Skip to main content
Top
Published in: BMC Medicine 1/2020

01-12-2020 | Pre-Eclampsia | Research article

Risk of long-term renal disease in women with a history of preterm delivery: a population-based cohort study

Authors: Peter M. Barrett, Fergus P. McCarthy, Marie Evans, Marius Kublickas, Ivan J. Perry, Peter Stenvinkel, Karolina Kublickiene, Ali S. Khashan

Published in: BMC Medicine | Issue 1/2020

Login to get access

Abstract

Background

Preterm delivery is an independent risk factor for maternal cardiovascular disease. Little is known about the association between preterm delivery and maternal renal function. This study aimed to examine whether women who experience preterm delivery are at increased risk of subsequent chronic kidney disease (CKD) and end-stage kidney disease (ESKD).

Methods

Using data from the Swedish Medical Birth Register, singleton live births from 1973 to 2012 were identified and linked to data from the Swedish Renal Register and National Patient Register (up to 2013). Gestational age at delivery was the main exposure and treated as a time-dependent variable. Primary outcomes were maternal CKD or ESKD. Cox proportional hazard regression models were used for analysis.

Results

The dataset included 1,943,716 women who had 3,760,429 singleton live births. The median follow-up was 20.6 (interquartile range 9.9–30.0) years. Overall, 162,918 women (8.4%) delivered at least 1 preterm infant (< 37 weeks). Women who had any preterm delivery (< 37 weeks) were at increased risk of CKD (adjusted hazard ratio (aHR) 1.39, 95% CI 1.32–1.45) and ESKD (aHR 2.22, 95% CI 1.90–2.58) compared with women who only delivered at term (≥ 37 weeks). Women who delivered an extremely preterm infant (< 28 weeks) were at increased risk of CKD (aHR 1.84, 95% CI 1.52–2.22) and ESKD (aHR 3.61, 95% CI 2.03–6.39). The highest risk of CKD and ESKD was in women who experienced preterm delivery + preeclampsia (vs. non-preeclamptic term deliveries, for CKD, aHR 2.81, 95% CI 2.46–3.20; for ESKD, aHR 6.70, 95% CI 4.70–9.56). However, spontaneous preterm delivery was also associated with increased risk of CKD (aHR 1.32, 95% CI 1.25–1.39) and ESKD (aHR 1.99, 95% CI 1.67–2.38) independent of preeclampsia or small for gestational age (SGA).

Conclusions

Women with history of preterm delivery are at increased risk of CKD and ESKD. The risk is higher among women who had very preterm or extremely preterm deliveries, or whose preterm delivery was medically indicated. Women who experience spontaneous preterm delivery are at increased risk of long-term renal disease independent of preeclampsia or SGA. Preterm delivery may act as a risk marker for adverse maternal renal outcomes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hill NR, Fatoba ST, Oke JL, Hirst JA, O'Callaghan CA, Lasserson DS, et al. Global prevalence of chronic kidney disease - a systematic review and meta-analysis. PLoS One. 2016;11(7):e0158765.PubMedPubMedCentralCrossRef Hill NR, Fatoba ST, Oke JL, Hirst JA, O'Callaghan CA, Lasserson DS, et al. Global prevalence of chronic kidney disease - a systematic review and meta-analysis. PLoS One. 2016;11(7):e0158765.PubMedPubMedCentralCrossRef
2.
go back to reference Ji E, Kim YS. Prevalence of chronic kidney disease defined by using CKD-EPI equation and albumin-to-creatinine ratio in the Korean adult population. Korean J Intern Med. 2016;31(6):1120–30.PubMedPubMedCentralCrossRef Ji E, Kim YS. Prevalence of chronic kidney disease defined by using CKD-EPI equation and albumin-to-creatinine ratio in the Korean adult population. Korean J Intern Med. 2016;31(6):1120–30.PubMedPubMedCentralCrossRef
3.
go back to reference Gasparini A, Evans M, Coresh J, Grams ME, Norin O, Qureshi AR, et al. Prevalence and recognition of chronic kidney disease in Stockholm healthcare. Nephrol Dial Transplant. 2016;31(12):2086–94.PubMedPubMedCentralCrossRef Gasparini A, Evans M, Coresh J, Grams ME, Norin O, Qureshi AR, et al. Prevalence and recognition of chronic kidney disease in Stockholm healthcare. Nephrol Dial Transplant. 2016;31(12):2086–94.PubMedPubMedCentralCrossRef
4.
go back to reference Tanz LJ, Stuart JJ, Williams PL, Rimm EB, Missmer SA, Rexrode KM, et al. Preterm delivery and maternal cardiovascular disease in young and middle-aged adult women. Circulation. 2017;135(6):578–89.PubMedPubMedCentralCrossRef Tanz LJ, Stuart JJ, Williams PL, Rimm EB, Missmer SA, Rexrode KM, et al. Preterm delivery and maternal cardiovascular disease in young and middle-aged adult women. Circulation. 2017;135(6):578–89.PubMedPubMedCentralCrossRef
5.
go back to reference Heida KY, Velthuis BK, Oudijk MA, Reitsma JB, Bots ML, Franx A, et al. Cardiovascular disease risk in women with a history of spontaneous preterm delivery: a systematic review and meta-analysis. Eur J Prev Cardiol. 2016;23(3):253–63.PubMedCrossRef Heida KY, Velthuis BK, Oudijk MA, Reitsma JB, Bots ML, Franx A, et al. Cardiovascular disease risk in women with a history of spontaneous preterm delivery: a systematic review and meta-analysis. Eur J Prev Cardiol. 2016;23(3):253–63.PubMedCrossRef
6.
go back to reference Bonamy AK, Parikh NI, Cnattingius S, Ludvigsson JF, Ingelsson E. Birth characteristics and subsequent risks of maternal cardiovascular disease: effects of gestational age and fetal growth. Circulation. 2011;124(25):2839–46.PubMedCrossRef Bonamy AK, Parikh NI, Cnattingius S, Ludvigsson JF, Ingelsson E. Birth characteristics and subsequent risks of maternal cardiovascular disease: effects of gestational age and fetal growth. Circulation. 2011;124(25):2839–46.PubMedCrossRef
7.
go back to reference Mosca L, Benjamin EJ, Berra K, Bezanson JL, Dolor RJ, Lloyd-Jones DM, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women--2011 update: a guideline from the American Heart Association. J Am Coll Cardiol. 2011;57(12):1404–23.PubMedPubMedCentralCrossRef Mosca L, Benjamin EJ, Berra K, Bezanson JL, Dolor RJ, Lloyd-Jones DM, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women--2011 update: a guideline from the American Heart Association. J Am Coll Cardiol. 2011;57(12):1404–23.PubMedPubMedCentralCrossRef
8.
go back to reference Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Himmelfarb CD, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American college of cardiology/American Heart Association task force on clinical practice guidelines. Hypertension. 2018;71(6):1269–324.PubMedCrossRef Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Himmelfarb CD, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American college of cardiology/American Heart Association task force on clinical practice guidelines. Hypertension. 2018;71(6):1269–324.PubMedCrossRef
9.
go back to reference Sandvik MK, Iversen BM, Irgens LM, Skjaerven R, Leivestad T, Softeland E, et al. Are adverse pregnancy outcomes risk factors for development of end-stage renal disease in women with diabetes? Nephrol Dial Transplant. 2010;25(11):3600–7.PubMedCrossRef Sandvik MK, Iversen BM, Irgens LM, Skjaerven R, Leivestad T, Softeland E, et al. Are adverse pregnancy outcomes risk factors for development of end-stage renal disease in women with diabetes? Nephrol Dial Transplant. 2010;25(11):3600–7.PubMedCrossRef
10.
go back to reference Vikse BE, Hallan S, Bostad L, Leivestad T, Iversen BM. Previous preeclampsia and risk for progression of biopsy-verified kidney disease to end-stage renal disease. Nephrol Dial Transplant. 2010;25(10):3289–96.PubMedCrossRef Vikse BE, Hallan S, Bostad L, Leivestad T, Iversen BM. Previous preeclampsia and risk for progression of biopsy-verified kidney disease to end-stage renal disease. Nephrol Dial Transplant. 2010;25(10):3289–96.PubMedCrossRef
11.
go back to reference Dai L, Chen Y, Sun W, Liu S. Association between hypertensive disorders during pregnancy and the subsequent risk of end-stage renal disease: a population-based follow-up study. J Obstet Gynaecol Can. 2018;40(9):1129–38.PubMedCrossRef Dai L, Chen Y, Sun W, Liu S. Association between hypertensive disorders during pregnancy and the subsequent risk of end-stage renal disease: a population-based follow-up study. J Obstet Gynaecol Can. 2018;40(9):1129–38.PubMedCrossRef
12.
go back to reference Pariente G, Kessous R, Sergienko R, Sheiner E. Is preterm delivery an independent risk factor for long-term maternal kidney disease? J Matern Fetal Neonatal Med. 2017;30(9):1102–7.PubMedCrossRef Pariente G, Kessous R, Sergienko R, Sheiner E. Is preterm delivery an independent risk factor for long-term maternal kidney disease? J Matern Fetal Neonatal Med. 2017;30(9):1102–7.PubMedCrossRef
13.
go back to reference Vikse BE, Irgens LM, Leivestad T, Skjærven R, Iversen BM. Preeclampsia and the risk of end-stage renal disease. N Engl J Med. 2008;359(8):800–9.PubMedCrossRef Vikse BE, Irgens LM, Leivestad T, Skjærven R, Iversen BM. Preeclampsia and the risk of end-stage renal disease. N Engl J Med. 2008;359(8):800–9.PubMedCrossRef
15.
go back to reference Wu CC, Chen SH, Ho CH, Liang FW, Chu CC, Wang HY, et al. End-stage renal disease after hypertensive disorders in pregnancy. Am J Obstetr Gynecol. 2014;210(2):147.e1–8.CrossRef Wu CC, Chen SH, Ho CH, Liang FW, Chu CC, Wang HY, et al. End-stage renal disease after hypertensive disorders in pregnancy. Am J Obstetr Gynecol. 2014;210(2):147.e1–8.CrossRef
16.
go back to reference Almasi O, Pariente G, Kessous R, Sergienko R, Sheiner E. Association between delivery of small-for-gestational-age neonate and long-term maternal chronic kidney disease. J Mater Fetal Neonatal Med. 2016;29(17):2861–4. Almasi O, Pariente G, Kessous R, Sergienko R, Sheiner E. Association between delivery of small-for-gestational-age neonate and long-term maternal chronic kidney disease. J Mater Fetal Neonatal Med. 2016;29(17):2861–4.
17.
go back to reference Brown HK, Speechley KN, Macnab J, Natale R, Campbell MK. Neonatal morbidity associated with late preterm and early term birth: the roles of gestational age and biological determinants of preterm birth. Int J Epidemiol. 2014;43(3):802–14.CrossRefPubMed Brown HK, Speechley KN, Macnab J, Natale R, Campbell MK. Neonatal morbidity associated with late preterm and early term birth: the roles of gestational age and biological determinants of preterm birth. Int J Epidemiol. 2014;43(3):802–14.CrossRefPubMed
18.
go back to reference Kirby RS, Wingate MS. Late preterm birth and neonatal outcome: is 37 weeks’ gestation a threshold level or a road marker on the highway of perinatal risk? Birth. 2010;37(2):169–71.PubMedCrossRef Kirby RS, Wingate MS. Late preterm birth and neonatal outcome: is 37 weeks’ gestation a threshold level or a road marker on the highway of perinatal risk? Birth. 2010;37(2):169–71.PubMedCrossRef
19.
go back to reference Delnord M, Blondel B, Prunet C, Zeitlin J. Are risk factors for preterm and early-term live singleton birth the same? A population-based study in France. BMJ Open. 2018;8(1):e018745.PubMedPubMedCentralCrossRef Delnord M, Blondel B, Prunet C, Zeitlin J. Are risk factors for preterm and early-term live singleton birth the same? A population-based study in France. BMJ Open. 2018;8(1):e018745.PubMedPubMedCentralCrossRef
20.
go back to reference Marsal K, Persson PH, Larsen T, Lilja H, Selbing A, Sultan B. Intrauterine growth curves based on ultrasonically estimated foetal weights. Acta Paediatr. 1996;85(7):843–8.PubMedCrossRef Marsal K, Persson PH, Larsen T, Lilja H, Selbing A, Sultan B. Intrauterine growth curves based on ultrasonically estimated foetal weights. Acta Paediatr. 1996;85(7):843–8.PubMedCrossRef
21.
go back to reference Barrett PM, McCarthy FP, Kublickiene K, Evans M, Cormican S, Judge C, et al. Adverse pregnancy outcomes and long-term risk of maternal renal disease: a systematic review and meta-analysis protocol. BMJ Open. 2019;9(5):e027180.PubMedPubMedCentralCrossRef Barrett PM, McCarthy FP, Kublickiene K, Evans M, Cormican S, Judge C, et al. Adverse pregnancy outcomes and long-term risk of maternal renal disease: a systematic review and meta-analysis protocol. BMJ Open. 2019;9(5):e027180.PubMedPubMedCentralCrossRef
22.
go back to reference Wang IK, Muo CH, Chang YC, Liang CC, Chang CT, Lin SY, et al. Association between hypertensive disorders during pregnancy and end-stage renal disease: a population-based study. CMAJ. 2013;185(3):207–13.PubMedPubMedCentralCrossRef Wang IK, Muo CH, Chang YC, Liang CC, Chang CT, Lin SY, et al. Association between hypertensive disorders during pregnancy and end-stage renal disease: a population-based study. CMAJ. 2013;185(3):207–13.PubMedPubMedCentralCrossRef
23.
go back to reference Männistö T, Mendola P, Vääräsmäki M, Järvelin MR, Hartikainen AL, Pouta A, et al. Elevated blood pressure in pregnancy and subsequent chronic disease risk. Circulation. 2013;127(6):681–90.PubMedPubMedCentralCrossRef Männistö T, Mendola P, Vääräsmäki M, Järvelin MR, Hartikainen AL, Pouta A, et al. Elevated blood pressure in pregnancy and subsequent chronic disease risk. Circulation. 2013;127(6):681–90.PubMedPubMedCentralCrossRef
24.
go back to reference Ayansina D, Black C, Hall SJ, Marks A, Millar C, Prescott GJ, et al. Long term effects of gestational hypertension and pre-eclampsia on kidney function: record linkage study. Pregnancy Hypertens Int J Womens Cardiovasc Health. 2016;6(4):344–9. Ayansina D, Black C, Hall SJ, Marks A, Millar C, Prescott GJ, et al. Long term effects of gestational hypertension and pre-eclampsia on kidney function: record linkage study. Pregnancy Hypertens Int J Womens Cardiovasc Health. 2016;6(4):344–9.
25.
go back to reference Kristensen JH, Basit S, Wohlfahrt J, Damholt MB, Boyd HA. Pre-eclampsia and risk of later kidney disease: nationwide cohort study. BMJ. 2019;365:l1516.PubMedPubMedCentralCrossRef Kristensen JH, Basit S, Wohlfahrt J, Damholt MB, Boyd HA. Pre-eclampsia and risk of later kidney disease: nationwide cohort study. BMJ. 2019;365:l1516.PubMedPubMedCentralCrossRef
26.
go back to reference Tanz LJ, Stuart JJ, Williams PL, Missmer SA, Rimm EB, James-Todd TM, et al. Preterm delivery and maternal cardiovascular disease risk factors: the Nurses’ Health Study II. J Women's Health. 2002;2018:578–89. Tanz LJ, Stuart JJ, Williams PL, Missmer SA, Rimm EB, James-Todd TM, et al. Preterm delivery and maternal cardiovascular disease risk factors: the Nurses’ Health Study II. J Women's Health. 2002;2018:578–89.
27.
go back to reference Blake GJ, Ridker PM. Novel clinical markers of vascular wall inflammation. Circ Res. 2001;89(9):763–71.PubMedCrossRef Blake GJ, Ridker PM. Novel clinical markers of vascular wall inflammation. Circ Res. 2001;89(9):763–71.PubMedCrossRef
28.
go back to reference Pitiphat W, Gillman MW, Joshipura KJ, Williams PL, Douglass CW, Rich-Edwards JW. Plasma C-reactive protein in early pregnancy and preterm delivery. Am J Epidemiol. 2005;162(11):1108–13.PubMedCrossRef Pitiphat W, Gillman MW, Joshipura KJ, Williams PL, Douglass CW, Rich-Edwards JW. Plasma C-reactive protein in early pregnancy and preterm delivery. Am J Epidemiol. 2005;162(11):1108–13.PubMedCrossRef
29.
go back to reference Sattar N. Do pregnancy complications and CVD share common antecedents? Atheroscler Suppl. 2004;5(2):3–7.PubMedCrossRef Sattar N. Do pregnancy complications and CVD share common antecedents? Atheroscler Suppl. 2004;5(2):3–7.PubMedCrossRef
30.
go back to reference Moghaddam Banaem L, Mohamadi B, Asghari Jaafarabadi M, Aliyan MN. Maternal serum C-reactive protein in early pregnancy and occurrence of preterm premature rupture of membranes and preterm birth. J Obstet Gynaecol Res. 2012;38(5):780–6.PubMedCrossRef Moghaddam Banaem L, Mohamadi B, Asghari Jaafarabadi M, Aliyan MN. Maternal serum C-reactive protein in early pregnancy and occurrence of preterm premature rupture of membranes and preterm birth. J Obstet Gynaecol Res. 2012;38(5):780–6.PubMedCrossRef
31.
go back to reference Kugler E, Cohen E, Goldberg E, Nardi Y, Levi A, Krause I, et al. C reactive protein and long-term risk for chronic kidney disease: a historical prospective study. J Nephrol. 2015;28(3):321–7.PubMedCrossRef Kugler E, Cohen E, Goldberg E, Nardi Y, Levi A, Krause I, et al. C reactive protein and long-term risk for chronic kidney disease: a historical prospective study. J Nephrol. 2015;28(3):321–7.PubMedCrossRef
32.
go back to reference Mongelli M, Wilcox M, Gardosi J. Estimating the date of confinement: ultrasonographic biometry versus certain menstrual dates. Am J Obstet Gynecol. 1996;174(1 Pt 1):278–81.PubMedCrossRef Mongelli M, Wilcox M, Gardosi J. Estimating the date of confinement: ultrasonographic biometry versus certain menstrual dates. Am J Obstet Gynecol. 1996;174(1 Pt 1):278–81.PubMedCrossRef
33.
go back to reference Butt K, Lim K, Diagnostic IC. Determination of gestational age by ultrasound. J Obstetr Gynaecol Can. 2014;36(2):171–81.CrossRef Butt K, Lim K, Diagnostic IC. Determination of gestational age by ultrasound. J Obstetr Gynaecol Can. 2014;36(2):171–81.CrossRef
34.
go back to reference SFOG-råd. Fetometri UltraARG 2010. Svensk Förening för Obstetrik och Gynekologi; 2019. SFOG-råd. Fetometri UltraARG 2010. Svensk Förening för Obstetrik och Gynekologi; 2019.
35.
go back to reference Clinical Practice Guidelines. Pregnancy care 2019 edition. Canberra: Australian Government, Department of Health; 2018. Clinical Practice Guidelines. Pregnancy care 2019 edition. Canberra: Australian Government, Department of Health; 2018.
36.
go back to reference Committee Opinion No. 700 Summary: methods for estimating the due date. Obstetrics and gynecology. 2017;129(5):967–8. Committee Opinion No. 700 Summary: methods for estimating the due date. Obstetrics and gynecology. 2017;129(5):967–8.
37.
go back to reference Persson PH, Weldner BM. Reliability of ultrasound fetometry in estimating gestational age in the second trimester. Acta Obstet Gynecol Scand. 1986;65(5):481–3.PubMedCrossRef Persson PH, Weldner BM. Reliability of ultrasound fetometry in estimating gestational age in the second trimester. Acta Obstet Gynecol Scand. 1986;65(5):481–3.PubMedCrossRef
38.
go back to reference Kullinger M, Granfors M, Kieler H, Skalkidou A. Adherence to Swedish national pregnancy dating guidelines and management of discrepancies between pregnancy dating methods: a survey study. Reprod Health. 2019;16(1):95.PubMedPubMedCentralCrossRef Kullinger M, Granfors M, Kieler H, Skalkidou A. Adherence to Swedish national pregnancy dating guidelines and management of discrepancies between pregnancy dating methods: a survey study. Reprod Health. 2019;16(1):95.PubMedPubMedCentralCrossRef
39.
go back to reference Hamilton BE, Martin JA, Osterman MJ, Curtin SC, Matthews TJ. Births: final data for 2014. Natl Vital Stat Rep. 2015;64(12):1–64.PubMed Hamilton BE, Martin JA, Osterman MJ, Curtin SC, Matthews TJ. Births: final data for 2014. Natl Vital Stat Rep. 2015;64(12):1–64.PubMed
40.
go back to reference Ludvigsson JF, Andersson E, Ekbom A, Feychting M, Kim JL, Reuterwall C, et al. External review and validation of the Swedish national inpatient register. BMC Public Health. 2011;11:450.PubMedPubMedCentralCrossRef Ludvigsson JF, Andersson E, Ekbom A, Feychting M, Kim JL, Reuterwall C, et al. External review and validation of the Swedish national inpatient register. BMC Public Health. 2011;11:450.PubMedPubMedCentralCrossRef
41.
go back to reference Rapporteringen till nationella kvalitetsregister och hälsodataregistren. Jämförelser av täckningsgrader 2014. Stockholm: Socialstyrelsen; 2014. Rapporteringen till nationella kvalitetsregister och hälsodataregistren. Jämförelser av täckningsgrader 2014. Stockholm: Socialstyrelsen; 2014.
42.
go back to reference The Swedish Medical Birth Register. A summary of content and quality. Stockholm: Centre for Epidemiology. The National Board of Health and Welfare; 2003. The Swedish Medical Birth Register. A summary of content and quality. Stockholm: Centre for Epidemiology. The National Board of Health and Welfare; 2003.
43.
go back to reference Delnord M, Mortensen L, Hindori-Mohangoo AD, Blondel B, Gissler M, Kramer MR, et al. International variations in the gestational age distribution of births: an ecological study in 34 high-income countries. Eur J Pub Health. 2018;28(2):303–9.CrossRef Delnord M, Mortensen L, Hindori-Mohangoo AD, Blondel B, Gissler M, Kramer MR, et al. International variations in the gestational age distribution of births: an ecological study in 34 high-income countries. Eur J Pub Health. 2018;28(2):303–9.CrossRef
44.
go back to reference Delnord M, Zeitlin J. Epidemiology of late preterm and early term births - an international perspective. Semin Fetal Neonatal Med. 2019;24(1):3–10.PubMedCrossRef Delnord M, Zeitlin J. Epidemiology of late preterm and early term births - an international perspective. Semin Fetal Neonatal Med. 2019;24(1):3–10.PubMedCrossRef
45.
go back to reference Collins GS, Omar O, Shanyinde M, Yu LM. A systematic review finds prediction models for chronic kidney disease were poorly reported and often developed using inappropriate methods. J Clin Epidemiol. 2013;66(3):268–77.PubMedCrossRef Collins GS, Omar O, Shanyinde M, Yu LM. A systematic review finds prediction models for chronic kidney disease were poorly reported and often developed using inappropriate methods. J Clin Epidemiol. 2013;66(3):268–77.PubMedCrossRef
Metadata
Title
Risk of long-term renal disease in women with a history of preterm delivery: a population-based cohort study
Authors
Peter M. Barrett
Fergus P. McCarthy
Marie Evans
Marius Kublickas
Ivan J. Perry
Peter Stenvinkel
Karolina Kublickiene
Ali S. Khashan
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2020
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-020-01534-9

Other articles of this Issue 1/2020

BMC Medicine 1/2020 Go to the issue