Skip to main content
Top
Published in: BMC Medicine 1/2020

01-12-2020 | Obesity | Research article

Age-dependent effects of body mass index across the adult life span on the risk of dementia: a cohort study with a genetic approach

Authors: Ida K. Karlsson, Kelli Lehto, Margaret Gatz, Chandra A. Reynolds, Anna K. Dahl Aslan

Published in: BMC Medicine | Issue 1/2020

Login to get access

Abstract

Background

While a high body mass index (BMI) in midlife is associated with higher risk of dementia, high BMI in late-life may be associated with lower risk. This study combined genetic designs with longitudinal data to achieve a better understanding of this paradox.

Methods

We used longitudinal data from 22,156 individuals in the Swedish Twin Registry (STR) and 25,698 from the Health and Retirement Study (HRS). The STR sample had information about BMI from early adulthood through late-life, and the HRS sample from age 50 through late-life. Survival analysis was applied to investigate age-specific associations between BMI and dementia risk. To examine if the associations are influenced by genetic susceptibility to higher BMI, an interaction between BMI and a polygenic score for BMI (PGSBMI) was included in the models and results stratified into those with genetic predisposition to low, medium, and higher BMI. In the STR, co-twin control models were applied to adjust for familial factors beyond those captured by the PGSBMI.

Results

At age 35–49, 5 units higher BMI was associated with 15% (95% CI 7–24%) higher risk of dementia in the STR. There was a significant interaction (p = 0.04) between BMI and the PGSBMI, and the association present only among those with genetic predisposition to low BMI (HR 1.38, 95% CI 1.08–1.78). Co-twin control analyses indicated genetic influences. After age 80, 5 units higher BMI was associated with 10–11% lower risk of dementia in both samples. There was a significant interaction between late-life BMI and the PGSBMI in the STR (p = 0.01), but not the HRS, with the inverse association present only among those with a high PGSBMI (HR 0.70, 95% CI 0.52–0.94). No genetic influences were evident from co-twin control models of late-life BMI.

Conclusions

Not only does the association between BMI and dementia differ depending on age at BMI measurement, but also the effect of genetic influences. In STR, the associations were only present among those with a BMI in opposite direction of their genetic predisposition, indicating that the association between BMI and dementia across the life course might be driven by environmental factors and hence likely modifiable.
Appendix
Available only for authorised users
Literature
1.
go back to reference Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15(5):288–98.CrossRef Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15(5):288–98.CrossRef
2.
go back to reference Danat IM, Clifford A, Partridge M, Zhou W, Bakre AT, Chen A, et al. Impacts of overweight and obesity in older age on the risk of dementia: a systematic literature review and a meta-analysis. J Alzheimers Dis. 2019;70(s1):S87–99.CrossRef Danat IM, Clifford A, Partridge M, Zhou W, Bakre AT, Chen A, et al. Impacts of overweight and obesity in older age on the risk of dementia: a systematic literature review and a meta-analysis. J Alzheimers Dis. 2019;70(s1):S87–99.CrossRef
3.
go back to reference Dye L, Boyle NB, Champ C, Lawton C. The relationship between obesity and cognitive health and decline. Proc Nutr Soc. 2017;76(4):443–54.CrossRef Dye L, Boyle NB, Champ C, Lawton C. The relationship between obesity and cognitive health and decline. Proc Nutr Soc. 2017;76(4):443–54.CrossRef
4.
go back to reference Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63(2):168–74.CrossRef Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63(2):168–74.CrossRef
5.
go back to reference Min J, Chiu DT, Wang Y. Variation in the heritability of body mass index based on diverse twin studies: a systematic review. Obes Rev. 2013;14(11):871–82.CrossRef Min J, Chiu DT, Wang Y. Variation in the heritability of body mass index based on diverse twin studies: a systematic review. Obes Rev. 2013;14(11):871–82.CrossRef
6.
go back to reference Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum Mol Genet. 2018;27(20): 3641–49. Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum Mol Genet. 2018;27(20): 3641–49.
7.
go back to reference Winkler TW, Justice AE, Graff M, Barata L, Feitosa MF, Chu S, et al. The influence of age and sex on genetic associations with adult body size and shape: a large-scale genome-wide interaction study. PLoS Genet. 2015;11(10):e1005378.CrossRef Winkler TW, Justice AE, Graff M, Barata L, Feitosa MF, Chu S, et al. The influence of age and sex on genetic associations with adult body size and shape: a large-scale genome-wide interaction study. PLoS Genet. 2015;11(10):e1005378.CrossRef
8.
go back to reference Song M, Zheng Y, Qi L, Hu FB, Chan AT, Giovannucci EL. Longitudinal analysis of genetic susceptibility and BMI throughout adult life. Diabetes. 2018;67(2):248–55.CrossRef Song M, Zheng Y, Qi L, Hu FB, Chan AT, Giovannucci EL. Longitudinal analysis of genetic susceptibility and BMI throughout adult life. Diabetes. 2018;67(2):248–55.CrossRef
9.
go back to reference Magnusson PK, Almqvist C, Rahman I, Ganna A, Viktorin A, Walum H, et al. The Swedish Twin Registry: establishment of a biobank and other recent developments. Twin Res Hum Genet. 2012;16(1):317–29.CrossRef Magnusson PK, Almqvist C, Rahman I, Ganna A, Viktorin A, Walum H, et al. The Swedish Twin Registry: establishment of a biobank and other recent developments. Twin Res Hum Genet. 2012;16(1):317–29.CrossRef
10.
go back to reference Sonnega A, Faul JD, Ofstedal MB, Langa KM, Phillips JW, Weir DR. Cohort profile: the health and retirement study (HRS). Int J Epidemiol. 2014;43(2):576–85.CrossRef Sonnega A, Faul JD, Ofstedal MB, Langa KM, Phillips JW, Weir DR. Cohort profile: the health and retirement study (HRS). Int J Epidemiol. 2014;43(2):576–85.CrossRef
11.
go back to reference Finkel D, Pedersen N. Processing speed and longitudinal trajectories of change for cognitive abilities: the Swedish adoption/twin study of aging. Neuropsychology, development, and cognition Section B, Aging, neuropsychology and cognition. 2004;11(2):325–45.CrossRef Finkel D, Pedersen N. Processing speed and longitudinal trajectories of change for cognitive abilities: the Swedish adoption/twin study of aging. Neuropsychology, development, and cognition Section B, Aging, neuropsychology and cognition. 2004;11(2):325–45.CrossRef
12.
go back to reference Gold CH, Malmberg B, McClearn GE, Pedersen NL, Berg S. Gender and health: a study of older unlike-sex twins. Journals of Gerontology: Social Sciences. 2002;57(3):S168–76.CrossRef Gold CH, Malmberg B, McClearn GE, Pedersen NL, Berg S. Gender and health: a study of older unlike-sex twins. Journals of Gerontology: Social Sciences. 2002;57(3):S168–76.CrossRef
13.
go back to reference McClearn GE, Johansson B, Berg S, Pedersen NL, Ahern F, Petrill SA, et al. Substantial genetic influence on cognitive abilities in twins 80 or more years old. Science. 1997;276(5318):1560–3.CrossRef McClearn GE, Johansson B, Berg S, Pedersen NL, Ahern F, Petrill SA, et al. Substantial genetic influence on cognitive abilities in twins 80 or more years old. Science. 1997;276(5318):1560–3.CrossRef
14.
go back to reference Gatz M, Fratiglioni L, Johansson B, Berg S, Mortimer JA, Reynolds CA, et al. Complete ascertainment of dementia in the Swedish Twin Registry: the HARMONY study. Neurobiol Aging. 2005;26(4):439–47.CrossRef Gatz M, Fratiglioni L, Johansson B, Berg S, Mortimer JA, Reynolds CA, et al. Complete ascertainment of dementia in the Swedish Twin Registry: the HARMONY study. Neurobiol Aging. 2005;26(4):439–47.CrossRef
15.
go back to reference Rizzuto D, Feldman AL, Karlsson IK, Dahl Aslan AK, Gatz M, Pedersen NL. Detection of dementia cases in two Swedish health registers: a validation study. J Alzheimers Dis. 2018;61(4):1301–10.CrossRef Rizzuto D, Feldman AL, Karlsson IK, Dahl Aslan AK, Gatz M, Pedersen NL. Detection of dementia cases in two Swedish health registers: a validation study. J Alzheimers Dis. 2018;61(4):1301–10.CrossRef
16.
go back to reference Crimmins EM, Kim JK, Langa KM, Weir DR. Assessment of cognition using surveys and neuropsychological assessment: the Health and Retirement Study and the Aging, Demographics, and Memory Study. J Gerontol Series B Psychol Sci Soc Sci. 2011;66(Suppl 1):i162–i71.CrossRef Crimmins EM, Kim JK, Langa KM, Weir DR. Assessment of cognition using surveys and neuropsychological assessment: the Health and Retirement Study and the Aging, Demographics, and Memory Study. J Gerontol Series B Psychol Sci Soc Sci. 2011;66(Suppl 1):i162–i71.CrossRef
17.
go back to reference Langa KM, Larson EB, Crimmins EM, Faul JD, Levine DA, Kabeto MU, et al. A comparison of the prevalence of dementia in the United States in 2000 and 2012. JAMA Intern Med. 2017;177(1):51–8.CrossRef Langa KM, Larson EB, Crimmins EM, Faul JD, Levine DA, Kabeto MU, et al. A comparison of the prevalence of dementia in the United States in 2000 and 2012. JAMA Intern Med. 2017;177(1):51–8.CrossRef
18.
go back to reference Gianattasio KZ, Wu Q, Glymour MM, Power MC. Comparison of methods for algorithmic classification of dementia status in the health and retirement study. Epidemiology. 2019;30(2):291–302.CrossRef Gianattasio KZ, Wu Q, Glymour MM, Power MC. Comparison of methods for algorithmic classification of dementia status in the health and retirement study. Epidemiology. 2019;30(2):291–302.CrossRef
19.
go back to reference Wray NR, Lee SH, Mehta D, Vinkhuyzen AA, Dudbridge F, Middeldorp CM. Research review: polygenic methods and their application to psychiatric traits. J Child Psychol Psychiatry. 2014;55(10):1068–87.CrossRef Wray NR, Lee SH, Mehta D, Vinkhuyzen AA, Dudbridge F, Middeldorp CM. Research review: polygenic methods and their application to psychiatric traits. J Child Psychol Psychiatry. 2014;55(10):1068–87.CrossRef
20.
go back to reference Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet. 2019;51(3):414–30.CrossRef Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet. 2019;51(3):414–30.CrossRef
21.
go back to reference Ware E, Schmitz L, Gard A, Faul J. HRS polygenic scores—release 2: 2006–2012 genetic data. Ann Arbor: Survey Research Center, University of Michigan; 2018. Ware E, Schmitz L, Gard A, Faul J. HRS polygenic scores—release 2: 2006–2012 genetic data. Ann Arbor: Survey Research Center, University of Michigan; 2018.
22.
go back to reference Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206.CrossRef Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206.CrossRef
23.
go back to reference Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45(12):1452–8.CrossRef Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45(12):1452–8.CrossRef
24.
go back to reference StataCorp. Stata Statistical Software: Release 15. College Station: StataCorp LLC; 2017. StataCorp. Stata Statistical Software: Release 15. College Station: StataCorp LLC; 2017.
25.
go back to reference Xu WL, Atti AR, Gatz M, Pedersen NL, Johansson B, Fratiglioni L. Midlife overweight and obesity increase late-life dementia risk: a population-based twin study. Neurology. 2011;76(18):1568–74.CrossRef Xu WL, Atti AR, Gatz M, Pedersen NL, Johansson B, Fratiglioni L. Midlife overweight and obesity increase late-life dementia risk: a population-based twin study. Neurology. 2011;76(18):1568–74.CrossRef
26.
go back to reference Mukherjee S, Walter S, Kauwe JSK, Saykin AJ, Bennett DA, Larson EB, et al. Genetically predicted body mass index and Alzheimer’s disease-related phenotypes in three large samples: Mendelian randomization analyses. Alzheimers Dement. 2015;11(12):1439–51.CrossRef Mukherjee S, Walter S, Kauwe JSK, Saykin AJ, Bennett DA, Larson EB, et al. Genetically predicted body mass index and Alzheimer’s disease-related phenotypes in three large samples: Mendelian randomization analyses. Alzheimers Dement. 2015;11(12):1439–51.CrossRef
27.
go back to reference Zhu Z, Zheng Z, Zhang F, Wu Y, Trzaskowski M, Maier R, et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat Commun. 2018;9(1):224.CrossRef Zhu Z, Zheng Z, Zhang F, Wu Y, Trzaskowski M, Maier R, et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat Commun. 2018;9(1):224.CrossRef
28.
go back to reference Qizilbash N, Gregson J, Johnson ME, Pearce N, Douglas I, Wing K, et al. BMI and risk of dementia in two million people over two decades: a retrospective cohort study. The Lancet Diabetes & Endocrinology. 2015;3(6):431–6.CrossRef Qizilbash N, Gregson J, Johnson ME, Pearce N, Douglas I, Wing K, et al. BMI and risk of dementia in two million people over two decades: a retrospective cohort study. The Lancet Diabetes & Endocrinology. 2015;3(6):431–6.CrossRef
29.
go back to reference Kivimäki M, Singh-Manoux A, Shipley MJ, Elbaz A. Does midlife obesity really lower dementia risk? The Lancet Diabetes & Endocrinology. 2015;3(7):498. Kivimäki M, Singh-Manoux A, Shipley MJ, Elbaz A. Does midlife obesity really lower dementia risk? The Lancet Diabetes & Endocrinology. 2015;3(7):498.
30.
go back to reference Peters R, Peters J, Booth A, Anstey KJ. Trajectory of blood pressure, body mass index, cholesterol and incident dementia: systematic review. Br J Psychiatry. 2020;216(1):16–28. Peters R, Peters J, Booth A, Anstey KJ. Trajectory of blood pressure, body mass index, cholesterol and incident dementia: systematic review. Br J Psychiatry. 2020;216(1):16–28.
31.
go back to reference Russ TC, Lee IM, Sesso HD, Muniz-Terrera G, Batty GD. Five-decade trajectories in body mass index in relation to dementia death: follow-up of 33,083 male Harvard University alumni. Int J Obes. 2019;43(9):1822–9.CrossRef Russ TC, Lee IM, Sesso HD, Muniz-Terrera G, Batty GD. Five-decade trajectories in body mass index in relation to dementia death: follow-up of 33,083 male Harvard University alumni. Int J Obes. 2019;43(9):1822–9.CrossRef
32.
go back to reference Sulc J, Winkler TW, Heid IM, Kutalik Z. Heterogeneity in obesity: genetic basis and metabolic consequences. Curr Diab Rep. 2020;20(1):1.CrossRef Sulc J, Winkler TW, Heid IM, Kutalik Z. Heterogeneity in obesity: genetic basis and metabolic consequences. Curr Diab Rep. 2020;20(1):1.CrossRef
33.
go back to reference Oksuzyan A, Juel K, Vaupel JW, Christensen K. Men: good health and high mortality. Sex differences in health and aging. Aging Clin Exp Res. 2008;20(2):91–102.CrossRef Oksuzyan A, Juel K, Vaupel JW, Christensen K. Men: good health and high mortality. Sex differences in health and aging. Aging Clin Exp Res. 2008;20(2):91–102.CrossRef
34.
go back to reference Dahl AK, Hassing LB, Fransson EI, Pedersen NL. Agreement between self-reported and measured height, weight and body mass index in old age--a longitudinal study with 20 years of follow-up. Age Ageing. 2010;39(4):445–51.CrossRef Dahl AK, Hassing LB, Fransson EI, Pedersen NL. Agreement between self-reported and measured height, weight and body mass index in old age--a longitudinal study with 20 years of follow-up. Age Ageing. 2010;39(4):445–51.CrossRef
35.
go back to reference Dahl AK, Reynolds CA. Accuracy of recalled body weight--a study with 20-years of follow-up. Obesity (Silver Spring). 2013;21(6):1293–8.CrossRef Dahl AK, Reynolds CA. Accuracy of recalled body weight--a study with 20-years of follow-up. Obesity (Silver Spring). 2013;21(6):1293–8.CrossRef
36.
go back to reference Kelfve S, Fors S, Lennartsson C. Getting better all the time? Selective attrition and compositional changes in longitudinal and life-course studies. Longitudinal and Life Course Studies. 2017;8(1):104–20. Kelfve S, Fors S, Lennartsson C. Getting better all the time? Selective attrition and compositional changes in longitudinal and life-course studies. Longitudinal and Life Course Studies. 2017;8(1):104–20.
37.
go back to reference Brooke HL, Talback M, Hornblad J, Johansson LA, Ludvigsson JF, Druid H, et al. The Swedish cause of death register. Eur J Epidemiol. 2017;32(9):765–73.CrossRef Brooke HL, Talback M, Hornblad J, Johansson LA, Ludvigsson JF, Druid H, et al. The Swedish cause of death register. Eur J Epidemiol. 2017;32(9):765–73.CrossRef
Metadata
Title
Age-dependent effects of body mass index across the adult life span on the risk of dementia: a cohort study with a genetic approach
Authors
Ida K. Karlsson
Kelli Lehto
Margaret Gatz
Chandra A. Reynolds
Anna K. Dahl Aslan
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2020
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-020-01600-2

Other articles of this Issue 1/2020

BMC Medicine 1/2020 Go to the issue