Skip to main content
Top
Published in: BMC Medicine 1/2021

01-12-2021 | Diabetes Prevention | Research article

Choice of HbA1c threshold for identifying individuals at high risk of type 2 diabetes and implications for diabetes prevention programmes: a cohort study

Published in: BMC Medicine | Issue 1/2021

Login to get access

Abstract

Background

Type 2 diabetes (T2D) is common and increasing in prevalence. It is possible to prevent or delay T2D using lifestyle intervention programmes. Entry to these programmes is usually determined by a measure of glycaemia in the ‘intermediate’ range. This paper investigated the relationship between HbA1c and future diabetes risk and determined the impact of varying thresholds to identify those at high risk of developing T2D.

Methods

We studied 4227 participants without diabetes aged ≥ 40 years recruited to the Exeter 10,000 population cohort in South West England. HbA1c was measured at study recruitment with repeat HbA1c available as part of usual care. Absolute risk of developing diabetes within 5 years, defined by HbA1c ≥ 48 mmol/mol (6.5%), according to baseline HbA1c, was assessed by a flexible parametric survival model.

Results

The overall absolute 5-year risk (95% CI) of developing T2D in the cohort was 4.2% (3.6, 4.8%). This rose to 7.1% (6.1, 8.2%) in the 56% (n = 2358/4224) of participants classified ‘high-risk’ with HbA1c ≥ 39 mmol/mol (5.7%; ADA criteria). Under IEC criteria, HbA1c ≥ 42 mmol/mol (6.0%), 22% (n = 929/4277) of the cohort was classified high-risk with 5-year risk 14.9% (12.6, 17.2%). Those with the highest HbA1c values (44–47 mmol/mol [6.2–6.4%]) had much higher 5-year risk, 26.4% (22.0, 30.5%) compared with 2.1% (1.5, 2.6%) for 39–41 mmol/mol (5.7–5.9%) and 7.0% (5.4, 8.6%) for 42–43 mmol/mol (6.0–6.1%). Changing the entry criterion to prevention programmes from 39 to 42 mmol/mol (5.7–6.0%) reduced the proportion classified high-risk by 61%, and increased the positive predictive value (PPV) from 5.8 to 12.4% with negligible impact on the negative predictive value (NPV), 99.6% to 99.1%. Increasing the threshold further, to 44 mmol/mol (6.2%), reduced those classified high-risk by 59%, and markedly increased the PPV from 12.4 to 23.2% and had little impact on the NPV (99.1% to 98.5%).

Conclusions

A large proportion of people are identified as high-risk using current thresholds. Increasing the risk threshold markedly reduces the number of people that would be classified as high-risk and entered into prevention programmes, although this must be balanced against cases missed. Raising the entry threshold would allow limited intervention opportunities to be focused on those most likely to develop T2D.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.CrossRef Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.CrossRef
2.
go back to reference Zhou B, Lu Y, Hajifathalian K, Bentham J, Di Cesare M, Danaei G, et al. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387(10027):1513–30.CrossRef Zhou B, Lu Y, Hajifathalian K, Bentham J, Di Cesare M, Danaei G, et al. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387(10027):1513–30.CrossRef
3.
go back to reference Gray LJ, Troughton J, Khunti K, Davies MJ. Let’s Prevent Diabetes: from idea to implementation. Pract Diabetes. 2017;34(2):55–7.CrossRef Gray LJ, Troughton J, Khunti K, Davies MJ. Let’s Prevent Diabetes: from idea to implementation. Pract Diabetes. 2017;34(2):55–7.CrossRef
4.
go back to reference The Diabetes Prevention Program (DPP) Research Group. The Diabetes Prevention Program (DPP): description of lifestyle intervention. Diabetes Care. 2002;25:2165–71.CrossRef The Diabetes Prevention Program (DPP) Research Group. The Diabetes Prevention Program (DPP): description of lifestyle intervention. Diabetes Care. 2002;25:2165–71.CrossRef
5.
go back to reference Gillies CL, Abrams KR, Lambert PC, Cooper NJ, Sutton AJ, Hsu RT, et al. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. Br Med J. 2007;334(7588):299.CrossRef Gillies CL, Abrams KR, Lambert PC, Cooper NJ, Sutton AJ, Hsu RT, et al. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. Br Med J. 2007;334(7588):299.CrossRef
6.
go back to reference Barry E, Roberts S, Oke J, Vijayaraghavan S, Normansell R, Greenhalgh T. Efficacy and effectiveness of screen and treat policies in prevention of type 2 diabetes: Systematic review and meta-analysis of screening tests and interventions. BMJ. 2017;356:i6538.CrossRef Barry E, Roberts S, Oke J, Vijayaraghavan S, Normansell R, Greenhalgh T. Efficacy and effectiveness of screen and treat policies in prevention of type 2 diabetes: Systematic review and meta-analysis of screening tests and interventions. BMJ. 2017;356:i6538.CrossRef
7.
go back to reference Knowler W, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.CrossRef Knowler W, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.CrossRef
8.
go back to reference Lindström J, Peltonen M, Eriksson JG, Aunola S, Hämäläinen H, et al. Determinants for the effectiveness of lifestyle intervention in the Finnish Diabetes Prevention Study. Diabetes Care. 2008;31:854–62.CrossRef Lindström J, Peltonen M, Eriksson JG, Aunola S, Hämäläinen H, et al. Determinants for the effectiveness of lifestyle intervention in the Finnish Diabetes Prevention Study. Diabetes Care. 2008;31:854–62.CrossRef
9.
go back to reference Nathan DM, Barrett-Connor E, Crandall JP, Edelstein SL, Goldberg RB, Horton ES, et al. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2015;3:866–75.CrossRef Nathan DM, Barrett-Connor E, Crandall JP, Edelstein SL, Goldberg RB, Horton ES, et al. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2015;3:866–75.CrossRef
10.
go back to reference Wareham NJ. Mind the gap: efficacy versus effectiveness of lifestyle interventions to prevent diabetes. Lancet Diabetes Endocrinol. 2015;3(3):160–1.CrossRef Wareham NJ. Mind the gap: efficacy versus effectiveness of lifestyle interventions to prevent diabetes. Lancet Diabetes Endocrinol. 2015;3(3):160–1.CrossRef
11.
go back to reference Barry E, Roberts S, Finer S, Vijayaraghavan S, Greenhalgh T. Time to question the NHS diabetes prevention programme. BMJ. 2015;351:h4717.CrossRef Barry E, Roberts S, Finer S, Vijayaraghavan S, Greenhalgh T. Time to question the NHS diabetes prevention programme. BMJ. 2015;351:h4717.CrossRef
13.
go back to reference Roberts S, Barry E, Craig D, Airoldi M, Bevan G, Greenhalgh T. Preventing type 2 diabetes: systematic review of studies of cost-effectiveness of lifestyle programmes and metformin, with and without screening, for pre-diabetes. BMJ Open. 2017;7:e017184 BMJ Publishing Group.CrossRef Roberts S, Barry E, Craig D, Airoldi M, Bevan G, Greenhalgh T. Preventing type 2 diabetes: systematic review of studies of cost-effectiveness of lifestyle programmes and metformin, with and without screening, for pre-diabetes. BMJ Open. 2017;7:e017184 BMJ Publishing Group.CrossRef
15.
go back to reference National Institute for Health and Care Excellence. Type 2 diabetes prevention: population and community-level interventions. NICE guideline PH35; 2011. National Institute for Health and Care Excellence. Type 2 diabetes prevention: population and community-level interventions. NICE guideline PH35; 2011.
17.
go back to reference National Institute for Health and Care Excellence. PH38: type 2 diabetes: prevention in people at high risk. NICE guideline PH38; 2012. National Institute for Health and Care Excellence. PH38: type 2 diabetes: prevention in people at high risk. NICE guideline PH38; 2012.
18.
go back to reference Gray LJ, Taub NA, Khunti K, Gardiner E, Hiles S, Webb DR, et al. The Leicester Risk Assessment score for detecting undiagnosed type 2 diabetes and impaired glucose regulation for use in a multiethnic UK setting. Diabet Med. 2010;27:887–95.CrossRef Gray LJ, Taub NA, Khunti K, Gardiner E, Hiles S, Webb DR, et al. The Leicester Risk Assessment score for detecting undiagnosed type 2 diabetes and impaired glucose regulation for use in a multiethnic UK setting. Diabet Med. 2010;27:887–95.CrossRef
19.
go back to reference Griffin SJ, Little PS, Hales CN, Kinmonth AL, Wareham NJ. Diabetes risk score: towards earlier detection of type 2 diabetes in general practice. Diabetes Metab Res Rev. 2000;16(3):164–71.CrossRef Griffin SJ, Little PS, Hales CN, Kinmonth AL, Wareham NJ. Diabetes risk score: towards earlier detection of type 2 diabetes in general practice. Diabetes Metab Res Rev. 2000;16(3):164–71.CrossRef
20.
go back to reference Kilpatrick ES, Atkin SL. Using haemoglobin A1c to diagnose type 2 diabetes or to identify people at high risk of diabetes. BMJ. 2014;348:g2867.CrossRef Kilpatrick ES, Atkin SL. Using haemoglobin A1c to diagnose type 2 diabetes or to identify people at high risk of diabetes. BMJ. 2014;348:g2867.CrossRef
22.
go back to reference Morris DH, Khunti K, Achana F, Srinivasan B, Gray LJ, Davies MJ, et al. Progression rates from HbA1c 6.0-6.4% and other prediabetes definitions to type 2 diabetes: a meta-analysis. Diabetologia. 2013;56(7):1489–93.CrossRef Morris DH, Khunti K, Achana F, Srinivasan B, Gray LJ, Davies MJ, et al. Progression rates from HbA1c 6.0-6.4% and other prediabetes definitions to type 2 diabetes: a meta-analysis. Diabetologia. 2013;56(7):1489–93.CrossRef
23.
go back to reference Beulens J, Rutters F, Rydén L, Schnell O, Mellbin L, Hart H, et al. Risk and management of pre-diabetes. Eur J Prev Cardiol. 2019;26(2_suppl):47–54.CrossRef Beulens J, Rutters F, Rydén L, Schnell O, Mellbin L, Hart H, et al. Risk and management of pre-diabetes. Eur J Prev Cardiol. 2019;26(2_suppl):47–54.CrossRef
24.
go back to reference Schmidt MI, Bracco PA, Yudkin JS, Bensenor IM, Griep RH, Barreto SM, et al. Intermediate hyperglycaemia to predict progression to type 2 diabetes (ELSA-Brasil): an occupational cohort study in Brazil. Lancet Diabetes Endocrinol. 2019;7(4):267–77.CrossRef Schmidt MI, Bracco PA, Yudkin JS, Bensenor IM, Griep RH, Barreto SM, et al. Intermediate hyperglycaemia to predict progression to type 2 diabetes (ELSA-Brasil): an occupational cohort study in Brazil. Lancet Diabetes Endocrinol. 2019;7(4):267–77.CrossRef
25.
go back to reference Mostafa SA, Khunti K, Srinivasan BT, Webb D, Gray LJ, Davies MJ. The potential impact and optimal cut-points of using glycated haemoglobin, HbA1c, to detect people with impaired glucose regulation in a UK multi-ethnic cohort. Diabetes Res Clin Pract. 2010;90(1):100–8.CrossRef Mostafa SA, Khunti K, Srinivasan BT, Webb D, Gray LJ, Davies MJ. The potential impact and optimal cut-points of using glycated haemoglobin, HbA1c, to detect people with impaired glucose regulation in a UK multi-ethnic cohort. Diabetes Res Clin Pract. 2010;90(1):100–8.CrossRef
26.
go back to reference Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012;379(9833):2279–90.CrossRef Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012;379(9833):2279–90.CrossRef
27.
go back to reference NHS England. NHS England impact analysis of implementing NHS diabetes prevention programme, 2016 to 2021. 2016. NHS England. NHS England impact analysis of implementing NHS diabetes prevention programme, 2016 to 2021. 2016.
30.
go back to reference World Health Organisation. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia. 2006. World Health Organisation. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia. 2006.
33.
go back to reference Stokes J, Gellatly J, Bower P, Meacock R, Cotterill S, Sutton M, et al. Implementing a national diabetes prevention programme in England: lessons learned. BMC Health Serv Res. 2019;19(1):1–12.CrossRef Stokes J, Gellatly J, Bower P, Meacock R, Cotterill S, Sutton M, et al. Implementing a national diabetes prevention programme in England: lessons learned. BMC Health Serv Res. 2019;19(1):1–12.CrossRef
34.
go back to reference Chamnan P, Simmons RK, Forouhi NG, Luben RN, Khaw KT, Wareham NJ, et al. Incidence of type 2 diabetes using proposed HbA1c diagnostic criteria in the european prospective investigation of cancer-norfolk cohort: Implications for preventive strategies. Diabetes Care. 2011;34(4):950–6.CrossRef Chamnan P, Simmons RK, Forouhi NG, Luben RN, Khaw KT, Wareham NJ, et al. Incidence of type 2 diabetes using proposed HbA1c diagnostic criteria in the european prospective investigation of cancer-norfolk cohort: Implications for preventive strategies. Diabetes Care. 2011;34(4):950–6.CrossRef
35.
go back to reference Soulimane S, Simon D, Shaw J, Witte D, Zimmet P, Vol S, et al. HbA1c, fasting plasma glucose and the prediction of diabetes: Inter99, AusDiab and D.E.S.I.R. Diabetes Res Clin Pract. 2011;96(3):392–9.CrossRef Soulimane S, Simon D, Shaw J, Witte D, Zimmet P, Vol S, et al. HbA1c, fasting plasma glucose and the prediction of diabetes: Inter99, AusDiab and D.E.S.I.R. Diabetes Res Clin Pract. 2011;96(3):392–9.CrossRef
36.
go back to reference Smith JR, Greaves CJ, Thompson JL, Taylor RS, Jones M, Armstrong R, et al. The community-based prevention of diabetes (ComPoD) study: a randomised, waiting list controlled trial of a voluntary sector-led diabetes prevention programme. Int J Behav Nutr Phys Act. 2019;16(1):112.CrossRef Smith JR, Greaves CJ, Thompson JL, Taylor RS, Jones M, Armstrong R, et al. The community-based prevention of diabetes (ComPoD) study: a randomised, waiting list controlled trial of a voluntary sector-led diabetes prevention programme. Int J Behav Nutr Phys Act. 2019;16(1):112.CrossRef
37.
go back to reference Zhuo X, Zhang P, Kahn HS, Gregg EW. Cost-effectiveness of alternative thresholds of the fasting plasma glucose test to identify the target population for type 2 diabetes prevention in adults aged ≥45 years. Diabetes Care. 2013;36(12):3992–8.CrossRef Zhuo X, Zhang P, Kahn HS, Gregg EW. Cost-effectiveness of alternative thresholds of the fasting plasma glucose test to identify the target population for type 2 diabetes prevention in adults aged ≥45 years. Diabetes Care. 2013;36(12):3992–8.CrossRef
38.
go back to reference Thomas C, Sadler S, Breeze P, Squires H, Gillett M, Brennan A. Assessing the potential return on investment of the proposed UK NHS diabetes prevention programme in different population subgroups: an economic evaluation. BMJ Open. 2017;7(8):e014953.CrossRef Thomas C, Sadler S, Breeze P, Squires H, Gillett M, Brennan A. Assessing the potential return on investment of the proposed UK NHS diabetes prevention programme in different population subgroups: an economic evaluation. BMJ Open. 2017;7(8):e014953.CrossRef
39.
go back to reference Kumaravel B, Bachmann MO, Murray N, Dhatariya K, Fenech M, John WG, et al. Use of haemoglobin A1c to detect impaired fasting glucose or type 2 diabetes in a United Kingdom community based population. Diabetes Res Clin Pract. 2012;96(2):211–6.CrossRef Kumaravel B, Bachmann MO, Murray N, Dhatariya K, Fenech M, John WG, et al. Use of haemoglobin A1c to detect impaired fasting glucose or type 2 diabetes in a United Kingdom community based population. Diabetes Res Clin Pract. 2012;96(2):211–6.CrossRef
40.
go back to reference Schöttker B, Rathmann W, Herder C, Thorand B, Wilsgaard T, Njølstad I, et al. HbA1c levels in non-diabetic older adults - No J-shaped associations with primary cardiovascular events, cardiovascular and all-cause mortality after adjustment for confoundersin a meta-analysis of individual participant data from six cohort studies. BMC Med. 2016;14(1):1–17.CrossRef Schöttker B, Rathmann W, Herder C, Thorand B, Wilsgaard T, Njølstad I, et al. HbA1c levels in non-diabetic older adults - No J-shaped associations with primary cardiovascular events, cardiovascular and all-cause mortality after adjustment for confoundersin a meta-analysis of individual participant data from six cohort studies. BMC Med. 2016;14(1):1–17.CrossRef
41.
go back to reference Christensen DL, Witte DR, Kaduka L, Jørgensen ME, Borch-Johnsen K, Mohan V, et al. Moving to an A1C-based diagnosis of diabetes has a different impact on prevalence in different ethnic groups. Diabetes Care. 2010;33(3):580–2.CrossRef Christensen DL, Witte DR, Kaduka L, Jørgensen ME, Borch-Johnsen K, Mohan V, et al. Moving to an A1C-based diagnosis of diabetes has a different impact on prevalence in different ethnic groups. Diabetes Care. 2010;33(3):580–2.CrossRef
Metadata
Title
Choice of HbA1c threshold for identifying individuals at high risk of type 2 diabetes and implications for diabetes prevention programmes: a cohort study
Publication date
01-12-2021
Published in
BMC Medicine / Issue 1/2021
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-021-02054-w

Other articles of this Issue 1/2021

BMC Medicine 1/2021 Go to the issue