Skip to main content
Top
Published in: BMC Medicine 1/2021

01-12-2021 | Tuberculosis | Research article

The positive externalities of migrant-based TB control strategy in a Chinese urban population with internal migration: a transmission-dynamic modeling study

Authors: Chongguang Yang, Jian Kang, Liping Lu, Xiaoqin Guo, Xin Shen, Ted Cohen, Nicolas A. Menzies

Published in: BMC Medicine | Issue 1/2021

Login to get access

Abstract

Background

Large-scale rural-to-urban migration has changed the epidemiology of tuberculosis (TB) in large Chinese cities. We estimated the contribution of TB importation, reactivation of latent infection, and local transmission to new TB cases in Shanghai, and compared the potential impact of intervention options.

Methods

We developed a transmission dynamic model of TB for Songjiang District, Shanghai, which has experienced high migration over the past 25 years. We calibrated the model to local demographic data, TB notifications, and molecular epidemiologic studies. We estimated epidemiological drivers as well as future outcomes of current TB policies and compared this base-case scenario with scenarios describing additional targeted interventions focusing on migrants or vulnerable residents.

Results

The model captured key demographic and epidemiological features of TB among migrant and resident populations in Songjiang District, Shanghai. Between 2020 and 2035, we estimate that over 60% of TB cases will occur among migrants and that approximately 43% of these cases will result from recent infection. While TB incidence will decline under current policies, we estimate that additional interventions—including active screening and preventive treatment for migrants—could reduce TB incidence by an additional 20% by 2035.

Conclusions

Migrant-focused TB interventions could produce meaningful health benefits for migrants, as well as for young residents who receive indirect protection as a result of reduced TB transmission in Shanghai. Further studies to measure cost-effectiveness are needed to evaluate the feasibility of these interventions in Shanghai and similar urban centers experiencing high migration volumes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Technical Guidance Group of the Fifth National TB Epidemiological Survey; The Office of the Fifth National TB Epidemiological Survey. The fifth national tuberculosis epidemiological survey in 2010. Chin J Antituberculosis. 2012;34(8):485–508. Technical Guidance Group of the Fifth National TB Epidemiological Survey; The Office of the Fifth National TB Epidemiological Survey. The fifth national tuberculosis epidemiological survey in 2010. Chin J Antituberculosis. 2012;34(8):485–508.
2.
go back to reference Peng X. China's demographic history and future challenges. Science. 2011;333(6042):581–7.CrossRef Peng X. China's demographic history and future challenges. Science. 2011;333(6042):581–7.CrossRef
3.
go back to reference Wei X, Chen J, Chen P, Newell JN, Li H, Sun C, et al. Barriers to TB care for rural-to-urban migrant TB patients in Shanghai: a qualitative study. Tropical Med Int Health. 2009;14(7):754–60.CrossRef Wei X, Chen J, Chen P, Newell JN, Li H, Sun C, et al. Barriers to TB care for rural-to-urban migrant TB patients in Shanghai: a qualitative study. Tropical Med Int Health. 2009;14(7):754–60.CrossRef
4.
go back to reference Wang W, Jiang Q, Abdullah AS, Xu B. Barriers in accessing to tuberculosis care among non-residents in Shanghai: a descriptive study of delays in diagnosis. Eur J Pub Health. 2007;17(5):419–23.CrossRef Wang W, Jiang Q, Abdullah AS, Xu B. Barriers in accessing to tuberculosis care among non-residents in Shanghai: a descriptive study of delays in diagnosis. Eur J Pub Health. 2007;17(5):419–23.CrossRef
5.
go back to reference Wei X, Zou G, Yin J, et al. Providing financial incentives to rural-to-urban tuberculosis migrants in Shanghai: an intervention study. Infect Dis Poverty. 2012;1(1):9.CrossRef Wei X, Zou G, Yin J, et al. Providing financial incentives to rural-to-urban tuberculosis migrants in Shanghai: an intervention study. Infect Dis Poverty. 2012;1(1):9.CrossRef
6.
go back to reference Shen X, Xia Z, Li XQ, et al. Tuberculosis in an urban area in China: differences between urban migrants and local residents. PLoS One. 2012;7(11):e51133.CrossRef Shen X, Xia Z, Li XQ, et al. Tuberculosis in an urban area in China: differences between urban migrants and local residents. PLoS One. 2012;7(11):e51133.CrossRef
7.
go back to reference Li T, Du X, Shewade HD, Soe KT, Zhang H. What happens to migrant tuberculosis patients who are transferred out using a web-based system in China? PLoS One. 2018;13(11):e0206580.CrossRef Li T, Du X, Shewade HD, Soe KT, Zhang H. What happens to migrant tuberculosis patients who are transferred out using a web-based system in China? PLoS One. 2018;13(11):e0206580.CrossRef
8.
go back to reference Tobe RG, Xu L, Song P, Huang Y. The rural-to-urban migrant population in China: gloomy prospects for tuberculosis control. Biosci Trends. 2011;5(6):226–30.CrossRef Tobe RG, Xu L, Song P, Huang Y. The rural-to-urban migrant population in China: gloomy prospects for tuberculosis control. Biosci Trends. 2011;5(6):226–30.CrossRef
9.
go back to reference Li T, He XX, Chang ZR, et al. Impact of new migrant populations on the spatial distribution of tuberculosis in Beijing. Int J Tuberc Lung Dis. 2011;15(2):163–8 i-iii.PubMed Li T, He XX, Chang ZR, et al. Impact of new migrant populations on the spatial distribution of tuberculosis in Beijing. Int J Tuberc Lung Dis. 2011;15(2):163–8 i-iii.PubMed
10.
go back to reference Li X, Yang Q, Feng B, et al. Tuberculosis infection in rural labor migrants in Shenzhen, China: emerging challenge to tuberculosis control during urbanization. Sci Rep. 2017;7(1):4457.CrossRef Li X, Yang Q, Feng B, et al. Tuberculosis infection in rural labor migrants in Shenzhen, China: emerging challenge to tuberculosis control during urbanization. Sci Rep. 2017;7(1):4457.CrossRef
11.
go back to reference Li X, Li T, Tan S. Males, ages >/= 45 years, businessperson, floating population, and rural residents may be considered high-risk groups for tuberculosis infection in Guangzhou, China: a review of 136,394 tb confirmed cases. Rev Inst Med Trop Sao Paulo. 2013;55(5):366–8.CrossRef Li X, Li T, Tan S. Males, ages >/= 45 years, businessperson, floating population, and rural residents may be considered high-risk groups for tuberculosis infection in Guangzhou, China: a review of 136,394 tb confirmed cases. Rev Inst Med Trop Sao Paulo. 2013;55(5):366–8.CrossRef
12.
go back to reference Zhu M, Wang J, Dib HH, Wang Z. Enhancing the management of cross-regional transfer of floating tuberculosis cases by active follow-up and communication. Eur J Pub Health. 2012;22(4):577–82.CrossRef Zhu M, Wang J, Dib HH, Wang Z. Enhancing the management of cross-regional transfer of floating tuberculosis cases by active follow-up and communication. Eur J Pub Health. 2012;22(4):577–82.CrossRef
13.
go back to reference Jia ZW, Jia XW, Liu YX, et al. Spatial analysis of tuberculosis cases in migrants and permanent residents, Beijing, 2000-2006. Emerg Infect Dis. 2008;14(9):1413–9.CrossRef Jia ZW, Jia XW, Liu YX, et al. Spatial analysis of tuberculosis cases in migrants and permanent residents, Beijing, 2000-2006. Emerg Infect Dis. 2008;14(9):1413–9.CrossRef
14.
go back to reference Yang C, Lu L, Warren JL, et al. Internal migration and transmission dynamics of tuberculosis in Shanghai, China: an epidemiological, spatial, genomic analysis. Lancet Infect Dis. 2018;18(7):788–95.CrossRef Yang C, Lu L, Warren JL, et al. Internal migration and transmission dynamics of tuberculosis in Shanghai, China: an epidemiological, spatial, genomic analysis. Lancet Infect Dis. 2018;18(7):788–95.CrossRef
15.
go back to reference HuiMing He HL. Almanac of Songjiang. Shanghai: Shanghai Lexicographical Publishing House; 2000-2018. HuiMing He HL. Almanac of Songjiang. Shanghai: Shanghai Lexicographical Publishing House; 2000-2018.
17.
go back to reference Menzies NA, Cohen T, Hill AN, et al. Prospects for tuberculosis elimination in the United States: results of a transmission dynamic model. Am J Epidemiol. 2018;187(9):2011–20.CrossRef Menzies NA, Cohen T, Hill AN, et al. Prospects for tuberculosis elimination in the United States: results of a transmission dynamic model. Am J Epidemiol. 2018;187(9):2011–20.CrossRef
18.
go back to reference Menzies NA, Cohen T, Lin HH, Murray M, Salomon JA. Population health impact and cost-effectiveness of tuberculosis diagnosis with Xpert MTB/RIF: a dynamic simulation and economic evaluation. PLoS Med. 2012;9(11):e1001347.CrossRef Menzies NA, Cohen T, Lin HH, Murray M, Salomon JA. Population health impact and cost-effectiveness of tuberculosis diagnosis with Xpert MTB/RIF: a dynamic simulation and economic evaluation. PLoS Med. 2012;9(11):e1001347.CrossRef
22.
go back to reference Dowdy DW, Chaisson RE. The persistence of tuberculosis in the age of DOTS: reassessing the effect of case detection. Bull World Health Organ. 2009;87(4):296–304.CrossRef Dowdy DW, Chaisson RE. The persistence of tuberculosis in the age of DOTS: reassessing the effect of case detection. Bull World Health Organ. 2009;87(4):296–304.CrossRef
23.
go back to reference Behr MA, Warren SA, Salamon H, et al. Transmission of Mycobacterium tuberculosis from patients smear-negative for acid-fast bacilli. Lancet. 1999;353(9151):444–9.CrossRef Behr MA, Warren SA, Salamon H, et al. Transmission of Mycobacterium tuberculosis from patients smear-negative for acid-fast bacilli. Lancet. 1999;353(9151):444–9.CrossRef
24.
go back to reference Tostmann A, Kik SV, Kalisvaart NA, et al. Tuberculosis transmission by patients with smear-negative pulmonary tuberculosis in a large cohort in the Netherlands. Clin Infect Dis. 2008;47(9):1135–42.CrossRef Tostmann A, Kik SV, Kalisvaart NA, et al. Tuberculosis transmission by patients with smear-negative pulmonary tuberculosis in a large cohort in the Netherlands. Clin Infect Dis. 2008;47(9):1135–42.CrossRef
26.
go back to reference Sutherland I. The ten-year incidence of clinical tuberculosis following “conversion” in 2550 individuals aged 14 to 19 years. TSRU Progress Report 1968; The Hague: International Union Against Tuberculosis. Sutherland I. The ten-year incidence of clinical tuberculosis following “conversion” in 2550 individuals aged 14 to 19 years. TSRU Progress Report 1968; The Hague: International Union Against Tuberculosis.
27.
go back to reference Ferebee S, Mount F. Tuberculosis morbidity in a controlled trial of the prophylactic use of isoniazid among household contacts. Am Rev Respir Dis. 1962;85:490–510.PubMed Ferebee S, Mount F. Tuberculosis morbidity in a controlled trial of the prophylactic use of isoniazid among household contacts. Am Rev Respir Dis. 1962;85:490–510.PubMed
28.
go back to reference Andrews JR, Noubary F, Walensky RP, Cerda R, Losina E, Horsburgh CR. Risk of progression to active tuberculosis following reinfection with Mycobacterium tuberculosis. Clin Infect Dis. 2012;54(6):784–91.CrossRef Andrews JR, Noubary F, Walensky RP, Cerda R, Losina E, Horsburgh CR. Risk of progression to active tuberculosis following reinfection with Mycobacterium tuberculosis. Clin Infect Dis. 2012;54(6):784–91.CrossRef
29.
go back to reference Hong Kong Chest Service/Tuberculosis Research Centre, Madras/British Medical Research Council. A controlled trial of 2-month, 3-month, and 12-month regimens of chemotherapy for sputum-smear-negative pulmonary tuberculosis. Results at 60 months. Am Rev Respir Dis 1984;130(1):23–8. https://doi.org/10.1371/journal.pone.0017601. Hong Kong Chest Service/Tuberculosis Research Centre, Madras/British Medical Research Council. A controlled trial of 2-month, 3-month, and 12-month regimens of chemotherapy for sputum-smear-negative pulmonary tuberculosis. Results at 60 months. Am Rev Respir Dis 1984;130(1):23–8. https://​doi.​org/​10.​1371/​journal.​pone.​0017601.
30.
go back to reference Menzies D, Benedetti A, Paydar A, et al. Effect of duration and intermittency of rifampin on tuberculosis treatment outcomes: a systematic review and meta-analysis. PLoS Med. 2009;6(9):e1000146.CrossRef Menzies D, Benedetti A, Paydar A, et al. Effect of duration and intermittency of rifampin on tuberculosis treatment outcomes: a systematic review and meta-analysis. PLoS Med. 2009;6(9):e1000146.CrossRef
31.
go back to reference Espinal MA, Kim SJ, Suarez PG, et al. Standard short-course chemotherapy for drug-resistant tuberculosis: treatment outcomes in 6 countries. JAMA. 2000;283(19):2537–45.CrossRef Espinal MA, Kim SJ, Suarez PG, et al. Standard short-course chemotherapy for drug-resistant tuberculosis: treatment outcomes in 6 countries. JAMA. 2000;283(19):2537–45.CrossRef
32.
go back to reference Orenstein EW, Basu S, Shah NS, et al. Treatment outcomes among patients with multidrug-resistant tuberculosis: systematic review and meta-analysis. Lancet Infect Dis. 2009;9(3):153–61.CrossRef Orenstein EW, Basu S, Shah NS, et al. Treatment outcomes among patients with multidrug-resistant tuberculosis: systematic review and meta-analysis. Lancet Infect Dis. 2009;9(3):153–61.CrossRef
33.
go back to reference Campbell JR, Krot J, Elwood K, Cook V, Marra F. A systematic review on TST and IGRA tests used for diagnosis of LTBI in immigrants. Mol Diagn Ther. 2015;19(1):9–24.CrossRef Campbell JR, Krot J, Elwood K, Cook V, Marra F. A systematic review on TST and IGRA tests used for diagnosis of LTBI in immigrants. Mol Diagn Ther. 2015;19(1):9–24.CrossRef
34.
go back to reference Zhao G, Lu X, Zhou L, et al. Study on INH preventive therapy for patients with HIV/TB co-infection. J Public Health Prev Med. 2016;27(02):42–5. Zhao G, Lu X, Zhou L, et al. Study on INH preventive therapy for patients with HIV/TB co-infection. J Public Health Prev Med. 2016;27(02):42–5.
35.
go back to reference Yang Y, Zhao Q, Ning H, Huang H, Han P. Observation on the effectiveness of preventive treatment for tuberculosis infection in family close contacts. Chin J Modern Drug Appl. 2009;3(14):209–10. Yang Y, Zhao Q, Ning H, Huang H, Han P. Observation on the effectiveness of preventive treatment for tuberculosis infection in family close contacts. Chin J Modern Drug Appl. 2009;3(14):209–10.
36.
go back to reference Qi G, Ma X, Zhou C, Li C, Liu F. Analysis of tuberculosis preventive therapy implementation among freshmen in universities of Tongzhou district in Beijing. China J Antituberculosis. 2011;33(01):25–7. Qi G, Ma X, Zhou C, Li C, Liu F. Analysis of tuberculosis preventive therapy implementation among freshmen in universities of Tongzhou district in Beijing. China J Antituberculosis. 2011;33(01):25–7.
37.
go back to reference Liu Y, Tu D, An Y, ZHANG L. Control in university students in Beijing: preventive therapy for tuberculosis-infected persons. China J Antituberculosis. 2005;03:139–42. Liu Y, Tu D, An Y, ZHANG L. Control in university students in Beijing: preventive therapy for tuberculosis-infected persons. China J Antituberculosis. 2005;03:139–42.
38.
go back to reference Sterling TR, Villarino ME, Borisov AS, et al. Three months of rifapentine and isoniazid for latent tuberculosis infection. N Engl J Med. 2011;365(23):2155–66.CrossRef Sterling TR, Villarino ME, Borisov AS, et al. Three months of rifapentine and isoniazid for latent tuberculosis infection. N Engl J Med. 2011;365(23):2155–66.CrossRef
39.
go back to reference Smieja MJ, Marchetti CA, Cook DJ, Smaill FM. Isoniazid for preventing tuberculosis in non-HIV infected persons. Cochrane Database Syst Rev. 2000;2:CD001363. Smieja MJ, Marchetti CA, Cook DJ, Smaill FM. Isoniazid for preventing tuberculosis in non-HIV infected persons. Cochrane Database Syst Rev. 2000;2:CD001363.
40.
go back to reference WHO. Systematic screening for active tuberculosis: principles and recommendations. Geneva: World Health Organazation; 2013. WHO. Systematic screening for active tuberculosis: principles and recommendations. Geneva: World Health Organazation; 2013.
41.
go back to reference Eddelbuettel D, Francois R. Rcpp: seamless R and C plus plus integration. J Stat Softw. 2011;40(8):1–18.CrossRef Eddelbuettel D, Francois R. Rcpp: seamless R and C plus plus integration. J Stat Softw. 2011;40(8):1–18.CrossRef
42.
go back to reference Menzies NA, Soeteman DI, Pandya A, Kim JJ. Bayesian methods for calibrating health policy models: a tutorial. Pharmacoeconomics. 2017;35(6):613–24.CrossRef Menzies NA, Soeteman DI, Pandya A, Kim JJ. Bayesian methods for calibrating health policy models: a tutorial. Pharmacoeconomics. 2017;35(6):613–24.CrossRef
43.
go back to reference Raftery AE, Bao L. Estimating and projecting trends in HIV/AIDS generalized epidemics using incremental mixture importance sampling. Biometrics. 2010;66(4):1162–73.CrossRef Raftery AE, Bao L. Estimating and projecting trends in HIV/AIDS generalized epidemics using incremental mixture importance sampling. Biometrics. 2010;66(4):1162–73.CrossRef
44.
go back to reference Poole D, Raftery AE. Inference for deterministic simulation models: the Bayesian melding approach. J Am Stat Assoc. 2000;95(452):1244–55.CrossRef Poole D, Raftery AE. Inference for deterministic simulation models: the Bayesian melding approach. J Am Stat Assoc. 2000;95(452):1244–55.CrossRef
45.
go back to reference Yang C, Shen X, Peng Y, et al. Transmission of Mycobacterium tuberculosis in China: a population-based molecular epidemiologic study. Clin Infect Dis. 2015;61(2):219–27.CrossRef Yang C, Shen X, Peng Y, et al. Transmission of Mycobacterium tuberculosis in China: a population-based molecular epidemiologic study. Clin Infect Dis. 2015;61(2):219–27.CrossRef
46.
go back to reference Zhang CY, Zhao F, Xia YY, et al. Prevalence and risk factors of active pulmonary tuberculosis among elderly people in China: a population based cross-sectional study. Infectious Diseases of Poverty. 2019;8(1):7.CrossRef Zhang CY, Zhao F, Xia YY, et al. Prevalence and risk factors of active pulmonary tuberculosis among elderly people in China: a population based cross-sectional study. Infectious Diseases of Poverty. 2019;8(1):7.CrossRef
47.
go back to reference Aldridge RW, Zenner D, White PJ, et al. Tuberculosis in migrants moving from high-incidence to low-incidence countries: a population-based cohort study of 519 955 migrants screened before entry to England, Wales, and Northern Ireland. Lancet. 2016;388(10059):2510–8.CrossRef Aldridge RW, Zenner D, White PJ, et al. Tuberculosis in migrants moving from high-incidence to low-incidence countries: a population-based cohort study of 519 955 migrants screened before entry to England, Wales, and Northern Ireland. Lancet. 2016;388(10059):2510–8.CrossRef
Metadata
Title
The positive externalities of migrant-based TB control strategy in a Chinese urban population with internal migration: a transmission-dynamic modeling study
Authors
Chongguang Yang
Jian Kang
Liping Lu
Xiaoqin Guo
Xin Shen
Ted Cohen
Nicolas A. Menzies
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2021
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-021-01968-9

Other articles of this Issue 1/2021

BMC Medicine 1/2021 Go to the issue