A, Müller U. Stereocilia defects in the sensory hair cells of the inner ear in mice deficient in integrin α8β1. Nat Genet. 2000;24:424–8.PubMedCrossRef
52.
go back to reference Noben-Trauth K, Naggert JK, North MA, Nishina PM. A candidate gene for the mouse mutation tubby. Nature. 1996;380:534–8.PubMedCrossRef Noben-Trauth K, Naggert JK, North MA, Nishina PM. A candidate gene for the mouse mutation tubby. Nature. 1996;380:534–8.PubMedCrossRef
53.
go back to reference Heckenlively JR, Hagemant GS, RODERICKt TH. Mouse model for Usher syndrome: linkage mapping suggests homology to Usher type I reported at human chromosome llpl5. Proc Natl Acad Sci USA. 1995;:5. Heckenlively JR, Hagemant GS, RODERICKt TH. Mouse model for Usher syndrome: linkage mapping suggests homology to Usher type I reported at human chromosome llpl5. Proc Natl Acad Sci USA. 1995;:5.
54.
go back to reference Ohlemiller KK, Hughes RM, Lett JM, Ogilvie JM, Speck JD, Wright JS, et al. Progression of cochlear and retinal degeneration in the tubby (rd5) Mouse. Audiol Neurotol. 1997;2:175–85.CrossRef Ohlemiller KK, Hughes RM, Lett JM, Ogilvie JM, Speck JD, Wright JS, et al. Progression of cochlear and retinal degeneration in the tubby (rd5) Mouse. Audiol Neurotol. 1997;2:175–85.CrossRef
55.
go back to reference Kariminejad A, Ajeawung NF, Bozorgmehr B, DIonne-Laporte A, Molidperee S, Najafi K, et al. Kaufman oculo-cerebro-facial syndrome in a child with small and absent terminal phalanges and absent nails. J Hum Genet. 2017;62:465–71.PubMedCrossRef Kariminejad A, Ajeawung NF, Bozorgmehr B, DIonne-Laporte A, Molidperee S, Najafi K, et al. Kaufman oculo-cerebro-facial syndrome in a child with small and absent terminal phalanges and absent nails. J Hum Genet. 2017;62:465–71.PubMedCrossRef
56.
go back to reference Flex E, Ciolfi A, Caputo V, Fodale V, Leoni C, Melis D, et al. Loss of function of the E3 ubiquitin-protein ligase UBE3B causes Kaufman oculocerebrofacial syndrome. J Med Genet. 2013;50:493–9.PubMedCrossRef Flex E, Ciolfi A, Caputo V, Fodale V, Leoni C, Melis D, et al. Loss of function of the E3 ubiquitin-protein ligase UBE3B causes Kaufman oculocerebrofacial syndrome. J Med Genet. 2013;50:493–9.PubMedCrossRef
57.
go back to reference Lomax MI, Huang L, Cho Y, Gong T-WL, Altschuler RA. Differential display and gene arrays to examine auditory plasticity. Hear Res. 2000;147:293–302.PubMedCrossRef Lomax MI, Huang L, Cho Y, Gong T-WL, Altschuler RA. Differential display and gene arrays to examine auditory plasticity. Hear Res. 2000;147:293–302.PubMedCrossRef
58.
go back to reference Petek E, Windpassinger C, Mach M, Rauter L, Scherer SW, Wagner K, et al. Molecular characterization of a 12q22-q24 deletion associated with congenital deafness: confirmation and refinement of the DFNA25 locus. Am J Med Genet A. 2003;117(A):122–6. Petek E, Windpassinger C, Mach M, Rauter L, Scherer SW, Wagner K, et al. Molecular characterization of a 12q22-q24 deletion associated with congenital deafness: confirmation and refinement of the DFNA25 locus. Am J Med Genet A. 2003;117(A):122–6.
59.
go back to reference Greene CC, McMillan PM, Barker SE, Kurnool P, Lomax MI, Burmeister M, et al. DFNA25, a novel locus for dominant nonsyndromic hereditary hearing impairment, maps to 12q21-24. Am J Hum Genet. 2001;68:254–60.PubMedCrossRef Greene CC, McMillan PM, Barker SE, Kurnool P, Lomax MI, Burmeister M, et al. DFNA25, a novel locus for dominant nonsyndromic hereditary hearing impairment, maps to 12q21-24. Am J Hum Genet. 2001;68:254–60.PubMedCrossRef
60.
go back to reference Ruel J, Emery S, Nouvian R, Bersot T, Amilhon B, Van Rybroek JM, et al. Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice. Am J Hum Genet. 2008;83:278–92.PubMedPubMedCentralCrossRef Ruel J, Emery S, Nouvian R, Bersot T, Amilhon B, Van Rybroek JM, et al. Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice. Am J Hum Genet. 2008;83:278–92.PubMedPubMedCentralCrossRef
61.
go back to reference Lopez-Escamez JA, Vilchez JR, Soto-Varela A, Santos-Perez S, Perez-Garrigues H, Aran I, et al. HLA-DRB1*1101 allele may be associated with bilateral Méniére’s disease in Southern European population. Otol Neurot. 2007;28:891–5.CrossRef Lopez-Escamez JA, Vilchez JR, Soto-Varela A, Santos-Perez S, Perez-Garrigues H, Aran I, et al. HLA-DRB1*1101 allele may be associated with bilateral Méniére’s disease in Southern European population. Otol Neurot. 2007;28:891–5.CrossRef
62.
go back to reference Amor-Dorado JC, Paco L, Martin J, Lopez-Nevot MA, Gonzalez-Gay MA. Human leukocyte antigen-DQB1 and -DRB1 associations in patients with idiopathic sudden sensorineural hearing loss from a defined population of Northwest Spain. Acta Otolaryngol. 2005;125:1277–82.PubMedCrossRef Amor-Dorado JC, Paco L, Martin J, Lopez-Nevot MA, Gonzalez-Gay MA. Human leukocyte antigen-DQB1 and -DRB1 associations in patients with idiopathic sudden sensorineural hearing loss from a defined population of Northwest Spain. Acta Otolaryngol. 2005;125:1277–82.PubMedCrossRef
63.
go back to reference Sang W. Yeo K-HC Byung-Do Suh, Tai-Gyu Kim, Hoon Han. Distribution of HLA-A, -B and -DRB1 alleles in patients with sudden sensorineural hearing loss. Acta Otolaryngol. 2000;120:710–5.CrossRef Sang W. Yeo K-HC Byung-Do Suh, Tai-Gyu Kim, Hoon Han. Distribution of HLA-A, -B and -DRB1 alleles in patients with sudden sensorineural hearing loss. Acta Otolaryngol. 2000;120:710–5.CrossRef
64.
go back to reference Yeo SW, Park S-N, Park Y-S, Suh B-D, Han H, Choi H-B, et al. Different distribution of HLA class II alleles according to response to corticosteroid therapy in sudden sensorineural hearing loss. Arch Otolaryngol Head Neck Surg. 2001;127:945–9.PubMedCrossRef Yeo SW, Park S-N, Park Y-S, Suh B-D, Han H, Choi H-B, et al. Different distribution of HLA class II alleles according to response to corticosteroid therapy in sudden sensorineural hearing loss. Arch Otolaryngol Head Neck Surg. 2001;127:945–9.PubMedCrossRef
65.
go back to reference Khoury T, Gonzalez-Fernandez F, Munschauer FE, Ostrow P. A 47-year-old man with sudden onset of blindness, pleocytosis, and temporary hearing loss. Arch Pathol Lab Med. 2006;130:1070–2.PubMedCrossRef Khoury T, Gonzalez-Fernandez F, Munschauer FE, Ostrow P. A 47-year-old man with sudden onset of blindness, pleocytosis, and temporary hearing loss. Arch Pathol Lab Med. 2006;130:1070–2.PubMedCrossRef
66.
go back to reference Mihaylova V, Guergueltcheva V, Cherninkova S, Penev L, Georgieva G, Stoyanova K, et al. Possible toxicity of tuberculostatic agents in a patient with a novel TYMP mutation leading to mitochondrial neurogastrointestinal encephalomyopathy. J Neurogenet. 2013;27:19–22.PubMedCrossRef Mihaylova V, Guergueltcheva V, Cherninkova S, Penev L, Georgieva G, Stoyanova K, et al. Possible toxicity of tuberculostatic agents in a patient with a novel TYMP mutation leading to mitochondrial neurogastrointestinal encephalomyopathy. J Neurogenet. 2013;27:19–22.PubMedCrossRef
67.
go back to reference Durrani S, Chen B, Yakob Y, Hian L, Afroze B. Mitochondrial neurogastrointestinal encephalomyopathy disease in three siblings from Pakistan with a novel mutation. J Pediatr Genet. 2019;08:015–9.CrossRef Durrani S, Chen B, Yakob Y, Hian L, Afroze B. Mitochondrial neurogastrointestinal encephalomyopathy disease in three siblings from Pakistan with a novel mutation. J Pediatr Genet. 2019;08:015–9.CrossRef
68.
go back to reference Steffes G, Lorente-Cánovas B, Pearson S, Brooker RH, Spiden S, Kiernan AE, et al. Mutanlallemand (mtl) and belly spot and deafness (bsd) are two new mutations of Lmx1a causing severe cochlear and vestibular defects. PLoS One. 2012;7. Steffes G, Lorente-Cánovas B, Pearson S, Brooker RH, Spiden S, Kiernan AE, et al. Mutanlallemand (mtl) and belly spot and deafness (bsd) are two new mutations of Lmx1a causing severe cochlear and vestibular defects. PLoS One. 2012;7.
69.
go back to reference Jahan I, Elliott KL, Fritzsch B. Understanding molecular evolution and development of the organ of Corti can provide clues for hearing restoration. Integr Comp Biol. 2018;58:351–65.PubMedPubMedCentralCrossRef Jahan I, Elliott KL, Fritzsch B. Understanding molecular evolution and development of the organ of Corti can provide clues for hearing restoration. Integr Comp Biol. 2018;58:351–65.PubMedPubMedCentralCrossRef
70.
go back to reference Su Z, Xiong H, Pang J, Lin H, Lai L, Zhang H, et al. LncRNA AW112010 promotes mitochondrial biogenesis and hair cell survival: implications for age-related hearing loss. Oxid Med Cell Longev. 2019;2019. Su Z, Xiong H, Pang J, Lin H, Lai L, Zhang H, et al. LncRNA AW112010 promotes mitochondrial biogenesis and hair cell survival: implications for age-related hearing loss. Oxid Med Cell Longev. 2019;2019.
71.
go back to reference Wu J, Han W, Chen X, Guo W, Liu K, Wang R, et al. Matrix metalloproteinase-2 and -9 contribute to functional integrity and noise-induced damage to the blood-labyrinth-barrier. Mol Med Rep. 2017;16:1731–8.PubMedPubMedCentralCrossRef Wu J, Han W, Chen X, Guo W, Liu K, Wang R, et al. Matrix metalloproteinase-2 and -9 contribute to functional integrity and noise-induced damage to the blood-labyrinth-barrier. Mol Med Rep. 2017;16:1731–8.PubMedPubMedCentralCrossRef
72.
73.
go back to reference Li D, Sun J, Zhao L, Guo W, Sun W, Yang S. Aminoglycoside increases permeability of osseous spiral laminae of cochlea by interrupting MMP-2 and MMP-9 balance. Neurotox Res. 2017;31:348–57.PubMedCrossRef Li D, Sun J, Zhao L, Guo W, Sun W, Yang S. Aminoglycoside increases permeability of osseous spiral laminae of cochlea by interrupting MMP-2 and MMP-9 balance. Neurotox Res. 2017;31:348–57.PubMedCrossRef
74.
go back to reference Choi CH, Jang CH, Cho YB, Jo SY, Kim MY, Park BY. Matrix metalloproteinase inhibitor attenuates cochlear lateral wall damage induced by intratympanic instillation of endotoxin. Int J Pediatr Otorhinolaryngol. 2012;76:544–8.PubMedCrossRef Choi CH, Jang CH, Cho YB, Jo SY, Kim MY, Park BY. Matrix metalloproteinase inhibitor attenuates cochlear lateral wall damage induced by intratympanic instillation of endotoxin. Int J Pediatr Otorhinolaryngol. 2012;76:544–8.PubMedCrossRef
75.
go back to reference Sautter NB, Delaney KL, Hausman FA, Trune DR. Tissue remodeling in the acute otitis media mouse model. Int J Pediatr Otorhinolaryngol. 2011;75:1368–71.PubMedPubMedCentralCrossRef Sautter NB, Delaney KL, Hausman FA, Trune DR. Tissue remodeling in the acute otitis media mouse model. Int J Pediatr Otorhinolaryngol. 2011;75:1368–71.PubMedPubMedCentralCrossRef
76.
go back to reference Kundu S, Tyagi N, Sen U, Tyagi SC. Matrix imbalance by inducing expression of metalloproteinase and oxidative stress in cochlea of hyperhomocysteinemic mice. Mol Cell Biochem. 2009;332:215–24.PubMedPubMedCentralCrossRef Kundu S, Tyagi N, Sen U, Tyagi SC. Matrix imbalance by inducing expression of metalloproteinase and oxidative stress in cochlea of hyperhomocysteinemic mice. Mol Cell Biochem. 2009;332:215–24.PubMedPubMedCentralCrossRef
77.
go back to reference Lezirovitz K, Braga MCC, Thiele-Aguiar RS, Auricchio MTBM, Pearson PL, Otto PA, et al. A novel autosomal dominant deafness locus (DFNA58) maps to 2p12-p21. Clin Genet. 2009;75:490–3.PubMedCrossRef Lezirovitz K, Braga MCC, Thiele-Aguiar RS, Auricchio MTBM, Pearson PL, Otto PA, et al. A novel autosomal dominant deafness locus (DFNA58) maps to 2p12-p21. Clin Genet. 2009;75:490–3.PubMedCrossRef
78.
go back to reference Liu Y, Qi J, Chen X, Tang M, Chu C, Zhu W, et al. Critical role of spectrin in hearing development and deafness. Sci Adv. 2019;5:eaav7803. Liu Y, Qi J, Chen X, Tang M, Chu C, Zhu W, et al. Critical role of spectrin in hearing development and deafness. Sci Adv. 2019;5:eaav7803.
79.
go back to reference Yang Y, Wang X, Liu Y, Fu Q, Tian C, Wu C, et al. Transcriptome analysis reveals enrichment of genes associated with auditory system in swimbladder of channel catfish. Comp Biochem Physiol Part D Genomics Proteomics. 2018;27:30–9.PubMedCrossRef Yang Y, Wang X, Liu Y, Fu Q, Tian C, Wu C, et al. Transcriptome analysis reveals enrichment of genes associated with auditory system in swimbladder of channel catfish. Comp Biochem Physiol Part D Genomics Proteomics. 2018;27:30–9.PubMedCrossRef
80.
go back to reference Du T-T, Dewey JB, Wagner EL, Cui R, Heo J, Park J-J, et al. LMO7 deficiency reveals the significance of the cuticular plate for hearing function. Nat Commun. 2019;10:1117.PubMedPubMedCentralCrossRef Du T-T, Dewey JB, Wagner EL, Cui R, Heo J, Park J-J, et al. LMO7 deficiency reveals the significance of the cuticular plate for hearing function. Nat Commun. 2019;10:1117.PubMedPubMedCentralCrossRef
81.
go back to reference Gilels F, Paquette ST, Zhang J, Rahman I, White PM. Mutation of foxo3 causes adult onset auditory neuropathy and alters cochlear synapse architecture in mice. J Neurosci. 2013;33:18409–24.PubMedPubMedCentralCrossRef Gilels F, Paquette ST, Zhang J, Rahman I, White PM. Mutation of foxo3 causes adult onset auditory neuropathy and alters cochlear synapse architecture in mice. J Neurosci. 2013;33:18409–24.PubMedPubMedCentralCrossRef
82.
go back to reference Guo H, Ding E, Bai Y, Zhang H, Shen H, Wang J, et al. Association of genetic variations in FOXO3 gene with susceptibility to noise induced hearing loss in a Chinese population. PLoS One. 2017;12. Guo H, Ding E, Bai Y, Zhang H, Shen H, Wang J, et al. Association of genetic variations in FOXO3 gene with susceptibility to noise induced hearing loss in a Chinese population. PLoS One. 2017;12.
83.
go back to reference Guo H, Ding E, Cai W, Guo J, Wang N, Zhang H, et al. Correlation between FOXO3 gene polymorphisms and susceptibility to occupational noise-induced deafness. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi . 2018;36:492–496. Guo H, Ding E, Cai W, Guo J, Wang N, Zhang H, et al. Correlation between FOXO3 gene polymorphisms and susceptibility to occupational noise-induced deafness. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi . 2018;36:492–496.
84.
go back to reference Kwon D-N, Park W-J, Choi Y-J, Gurunathan S, Kim J-H. Oxidative stress and ROS metabolism via down-regulation of sirtuin 3 expression in Cmah-null mice affect hearing loss. Aging (Albany NY). 2015;7:579–94.PubMedPubMedCentralCrossRef Kwon D-N, Park W-J, Choi Y-J, Gurunathan S, Kim J-H. Oxidative stress and ROS metabolism via down-regulation of sirtuin 3 expression in Cmah-null mice affect hearing loss. Aging (Albany NY). 2015;7:579–94.PubMedPubMedCentralCrossRef
85.
go back to reference Liu L, Chen Y, Qi J, Zhang Y, He Y, Ni W, et al. Wnt activation protects against neomycin-induced hair cell damage in the mouse cochlea. Cell Death Dis. 2016;7. Liu L, Chen Y, Qi J, Zhang Y, He Y, Ni W, et al. Wnt activation protects against neomycin-induced hair cell damage in the mouse cochlea. Cell Death Dis. 2016;7.
86.
go back to reference Gilels F, Paquette ST, Beaulac HJ, Bullen A, White PM. Severe hearing loss and outer hair cell death in homozygous Foxo3 knockout mice after moderate noise exposure. Sci Rep. 2017;7. Gilels F, Paquette ST, Beaulac HJ, Bullen A, White PM. Severe hearing loss and outer hair cell death in homozygous Foxo3 knockout mice after moderate noise exposure. Sci Rep. 2017;7.
87.
go back to reference Ronzoni L, Tagliaferri F, Tucci A, Baccarin M, Esposito S, Milani D. Interstitial 6q25 microdeletion syndrome: ARID1B is the key gene. Am J Med Genet A. 2016;170:1257–61.CrossRef Ronzoni L, Tagliaferri F, Tucci A, Baccarin M, Esposito S, Milani D. Interstitial 6q25 microdeletion syndrome: ARID1B is the key gene. Am J Med Genet A. 2016;170:1257–61.CrossRef
88.
go back to reference Paulraj P, Palumbos JC, Openshaw A, Carey JC, Toydemir RM. Multiple congenital anomalies and global developmental delay in a patient with interstitial 6q25.2q26 deletion: a diagnostic odyssey. Cytogenet Genome Res. 2019;156:191–6.CrossRef Paulraj P, Palumbos JC, Openshaw A, Carey JC, Toydemir RM. Multiple congenital anomalies and global developmental delay in a patient with interstitial 6q25.2q26 deletion: a diagnostic odyssey. Cytogenet Genome Res. 2019;156:191–6.CrossRef
89.
go back to reference Zheng J, Wu X, Li L. Metabotropic glutamate receptors subtype 5 are necessary for the enhancement of auditory evoked potentials in the lateral nucleus of the amygdala by tetanic stimulation of the auditory thalamus. Neuroscience. 2008;152:254–64.PubMedCrossRef Zheng J, Wu X, Li L. Metabotropic glutamate receptors subtype 5 are necessary for the enhancement of auditory evoked potentials in the lateral nucleus of the amygdala by tetanic stimulation of the auditory thalamus. Neuroscience. 2008;152:254–64.PubMedCrossRef
90.
go back to reference Lei M, Luo L, Qu T, Jia H, Li L. Perceived location specificity in perceptual separation-induced but not fear conditioning-induced enhancement of prepulse inhibition in rats. Behav Brain Res. 2014;269:87–94.PubMedCrossRef Lei M, Luo L, Qu T, Jia H, Li L. Perceived location specificity in perceptual separation-induced but not fear conditioning-induced enhancement of prepulse inhibition in rats. Behav Brain Res. 2014;269:87–94.PubMedCrossRef
91.
go back to reference Hassan MJ, Santos RLP, Rafiq MA, Chahrour MH, Pham TL, Wajid M, et al. A novel autosomal recessive non-syndromic hearing impairment locus (DFNB47) maps to chromosome 2p25.1-p24.3. Hum Genet. 2006;118:605–10.PubMedCrossRef Hassan MJ, Santos RLP, Rafiq MA, Chahrour MH, Pham TL, Wajid M, et al. A novel autosomal recessive non-syndromic hearing impairment locus (DFNB47) maps to chromosome 2p25.1-p24.3. Hum Genet. 2006;118:605–10.PubMedCrossRef
92.
go back to reference Knight HM, Maclean A, Irfan M, Naeem F, Cass S, Pickard BS, et al. Homozygosity mapping in a family presenting with schizophrenia, epilepsy and hearing impairment. Eur J Hum Genet. 2008;16:750–8.PubMedCrossRef Knight HM, Maclean A, Irfan M, Naeem F, Cass S, Pickard BS, et al. Homozygosity mapping in a family presenting with schizophrenia, epilepsy and hearing impairment. Eur J Hum Genet. 2008;16:750–8.PubMedCrossRef
93.
go back to reference Chen CP, Lin SP, Chern SR, Wu PS, Chang SD, Ng SH, et al. A de novo 4.4-Mb microdeletion in 2p24.3 → p24.2 in a girl with bilateral hearing impairment, microcephaly, digit abnormalities and Feingold syndrome. Eur J Med Genet. 2012;55:666–669. Chen CP, Lin SP, Chern SR, Wu PS, Chang SD, Ng SH, et al. A de novo 4.4-Mb microdeletion in 2p24.3 → p24.2 in a girl with bilateral hearing impairment, microcephaly, digit abnormalities and Feingold syndrome. Eur J Med Genet. 2012;55:666–669.
94.
go back to reference Girotto G, Pirastu N, Sorice R, Biino G, Campbell H, d’Adamo AP, et al. Hearing function and thresholds: a genome-wide association study in European isolated populations identifies new loci and pathways. J Med Genet. 2011;48:369–74.PubMedCrossRef Girotto G, Pirastu N, Sorice R, Biino G, Campbell H, d’Adamo AP, et al. Hearing function and thresholds: a genome-wide association study in European isolated populations identifies new loci and pathways. J Med Genet. 2011;48:369–74.PubMedCrossRef
95.
go back to reference Girotto G, Vuckovic D, Buniello A, Lorente-Cánovas B, Lewis M, Gasparini P, et al. Expression and replication studies to identify new candidate genes involved in normal hearing function. PLoS One. 2014;9. Girotto G, Vuckovic D, Buniello A, Lorente-Cánovas B, Lewis M, Gasparini P, et al. Expression and replication studies to identify new candidate genes involved in normal hearing function. PLoS One. 2014;9.
96.
go back to reference Hildebrand MS, Avenarius MR, Smith RJ. CATSPER-Related Male Infertility. GeneReviews® [Internet]. 2009. Hildebrand MS, Avenarius MR, Smith RJ. CATSPER-Related Male Infertility. GeneReviews® [Internet]. 2009.
97.
go back to reference Rehman AU, Morell RJ, Belyantseva IA, Khan SY, Boger ET, Shahzad M, et al. Targeted capture and next-generation sequencing identifies C9orf75, encoding taperin, as the mutated gene in nonsyndromic deafness DFNB79. SAm J Hum Genet. 2010;86:378–88.CrossRef Rehman AU, Morell RJ, Belyantseva IA, Khan SY, Boger ET, Shahzad M, et al. Targeted capture and next-generation sequencing identifies C9orf75, encoding taperin, as the mutated gene in nonsyndromic deafness DFNB79. SAm J Hum Genet. 2010;86:378–88.CrossRef
98.
go back to reference Liu X, Zhao M, Xie Y, Li P, Wang O, Zhou B, et al. Null mutation of the Fascin2 Gene by TALEN leading to progressive hearing loss and retinal degeneration in C57BL/6 J mice. G3 (Bethesda). 2018;8:3221–30. Liu X, Zhao M, Xie Y, Li P, Wang O, Zhou B, et al. Null mutation of the Fascin2 Gene by TALEN leading to progressive hearing loss and retinal degeneration in C57BL/6 J mice. G3 (Bethesda). 2018;8:3221–30.
99.
go back to reference Ohmen J, Kang EY, Li X, Joo JW, Hormozdiari F, Zheng QY, et al. Genome-wide association study for age-related hearing loss (AHL) in the mouse: a meta-analysis. J Assoc Res Otolaryngol. 2014;15:335–52.PubMedPubMedCentralCrossRef Ohmen J, Kang EY, Li X, Joo JW, Hormozdiari F, Zheng QY, et al. Genome-wide association study for age-related hearing loss (AHL) in the mouse: a meta-analysis. J Assoc Res Otolaryngol. 2014;15:335–52.PubMedPubMedCentralCrossRef
100.
go back to reference Avenarius MR, Saylor KW, Lundeberg MR, Wilmarth PA, Shin JB, Spinelli KJ, et al. Correlation of actin crosslinker and capper expression levels with stereocilia growth phases. Mol Cell Proteomics. 2014;13:606–20.PubMedCrossRef Avenarius MR, Saylor KW, Lundeberg MR, Wilmarth PA, Shin JB, Spinelli KJ, et al. Correlation of actin crosslinker and capper expression levels with stereocilia growth phases. Mol Cell Proteomics. 2014;13:606–20.PubMedCrossRef
101.
go back to reference Khan SY, Riazuddin S, Shahzad M, Ahmed N, Zafar AU, Rehman AU, et al. DFNB79: reincarnation of a nonsyndromic deafness locus on chromosome 9q34.3. Eur J Hum Genet. 2010;18:125–9.PubMedCrossRef Khan SY, Riazuddin S, Shahzad M, Ahmed N, Zafar AU, Rehman AU, et al. DFNB79: reincarnation of a nonsyndromic deafness locus on chromosome 9q34.3. Eur J Hum Genet. 2010;18:125–9.PubMedCrossRef
102.
go back to reference Li Y, Pohl E, Boulouiz R, Schraders M, Nürnberg G, Charif M, et al. Mutations in TPRN cause a progressive form of autosomal-recessive nonsyndromic hearing loss. Am J Hum Genet. 2010;86:479–84.PubMedPubMedCentralCrossRef Li Y, Pohl E, Boulouiz R, Schraders M, Nürnberg G, Charif M, et al. Mutations in TPRN cause a progressive form of autosomal-recessive nonsyndromic hearing loss. Am J Hum Genet. 2010;86:479–84.PubMedPubMedCentralCrossRef
103.
go back to reference Chen WC, Xue HZ, Hsu YL, Liu Q, Patel S, Davis RL. Complex distribution patterns of voltage-gated calcium channel α-subunits in the spiral ganglion. Hear Res. 2011;278:52–68.PubMedPubMedCentralCrossRef Chen WC, Xue HZ, Hsu YL, Liu Q, Patel S, Davis RL. Complex distribution patterns of voltage-gated calcium channel α-subunits in the spiral ganglion. Hear Res. 2011;278:52–68.PubMedPubMedCentralCrossRef
104.
go back to reference Alagramam KN, Stepanyan R, Jamesdaniel S, Chen DHC, Davis RR. Noise exposure immediately activates cochlear mitogen-activated protein kinase signaling. Noise Health. 2014;16:400–9.PubMedCrossRef Alagramam KN, Stepanyan R, Jamesdaniel S, Chen DHC, Davis RR. Noise exposure immediately activates cochlear mitogen-activated protein kinase signaling. Noise Health. 2014;16:400–9.PubMedCrossRef
105.
go back to reference Dunbar LA, Patni P, Aguilar C, Mburu P, Corns L, Wells HR, et al. Clarin-2 is essential for hearing by maintaining stereocilia integrity and function. EMBO Mol Med. 2019;11. Dunbar LA, Patni P, Aguilar C, Mburu P, Corns L, Wells HR, et al. Clarin-2 is essential for hearing by maintaining stereocilia integrity and function. EMBO Mol Med. 2019;11.
106.
go back to reference Wu CC, Brugeaud A, Seist R, Lin HC, Yeh WH, Petrillo M, et al. Altered expression of genes regulating inflammation and synaptogenesis during regrowth of afferent neurons to cochlear hair cells. PLoS One. 2020;15 10 October. Wu CC, Brugeaud A, Seist R, Lin HC, Yeh WH, Petrillo M, et al. Altered expression of genes regulating inflammation and synaptogenesis during regrowth of afferent neurons to cochlear hair cells. PLoS One. 2020;15 10 October.
107.
go back to reference Geng R, Geller SF, Hayashi T, Ray CA, Reh TA, Bermingham-McDonogh O, et al. Usher syndrome IIIA gene clarin-1 is essential for hair cell function and associated neural activation. Hum Mol Genet. 2009;18:2748–60.PubMedPubMedCentralCrossRef Geng R, Geller SF, Hayashi T, Ray CA, Reh TA, Bermingham-McDonogh O, et al. Usher syndrome IIIA gene clarin-1 is essential for hair cell function and associated neural activation. Hum Mol Genet. 2009;18:2748–60.PubMedPubMedCentralCrossRef
108.
go back to reference Carlton AJ, Halford J, Underhill A, Jeng JY, Avenarius MR, Gilbert ML, et al. Loss of Baiap2l2 destabilizes the transducing stereocilia of cochlear hair cells and leads to deafness. J Physiol. 2021;599:1173–98.PubMedCrossRef Carlton AJ, Halford J, Underhill A, Jeng JY, Avenarius MR, Gilbert ML, et al. Loss of Baiap2l2 destabilizes the transducing stereocilia of cochlear hair cells and leads to deafness. J Physiol. 2021;599:1173–98.PubMedCrossRef
110.
go back to reference Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013; SUPPL.76. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013; SUPPL.76.
111.
go back to reference Jamesdaniel S, Hu B, Kermany MH, Jiang H, Ding D, Coling D, et al. Noise induced changes in the expression of p38/MAPK signaling proteins in the sensory epithelium of the inner ear. J Proteomics. 2011;75:410–24.PubMedPubMedCentralCrossRef Jamesdaniel S, Hu B, Kermany MH, Jiang H, Ding D, Coling D, et al. Noise induced changes in the expression of p38/MAPK signaling proteins in the sensory epithelium of the inner ear. J Proteomics. 2011;75:410–24.PubMedPubMedCentralCrossRef
112.
go back to reference Setz C, Brand Y, Radojevic V, Hanusek C, Mullen PJ, Levano S, et al. Matrix metalloproteinases 2 and 9 in the cochlea: expression and activity after aminoglycoside exposition. Neuroscience. 2011;181:28–39.PubMedCrossRef Setz C, Brand Y, Radojevic V, Hanusek C, Mullen PJ, Levano S, et al. Matrix metalloproteinases 2 and 9 in the cochlea: expression and activity after aminoglycoside exposition. Neuroscience. 2011;181:28–39.PubMedCrossRef
113.
go back to reference Brown RM, Nelson JC, Zhang H, Kiernan AE, Groves AK. Notch-mediated lateral induction is necessary to maintain vestibular prosensory identity during inner ear development. Dev Biol. 2020;462:74–84.PubMedPubMedCentralCrossRef Brown RM, Nelson JC, Zhang H, Kiernan AE, Groves AK. Notch-mediated lateral induction is necessary to maintain vestibular prosensory identity during inner ear development. Dev Biol. 2020;462:74–84.PubMedPubMedCentralCrossRef
114.
go back to reference Martelletti E, Ingham NJ, Houston O, Pass JC, Chen J, Marcotti W, et al. Synaptojanin2 mutation causes progressive high-frequency hearing loss in mice. Front Cell Neurosci. 2020;14. Martelletti E, Ingham NJ, Houston O, Pass JC, Chen J, Marcotti W, et al. Synaptojanin2 mutation causes progressive high-frequency hearing loss in mice. Front Cell Neurosci. 2020;14.
115.
go back to reference Hanke MS, Kief S, Leuwer R, Koch U, Moll I, Brandner JM. In vitro isolation and cell culture of vestibular inner ear melanocytes. Audiol Neurotol. 2005;10:191–200.CrossRef Hanke MS, Kief S, Leuwer R, Koch U, Moll I, Brandner JM. In vitro isolation and cell culture of vestibular inner ear melanocytes. Audiol Neurotol. 2005;10:191–200.CrossRef
116.
go back to reference Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.PubMedPubMedCentralCrossRef Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.PubMedPubMedCentralCrossRef
117.
go back to reference Liu W, Luque M, Li H, Schrott-Fischer A, Glueckert R, Tylstedt S, et al. Spike generators and cell signaling in the human auditory nerve: an ultrastructural, super-resolution, and gene hybridization study. Front Cell Neurosci. 2021;15. Liu W, Luque M, Li H, Schrott-Fischer A, Glueckert R, Tylstedt S, et al. Spike generators and cell signaling in the human auditory nerve: an ultrastructural, super-resolution, and gene hybridization study. Front Cell Neurosci. 2021;15.
118.
go back to reference Katsuno T, Belyantseva IA, Cartagena-Rivera AX, Ohta K, Crump SM, Petralia RS, et al. TRIOBP-5 sculpts stereocilia rootlets and stiffens supporting cells enabling hearing. JCI Insight. 2019;4. Katsuno T, Belyantseva IA, Cartagena-Rivera AX, Ohta K, Crump SM, Petralia RS, et al. TRIOBP-5 sculpts stereocilia rootlets and stiffens supporting cells enabling hearing. JCI Insight. 2019;4.
119.
go back to reference Tadjuidje E, Hegde RS. The eyes absent proteins in development and disease. Cell Mol Life Sci. 2013;70:1897–913.PubMedCrossRef Tadjuidje E, Hegde RS. The eyes absent proteins in development and disease. Cell Mol Life Sci. 2013;70:1897–913.PubMedCrossRef
120.
go back to reference Depreux FFS, Darrow K, Conner DA, Eavey RD, Liberman MC, Seidman CE, et al. Eya4-deficient mice are a model for heritable otitis media. J Clin Invest. 2008;118:651–8.PubMedPubMedCentral Depreux FFS, Darrow K, Conner DA, Eavey RD, Liberman MC, Seidman CE, et al. Eya4-deficient mice are a model for heritable otitis media. J Clin Invest. 2008;118:651–8.PubMedPubMedCentral
121.
go back to reference Montesinos ML, Castellano-Muñoz M, García-Junco-Clemente P, Fernández-Chacón R. Recycling and EH domain proteins at the synapse. Brain Res Rev. 2005;49:416–28.PubMedCrossRef Montesinos ML, Castellano-Muñoz M, García-Junco-Clemente P, Fernández-Chacón R. Recycling and EH domain proteins at the synapse. Brain Res Rev. 2005;49:416–28.PubMedCrossRef
122.
go back to reference Gong TWL, Huang L, Warner SJ, Lomax MI. Characterization of the human UBE3B gene: structure, expression, evolution, and alternative splicing. Genomics. 2003;82:143–52.PubMedCrossRef Gong TWL, Huang L, Warner SJ, Lomax MI. Characterization of the human UBE3B gene: structure, expression, evolution, and alternative splicing. Genomics. 2003;82:143–52.PubMedCrossRef
123.
go back to reference Braganza A, Li J, Zeng X, Yates NA, Dey NB, Andrews J, et al. UBE3B is a calmodulin-regulated, mitochondrion-associated E3 ubiquitin ligase. J Biol Chem. 2017;292:2470–84.PubMedCrossRef Braganza A, Li J, Zeng X, Yates NA, Dey NB, Andrews J, et al. UBE3B is a calmodulin-regulated, mitochondrion-associated E3 ubiquitin ligase. J Biol Chem. 2017;292:2470–84.PubMedCrossRef
124.
go back to reference Zou D, Huang J, Wu X, Li L. Metabotropic glutamate subtype 5 receptors modulate fear-conditioning induced enhancement of prepulse inhibition in rats. Neuropharmacology. 2007;52:476–86.PubMedCrossRef Zou D, Huang J, Wu X, Li L. Metabotropic glutamate subtype 5 receptors modulate fear-conditioning induced enhancement of prepulse inhibition in rats. Neuropharmacology. 2007;52:476–86.PubMedCrossRef
125.
go back to reference Peng K, Wang X, Wang Y, Li D, Huang H, Lu Y. Mechanisms underlying enhancement of spontaneous glutamate release by group I mGluRs at a central auditory synapse. J Neurosci. 2020;40:7027–42.PubMedPubMedCentralCrossRef Peng K, Wang X, Wang Y, Li D, Huang H, Lu Y. Mechanisms underlying enhancement of spontaneous glutamate release by group I mGluRs at a central auditory synapse. J Neurosci. 2020;40:7027–42.PubMedPubMedCentralCrossRef
127.
go back to reference Grandi FC, De Tomasi L, Mustapha M. Single-cell RNA analysis of type I spiral ganglion neurons reveals a Lmx1a population in the cochlea. Front Mol Neurosci. 2020;13. Grandi FC, De Tomasi L, Mustapha M. Single-cell RNA analysis of type I spiral ganglion neurons reveals a Lmx1a population in the cochlea. Front Mol Neurosci. 2020;13.
128.
go back to reference Davis RL, Liu Q. Complex primary afferents: what the distribution of electrophysiologically-relevant phenotypes within the spiral ganglion tells us about peripheral neural coding. Hear Res. 2011;276:34–43.PubMedPubMedCentralCrossRef Davis RL, Liu Q. Complex primary afferents: what the distribution of electrophysiologically-relevant phenotypes within the spiral ganglion tells us about peripheral neural coding. Hear Res. 2011;276:34–43.PubMedPubMedCentralCrossRef
129.
go back to reference Doucet-Beaupré H, Ang SL, Lévesque M. Cell fate determination, neuronal maintenance and disease state: the emerging role of transcription factors Lmx1a and Lmx1b. FEBS Lett. 2015;589:3727–38.PubMedCrossRef Doucet-Beaupré H, Ang SL, Lévesque M. Cell fate determination, neuronal maintenance and disease state: the emerging role of transcription factors Lmx1a and Lmx1b. FEBS Lett. 2015;589:3727–38.PubMedCrossRef
130.
go back to reference Koo SK, Hill JK, Hwang CH, Lin ZS, Millen KJ, Wu DK. Lmx1a maintains proper neurogenic, sensory, and non-sensory domains in the mammalian inner ear. Dev Biol. 2009;333:14–25.PubMedPubMedCentralCrossRef Koo SK, Hill JK, Hwang CH, Lin ZS, Millen KJ, Wu DK. Lmx1a maintains proper neurogenic, sensory, and non-sensory domains in the mammalian inner ear. Dev Biol. 2009;333:14–25.PubMedPubMedCentralCrossRef
131.
go back to reference Nichols DH, Bouma JE, Kopecky BJ, Jahan I, Beisel KW, He DZZ, et al. Interaction with ectopic cochlear crista sensory epithelium disrupts basal cochlear sensory epithelium development in Lmx1a mutant mice. Cell Tiss Res. 2020;380:435–48.CrossRef Nichols DH, Bouma JE, Kopecky BJ, Jahan I, Beisel KW, He DZZ, et al. Interaction with ectopic cochlear crista sensory epithelium disrupts basal cochlear sensory epithelium development in Lmx1a mutant mice. Cell Tiss Res. 2020;380:435–48.CrossRef
132.
go back to reference Huang Y, Hill J, Yatteau A, Wong L, Jiang T, Petrovic J, et al. Reciprocal negative regulation between Lmx1a and Lmo4 is required for inner ear formation. J Neurosci. 2018;38:5429–40.PubMedPubMedCentralCrossRef Huang Y, Hill J, Yatteau A, Wong L, Jiang T, Petrovic J, et al. Reciprocal negative regulation between Lmx1a and Lmo4 is required for inner ear formation. J Neurosci. 2018;38:5429–40.PubMedPubMedCentralCrossRef
133.
go back to reference Nichols DH, Pauley S, Jahan I, Beisel KW, Millen KJ, Fritzsch B. Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis. Cell Tiss Res. 2008;334:339–58.CrossRef Nichols DH, Pauley S, Jahan I, Beisel KW, Millen KJ, Fritzsch B. Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis. Cell Tiss Res. 2008;334:339–58.CrossRef
134.
go back to reference Breitenbach M, Rinnerthaler M, Weber M, Breitenbach-Koller H, Karl T, Cullen P, et al. The defense and signaling role of NADPH oxidases in eukaryotic cells: review. Wien Med Wochenschr. 2018;168:286–99.PubMedPubMedCentralCrossRef Breitenbach M, Rinnerthaler M, Weber M, Breitenbach-Koller H, Karl T, Cullen P, et al. The defense and signaling role of NADPH oxidases in eukaryotic cells: review. Wien Med Wochenschr. 2018;168:286–99.PubMedPubMedCentralCrossRef
135.
go back to reference Auer S, Rinnerthaler M, Bischof J, Streubel MK, Breitenbach-Koller H, Geisberger R, et al. The human NADPH oxidase, Nox4, regulates cytoskeletal organization in two cancer cell lines, HepG2 and SH-SY5Y. Front Oncol. 2017;7 MAY. Auer S, Rinnerthaler M, Bischof J, Streubel MK, Breitenbach-Koller H, Geisberger R, et al. The human NADPH oxidase, Nox4, regulates cytoskeletal organization in two cancer cell lines, HepG2 and SH-SY5Y. Front Oncol. 2017;7 MAY.
136.
go back to reference Loh PR, Tucker G, Bulik-Sullivan BK, Vilhjálmsson BJ, Finucane HK, Salem RM, et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Gen. 2015;47:284–90.CrossRef Loh PR, Tucker G, Bulik-Sullivan BK, Vilhjálmsson BJ, Finucane HK, Salem RM, et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Gen. 2015;47:284–90.CrossRef
137.
go back to reference Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA, Müller U, et al. Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature. 2007;449:87–91.PubMedCrossRef Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA, Müller U, et al. Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature. 2007;449:87–91.PubMedCrossRef
138.
go back to reference Bork JM, Peters LM, Riazuddin S, Bernstein SL, Ahmed ZM, Ness SL, et al. Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH23. Am J Hum Genet. 2001;68:26–37.PubMedCrossRef Bork JM, Peters LM, Riazuddin S, Bernstein SL, Ahmed ZM, Ness SL, et al. Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH23. Am J Hum Genet. 2001;68:26–37.PubMedCrossRef
139.
go back to reference Nadol JB, Young Y-S, Glynn RJ. Survival of spiral ganglion cells in profound sensorineural hearing loss: implications for cochlear implantation. Ann Otol Rhinol Laryngol. 1989;98:411–6.PubMedCrossRef Nadol JB, Young Y-S, Glynn RJ. Survival of spiral ganglion cells in profound sensorineural hearing loss: implications for cochlear implantation. Ann Otol Rhinol Laryngol. 1989;98:411–6.PubMedCrossRef
140.
go back to reference Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci. 2009;29:14077–85.PubMedPubMedCentralCrossRef Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci. 2009;29:14077–85.PubMedPubMedCentralCrossRef
141.
go back to reference Chen H, Xing Y, Xia L, Chen Z, Yin S, Wang J. AAV-mediated NT-3 overexpression protects cochleae against noise-induced synaptopathy. Gene Ther. 2018;25:251–9.PubMedPubMedCentralCrossRef Chen H, Xing Y, Xia L, Chen Z, Yin S, Wang J. AAV-mediated NT-3 overexpression protects cochleae against noise-induced synaptopathy. Gene Ther. 2018;25:251–9.PubMedPubMedCentralCrossRef
142.
go back to reference Suzuki J, Corfas G, Liberman MC. Round-window delivery of neurotrophin 3 regenerates cochlear synapses after acoustic overexposure. Sci Rep. 2016;6. Suzuki J, Corfas G, Liberman MC. Round-window delivery of neurotrophin 3 regenerates cochlear synapses after acoustic overexposure. Sci Rep. 2016;6.
143.
go back to reference Sly DJ, Campbell L, Uschakov A, Saief ST, Lam M, O’Leary SJ. Applying neurotrophins to the round window rescues auditory function and reduces inner hair cell synaptopathy after noise-induced hearing loss. Otol Neurotol. 2016;37:1223–30.PubMedCrossRef Sly DJ, Campbell L, Uschakov A, Saief ST, Lam M, O’Leary SJ. Applying neurotrophins to the round window rescues auditory function and reduces inner hair cell synaptopathy after noise-induced hearing loss. Otol Neurotol. 2016;37:1223–30.PubMedCrossRef
144.
go back to reference Ernfors P, Merlio J-P, Persson H. Cells Expressing mRNA for neurotrophins and their receptors during embryonic rat development. Eur J Neurosci. 1992;4:1140–58.PubMedCrossRef Ernfors P, Merlio J-P, Persson H. Cells Expressing mRNA for neurotrophins and their receptors during embryonic rat development. Eur J Neurosci. 1992;4:1140–58.PubMedCrossRef
145.
go back to reference Qun LX, Pirvola U, Saarma M, Ylikoski J. Neurotrophic factors in the auditory periphery. Ann N Y Acad Sci. 1999;884:292–304.PubMedCrossRef Qun LX, Pirvola U, Saarma M, Ylikoski J. Neurotrophic factors in the auditory periphery. Ann N Y Acad Sci. 1999;884:292–304.PubMedCrossRef
146.
go back to reference Pirvola U, Arumäe U, Moshnyakov M, Palgi J, Saarma M, Ylikoski J. Coordinated expression and function of neurotrophins and their receptors in the rat inner ear during target innervation. Hear Res. 1994;75:131–44.PubMedCrossRef Pirvola U, Arumäe U, Moshnyakov M, Palgi J, Saarma M, Ylikoski J. Coordinated expression and function of neurotrophins and their receptors in the rat inner ear during target innervation. Hear Res. 1994;75:131–44.PubMedCrossRef
147.
go back to reference Ylikoski J, Pirvola U, Moshnyakov M, Palgi J, Arumäe U, Saarma M. Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear. Hear Res. 1993;65:69–78.PubMedCrossRef Ylikoski J, Pirvola U, Moshnyakov M, Palgi J, Arumäe U, Saarma M. Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear. Hear Res. 1993;65:69–78.PubMedCrossRef
148.
go back to reference Pirvola U, Hallböök F, Xing-Qun L, Virkkala J, Saarma M, Ylikoski J. Expression of neurotrophins and Trk receptors in the developing, adult, and regenerating avian cochlea. J Neurobiol. 1997;33:1019–33.PubMedCrossRef Pirvola U, Hallböök F, Xing-Qun L, Virkkala J, Saarma M, Ylikoski J. Expression of neurotrophins and Trk receptors in the developing, adult, and regenerating avian cochlea. J Neurobiol. 1997;33:1019–33.PubMedCrossRef
149.
go back to reference Arimura N, Kimura T, Nakamuta S, Taya S, Funahashi Y, Hattori A, et al. Anterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27. Dev Cell. 2009;16:675–86.PubMedCrossRef Arimura N, Kimura T, Nakamuta S, Taya S, Funahashi Y, Hattori A, et al. Anterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27. Dev Cell. 2009;16:675–86.PubMedCrossRef
150.
go back to reference Shin JB, Longo-Guess CM, Gagnon LH, Saylor KW, Dumont RA, Spinelli KJ, et al. The R109H variant of fascin-2, a developmentally regulated actin crosslinker in hair-cell stereocilia, underlies early-onset hearing loss of DBA/2 J mice. J Neurosci. 2010;30:9683–94.PubMedPubMedCentralCrossRef Shin JB, Longo-Guess CM, Gagnon LH, Saylor KW, Dumont RA, Spinelli KJ, et al. The R109H variant of fascin-2, a developmentally regulated actin crosslinker in hair-cell stereocilia, underlies early-onset hearing loss of DBA/2 J mice. J Neurosci. 2010;30:9683–94.PubMedPubMedCentralCrossRef
151.
go back to reference Gates GA, Couropmitree NN, Myers RH. Genetic associations in age-related hearing thresholds. Arch Otolaryngol Head Neck Surg. 1999;125:654–9.PubMedCrossRef Gates GA, Couropmitree NN, Myers RH. Genetic associations in age-related hearing thresholds. Arch Otolaryngol Head Neck Surg. 1999;125:654–9.PubMedCrossRef
152.
go back to reference Cotanche DA. Structural recovery from sound and aminoglycoside damage in the avian cochlea. Audiol Neurotol. 1999;4:271–85.CrossRef Cotanche DA. Structural recovery from sound and aminoglycoside damage in the avian cochlea. Audiol Neurotol. 1999;4:271–85.CrossRef
154.
go back to reference Bernabeu E, Canela-Xandri O, Rawlik K, Talenti A, Prendergast J, Tenesa A. Sex differences in genetic architecture in the UK Biobank. Nat Genet. 2021;53:1283–9.PubMedCrossRef Bernabeu E, Canela-Xandri O, Rawlik K, Talenti A, Prendergast J, Tenesa A. Sex differences in genetic architecture in the UK Biobank. Nat Genet. 2021;53:1283–9.PubMedCrossRef
155.
go back to reference Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Medicine. 2015;12:1–10.CrossRef Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Medicine. 2015;12:1–10.CrossRef
156.
go back to reference Hall SJ. The development of a new English sentence in noise test and an English number recognition test. MSc thesis: University of Southampton; 2006. Hall SJ. The development of a new English sentence in noise test and an English number recognition test. MSc thesis: University of Southampton; 2006.
157.
go back to reference UK Biobank Hearing “Speech-in-Noise” Test. UK; 2012. UK Biobank Hearing “Speech-in-Noise” Test. UK; 2012.
158.
go back to reference Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for genome-wide association analysis. Bioinformatics. 2007;23:1294–6.PubMedCrossRef Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for genome-wide association analysis. Bioinformatics. 2007;23:1294–6.PubMedCrossRef
159.
go back to reference R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2019. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2019.
160.
go back to reference Wain LV, Shrine N, Miller S, Jackson VE, Ntalla I, Artigas MS, et al. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet Respir Med. 2015;3:769–81.PubMedPubMedCentralCrossRef Wain LV, Shrine N, Miller S, Jackson VE, Ntalla I, Artigas MS, et al. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet Respir Med. 2015;3:769–81.PubMedPubMedCentralCrossRef
161.
go back to reference Bycroft C, Freeman C, Petkova D, Band G, Elliott L, Sharp K, et al. Genome-wide genetic data on ~ 500,000 UK Biobank participants. bioRxiv. 2017;:166298–166298. Bycroft C, Freeman C, Petkova D, Band G, Elliott L, Sharp K, et al. Genome-wide genetic data on ~ 500,000 UK Biobank participants. bioRxiv. 2017;:166298–166298.
162.
go back to reference McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Gen. 2016;48:1279–83.CrossRef McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Gen. 2016;48:1279–83.CrossRef
163.
go back to reference Bulik-Sullivan B, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Gen. 2015;47:291–5.CrossRef Bulik-Sullivan B, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Gen. 2015;47:291–5.CrossRef
164.
go back to reference Kitts A, Phan L, Ward M, Holmes JB. The Database of Short Genetic Variation (dbSNP). The NCBI Handbook [Internet]. 2013;:32. Kitts A, Phan L, Ward M, Holmes JB. The Database of Short Genetic Variation (dbSNP). The NCBI Handbook [Internet]. 2013;:32.
165.
go back to reference The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369:1318–30.PubMedCentralCrossRef The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369:1318–30.PubMedCentralCrossRef
166.
go back to reference MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017;45:D896–901.PubMedCrossRef MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017;45:D896–901.PubMedCrossRef
167.
go back to reference Ferreira MA, Vonk JM, Baurecht H, Marenholz I, Tian C, Hoffman JD, et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat Gen. 2017;49:1752–7.CrossRef Ferreira MA, Vonk JM, Baurecht H, Marenholz I, Tian C, Hoffman JD, et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat Gen. 2017;49:1752–7.CrossRef
168.
go back to reference Liu W, Schrott-Fischer A, Glueckert R, Benav H, Rask-Andersen H. The human “cochlear battery” – Claudin-11 barrier and ion transport proteins in the lateral wall of the cochlea. Front Mol Neurosci. 2017;10:239.PubMedPubMedCentralCrossRef Liu W, Schrott-Fischer A, Glueckert R, Benav H, Rask-Andersen H. The human “cochlear battery” – Claudin-11 barrier and ion transport proteins in the lateral wall of the cochlea. Front Mol Neurosci. 2017;10:239.PubMedPubMedCentralCrossRef
169.
go back to reference Tylstedt S, Kinnefors A, Rask-Andersen H. Neural interaction in the human spiral ganglion: a TEM study. Acta Otolaryngol. 1997;117:505–12.PubMedCrossRef Tylstedt S, Kinnefors A, Rask-Andersen H. Neural interaction in the human spiral ganglion: a TEM study. Acta Otolaryngol. 1997;117:505–12.PubMedCrossRef
170.
go back to reference Liu W, Boström M, Kinnefors A, Rask-Andersen H. Unique expression of connexins in the human cochlea. Hear Res. 2009;250:55–62.PubMedCrossRef Liu W, Boström M, Kinnefors A, Rask-Andersen H. Unique expression of connexins in the human cochlea. Hear Res. 2009;250:55–62.PubMedCrossRef
171.
go back to reference Liu W, Li H, Edin F, Brännström J, Glueckert R, Schrott-Fischer A, et al. Molecular composition and distribution of gap junctions in the sensory epithelium of the human cochlea—a super-resolution structured illumination microscopy (SR-SIM) study. Ups J Med Sci. 2017;122:160–70.PubMedPubMedCentralCrossRef Liu W, Li H, Edin F, Brännström J, Glueckert R, Schrott-Fischer A, et al. Molecular composition and distribution of gap junctions in the sensory epithelium of the human cochlea—a super-resolution structured illumination microscopy (SR-SIM) study. Ups J Med Sci. 2017;122:160–70.PubMedPubMedCentralCrossRef
173.
go back to reference Gustafsson MGL, Shao L, Carlton PM, Wang CJR, Golubovskaya IN, Cande WZ, et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J. 2008;94:4957–70.PubMedPubMedCentralCrossRef Gustafsson MGL, Shao L, Carlton PM, Wang CJR, Golubovskaya IN, Cande WZ, et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J. 2008;94:4957–70.PubMedPubMedCentralCrossRef
174.
go back to reference Liu W, Johansson Å, Rask-Andersen H. Rask-Andersen M. GWAS Catalog: A combined genome-wide association and molecular study of age-related hearing loss in H. sapiens; 2021. Liu W, Johansson Å, Rask-Andersen H. Rask-Andersen M. GWAS Catalog: A combined genome-wide association and molecular study of age-related hearing loss in H. sapiens; 2021.
Metadata
Title
A combined genome-wide association and molecular study of age-related hearing loss in H. sapiens
Authors
Wei Liu
Åsa Johansson
Helge Rask-Andersen
Mathias Rask-Andersen
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2021
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-021-02169-0

Other articles of this Issue 1/2021

BMC Medicine 1/2021 Go to the issue