Skip to main content
Top
Published in: BMC Medicine 1/2019

Open Access 01-12-2019 | Guideline

Guidelines for multi-model comparisons of the impact of infectious disease interventions

Authors: Saskia den Boon, Mark Jit, Marc Brisson, Graham Medley, Philippe Beutels, Richard White, Stefan Flasche, T. Déirdre Hollingsworth, Tini Garske, Virginia E. Pitzer, Martine Hoogendoorn, Oliver Geffen, Andrew Clark, Jane Kim, Raymond Hutubessy

Published in: BMC Medicine | Issue 1/2019

Login to get access

Abstract

Background

Despite the increasing popularity of multi-model comparison studies and their ability to inform policy recommendations, clear guidance on how to conduct multi-model comparisons is not available. Herein, we present guidelines to provide a structured approach to comparisons of multiple models of interventions against infectious diseases. The primary target audience for these guidelines are researchers carrying out model comparison studies and policy-makers using model comparison studies to inform policy decisions.

Methods

The consensus process used for the development of the guidelines included a systematic review of existing model comparison studies on effectiveness and cost-effectiveness of vaccination, a 2-day meeting and guideline development workshop during which mathematical modellers from different disease areas critically discussed and debated the guideline content and wording, and several rounds of comments on sequential versions of the guidelines by all authors.

Results

The guidelines provide principles for multi-model comparisons, with specific practice statements on what modellers should do for six domains. The guidelines provide explanation and elaboration of the principles and practice statements as well as some examples to illustrate these. The principles are (1) the policy and research question – the model comparison should address a relevant, clearly defined policy question; (2) model identification and selection – the identification and selection of models for inclusion in the model comparison should be transparent and minimise selection bias; (3) harmonisation – standardisation of input data and outputs should be determined by the research question and value of the effort needed for this step; (4) exploring variability – between- and within-model variability and uncertainty should be explored; (5) presenting and pooling results – results should be presented in an appropriate way to support decision-making; and (6) interpretation – results should be interpreted to inform the policy question.

Conclusion

These guidelines should help researchers plan, conduct and report model comparisons of infectious diseases and related interventions in a systematic and structured manner for the purpose of supporting health policy decisions. Adherence to these guidelines will contribute to greater consistency and objectivity in the approach and methods used in multi-model comparisons, and as such improve the quality of modelled evidence for policy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Egger M, Johnson L, Althaus C, Schöni A, Salanti G, Low N, Norris S. Developing WHO guidelines: time to formally include evidence from mathematical modelling studies. F1000Res. 2018;6:1584.CrossRef Egger M, Johnson L, Althaus C, Schöni A, Salanti G, Low N, Norris S. Developing WHO guidelines: time to formally include evidence from mathematical modelling studies. F1000Res. 2018;6:1584.CrossRef
2.
go back to reference Hollingsworth TD, Medley GF. Learning from multi-model comparisons: collaboration leads to insights, but limitations remain. Epidemics. 2017;18:1–3.CrossRef Hollingsworth TD, Medley GF. Learning from multi-model comparisons: collaboration leads to insights, but limitations remain. Epidemics. 2017;18:1–3.CrossRef
3.
go back to reference Jit M, Brisson M. Modelling the epidemiology of infectious diseases for decision analysis: a primer. Pharmacoeconomics. 2011;29:371–86.CrossRef Jit M, Brisson M. Modelling the epidemiology of infectious diseases for decision analysis: a primer. Pharmacoeconomics. 2011;29:371–86.CrossRef
4.
go back to reference Vynnycky E, Fine PE. The natural history of tuberculosis: the implications of age-dependent risks of disease and the role of reinfection. Epidemiol Infect. 1997;119(2):183–201.CrossRef Vynnycky E, Fine PE. The natural history of tuberculosis: the implications of age-dependent risks of disease and the role of reinfection. Epidemiol Infect. 1997;119(2):183–201.CrossRef
5.
go back to reference Kim JJ, Brisson M, Edmunds WJ, Goldie SJ. Modeling cervical cancer prevention in developed countries. Vaccine. 2008;26(Suppl 10):K76–86.CrossRef Kim JJ, Brisson M, Edmunds WJ, Goldie SJ. Modeling cervical cancer prevention in developed countries. Vaccine. 2008;26(Suppl 10):K76–86.CrossRef
6.
go back to reference Drolet M, Bénard É, Jit M, Hutubessy R, Brisson M. Model comparisons of the effectiveness and cost-effectiveness of vaccination: a systematic review of the literature. Value Health. 2018;21(10):1250–8.CrossRef Drolet M, Bénard É, Jit M, Hutubessy R, Brisson M. Model comparisons of the effectiveness and cost-effectiveness of vaccination: a systematic review of the literature. Value Health. 2018;21(10):1250–8.CrossRef
7.
go back to reference Mount Hood 4 Modeling Group. Computer modelling of diabetes and its complications. A report on the fourth Mount Hood challenge meeting. Diabetes Care. 2007;30(6):1638–46.CrossRef Mount Hood 4 Modeling Group. Computer modelling of diabetes and its complications. A report on the fourth Mount Hood challenge meeting. Diabetes Care. 2007;30(6):1638–46.CrossRef
8.
go back to reference Berry DA, Cronin KA, Plevritis SK, Fryback DG, Clarke L, Zelen M, et al. Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med. 2005;353:1784–92.CrossRef Berry DA, Cronin KA, Plevritis SK, Fryback DG, Clarke L, Zelen M, et al. Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med. 2005;353:1784–92.CrossRef
9.
go back to reference Hoogendoorn M, Feenstra TL, Asukai Y, Borg S, Hansen RN, Jansson S-A, et al. Cost-effectiveness models for chronic obstructive pulmonary disease: cross-model comparison of hypothetical treatment scenarios. Value Health. 2014;17:525–36.CrossRef Hoogendoorn M, Feenstra TL, Asukai Y, Borg S, Hansen RN, Jansson S-A, et al. Cost-effectiveness models for chronic obstructive pulmonary disease: cross-model comparison of hypothetical treatment scenarios. Value Health. 2014;17:525–36.CrossRef
10.
go back to reference UNAIDS/WHO/SACEMA Expert Group on Modelling the Impact and Cost of Male Circumcision for HIV Prevention. Male circumcision for HIV prevention in high HIV prevalence settings: what can mathematical modelling contribute to informed decision making? PLoS Med. 2009;6(9):e10000109.CrossRef UNAIDS/WHO/SACEMA Expert Group on Modelling the Impact and Cost of Male Circumcision for HIV Prevention. Male circumcision for HIV prevention in high HIV prevalence settings: what can mathematical modelling contribute to informed decision making? PLoS Med. 2009;6(9):e10000109.CrossRef
11.
go back to reference Eaton JW, Menzies NA, Stover J, Cambiano V, Chindelevitch L, Cori A, et al. Health benefits, costs, and cost-effectiveness of earlier eligibility for adult antiretroviral therapy and expanded treatment coverage: a combined analysis of 12 mathematical models. Lancet Glob Health. 2013;2(1):23–34.CrossRef Eaton JW, Menzies NA, Stover J, Cambiano V, Chindelevitch L, Cori A, et al. Health benefits, costs, and cost-effectiveness of earlier eligibility for adult antiretroviral therapy and expanded treatment coverage: a combined analysis of 12 mathematical models. Lancet Glob Health. 2013;2(1):23–34.CrossRef
12.
go back to reference Houben R, Menzies NA, Sumner T, Huynh GH, Arinaminpathy N, Goldhaber-Fiebert JD, et al. Feasibility of achieving the 2025 WHO global tuberculosis targets in South Africa, China, and India: a combined analysis of 11 mathematical models. Lancet Global Health. 2016;4(11):E806–15.CrossRef Houben R, Menzies NA, Sumner T, Huynh GH, Arinaminpathy N, Goldhaber-Fiebert JD, et al. Feasibility of achieving the 2025 WHO global tuberculosis targets in South Africa, China, and India: a combined analysis of 11 mathematical models. Lancet Global Health. 2016;4(11):E806–15.CrossRef
13.
go back to reference Smith ME, Singh BK, Irvine MA, Stolk WA, Subramanian S, Hollingsworth TD, Michael E. Predicting lymphatic filariasis transmission and elimination dynamics using a multi-model ensemble framework. Epidemics. 2017;18:16–28.CrossRef Smith ME, Singh BK, Irvine MA, Stolk WA, Subramanian S, Hollingsworth TD, Michael E. Predicting lymphatic filariasis transmission and elimination dynamics using a multi-model ensemble framework. Epidemics. 2017;18:16–28.CrossRef
14.
go back to reference Halloran ME, Ferguson NM, Eubank S, Longini IM Jr, Cummings DAT, Lewis B, et al. Modeling targeted layered containment of an influenza pandemic in the United States. Proc Natl Acad Sci U S A. 2008;105:4639–44.CrossRef Halloran ME, Ferguson NM, Eubank S, Longini IM Jr, Cummings DAT, Lewis B, et al. Modeling targeted layered containment of an influenza pandemic in the United States. Proc Natl Acad Sci U S A. 2008;105:4639–44.CrossRef
15.
go back to reference Althaus CL, Turner KME, Schmid BV, Heijne JCM, Kretzschmar M, Low N. Transmission of Chlamydia trachomatis through sexual partnerships: a comparison between three individual-based models and empirical data. J R Soc Interface. 2012;9:36–146.CrossRef Althaus CL, Turner KME, Schmid BV, Heijne JCM, Kretzschmar M, Low N. Transmission of Chlamydia trachomatis through sexual partnerships: a comparison between three individual-based models and empirical data. J R Soc Interface. 2012;9:36–146.CrossRef
17.
go back to reference Hutubessy R, Henao AM, Namgyal P, Moorthy V, Hombach J. Results from evaluations of models and cost-effectiveness tools to support introduction decisions for new vaccines need critical appraisal. BMC Med. 2011;9:55.CrossRef Hutubessy R, Henao AM, Namgyal P, Moorthy V, Hombach J. Results from evaluations of models and cost-effectiveness tools to support introduction decisions for new vaccines need critical appraisal. BMC Med. 2011;9:55.CrossRef
18.
go back to reference Chaiyakunapruk N, Somkrua R, Hutubessy R, Henao AM, Hombach J, Melegaro A, et al. Cost effectiveness of pediatric pneumococcal conjugate vaccines: a comparative assessment of decision-making tools. BMC Med. 2011;9:53.CrossRef Chaiyakunapruk N, Somkrua R, Hutubessy R, Henao AM, Hombach J, Melegaro A, et al. Cost effectiveness of pediatric pneumococcal conjugate vaccines: a comparative assessment of decision-making tools. BMC Med. 2011;9:53.CrossRef
19.
go back to reference Postma MJ, Jit M, Rozenbaum MH, Standaert B, Tu HA, Hutubessy RC. Comparative review of three cost-effectiveness models for rotavirus vaccines in national immunization programs; a generic approach applied to various regions in the world. BMC Med. 2011;9:84.CrossRef Postma MJ, Jit M, Rozenbaum MH, Standaert B, Tu HA, Hutubessy RC. Comparative review of three cost-effectiveness models for rotavirus vaccines in national immunization programs; a generic approach applied to various regions in the world. BMC Med. 2011;9:84.CrossRef
20.
go back to reference Jit M, Demarteau N, Elbasha E, Ginsberg G, Kim J, Praditsitthikorn N, et al. Human papillomavirus vaccine introduction in low-income and middle-income countries: guidance on the use of cost-effectiveness models. BMC Med. 2011;9:54.CrossRef Jit M, Demarteau N, Elbasha E, Ginsberg G, Kim J, Praditsitthikorn N, et al. Human papillomavirus vaccine introduction in low-income and middle-income countries: guidance on the use of cost-effectiveness models. BMC Med. 2011;9:54.CrossRef
21.
go back to reference Penny MA, Verity R, Bever CA, Sauboin C, Galactionova K, Flasche S, et al. Public health impact and cost-effectiveness of the RTS,S/AS01 malaria vaccine: a systematic comparison of predictions from four mathematical models. Lancet. 2016;387(10016):367–75.CrossRef Penny MA, Verity R, Bever CA, Sauboin C, Galactionova K, Flasche S, et al. Public health impact and cost-effectiveness of the RTS,S/AS01 malaria vaccine: a systematic comparison of predictions from four mathematical models. Lancet. 2016;387(10016):367–75.CrossRef
22.
go back to reference Flasche S, Jit M, Rodriquez-Barraquer I, Coudeville L, Recker M, Koelle K, et al. The long-term safety, public health impact, and cost-effectiveness of routine vaccination with a recombinant, live-attenuated dengue vaccine (Dengvaxia): a model comparison study. PLoS Med. 2016;13(11):e1002181.CrossRef Flasche S, Jit M, Rodriquez-Barraquer I, Coudeville L, Recker M, Koelle K, et al. The long-term safety, public health impact, and cost-effectiveness of routine vaccination with a recombinant, live-attenuated dengue vaccine (Dengvaxia): a model comparison study. PLoS Med. 2016;13(11):e1002181.CrossRef
23.
go back to reference Malaria vaccine. WHO position paper – January 2016. Wkly Epidemiol Rec. 2016;91(4):33–52. Malaria vaccine. WHO position paper – January 2016. Wkly Epidemiol Rec. 2016;91(4):33–52.
24.
go back to reference Human papillomavirus vaccines. WHO position paper, May 2017. Wkly Epidemiol Rec. 2017;92(19):241–68. Human papillomavirus vaccines. WHO position paper, May 2017. Wkly Epidemiol Rec. 2017;92(19):241–68.
25.
go back to reference Dengue vaccine. WHO position paper – September 2018. Wkly Epidemiol Rec. 2018;93(36):457–76. Dengue vaccine. WHO position paper – September 2018. Wkly Epidemiol Rec. 2018;93(36):457–76.
27.
go back to reference Husereau D, Drummond M, Petrou S, Greenberg D, Augustovski F, Briggs AH, et al. Consolidated health economic evaluation reporting standards (CHEERS) statement. BMJ. 2013;346:f1049.CrossRef Husereau D, Drummond M, Petrou S, Greenberg D, Augustovski F, Briggs AH, et al. Consolidated health economic evaluation reporting standards (CHEERS) statement. BMJ. 2013;346:f1049.CrossRef
28.
go back to reference Whitty CJM. What makes an academic paper useful for health policy? BMC Med. 2015;13:301.CrossRef Whitty CJM. What makes an academic paper useful for health policy? BMC Med. 2015;13:301.CrossRef
29.
go back to reference Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.CrossRef Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.CrossRef
31.
go back to reference Ultsch B, Damm O, Beutels P, Bilcke J, Brüggenjürgen B, Gerber-Grote A, et al. Methods for health economic evaluation of vaccines and immunization decision frameworks: a consensus framework from a European vaccine economics community. Pharmacoeconomics. 2016;34:227–44.CrossRef Ultsch B, Damm O, Beutels P, Bilcke J, Brüggenjürgen B, Gerber-Grote A, et al. Methods for health economic evaluation of vaccines and immunization decision frameworks: a consensus framework from a European vaccine economics community. Pharmacoeconomics. 2016;34:227–44.CrossRef
32.
go back to reference Eaton JW, Johnson LF, Salomon JA, Bärnighausen T, Bendavid E, Bershteyn A, et al. HIV treatment as prevention: systematic comparison of mathematical models of the potential impact of antiretroviral therapy on HIV incidence in South Africa. PLoS Med. 2012;9(7):e1001245.CrossRef Eaton JW, Johnson LF, Salomon JA, Bärnighausen T, Bendavid E, Bershteyn A, et al. HIV treatment as prevention: systematic comparison of mathematical models of the potential impact of antiretroviral therapy on HIV incidence in South Africa. PLoS Med. 2012;9(7):e1001245.CrossRef
33.
go back to reference Brisson M, Bénard É, Drolet M, Bogaards JA, Baussano L, Vänskä S, et al. Population-level impact, herd immunity, and elimination after human papillomavirus vaccination: a systematic review and meta-analysis of predictions from transmission-dynamic models. Lancet Public Health. 2016;1:e8–17.CrossRef Brisson M, Bénard É, Drolet M, Bogaards JA, Baussano L, Vänskä S, et al. Population-level impact, herd immunity, and elimination after human papillomavirus vaccination: a systematic review and meta-analysis of predictions from transmission-dynamic models. Lancet Public Health. 2016;1:e8–17.CrossRef
34.
go back to reference Hoeting JA, Magidan D, Raftery AE, Volinsky CT. Bayesian model averaging: a tutorial. Stat Sci. 1999;14:382–401.CrossRef Hoeting JA, Magidan D, Raftery AE, Volinsky CT. Bayesian model averaging: a tutorial. Stat Sci. 1999;14:382–401.CrossRef
35.
go back to reference Raftery AE, Gneiting T, Balabdaoui F, Polakowski M. Using Bayesian model averaging to calibrate forecast ensembles. Mon Weather Rev. 2005;133(5):1155–74.CrossRef Raftery AE, Gneiting T, Balabdaoui F, Polakowski M. Using Bayesian model averaging to calibrate forecast ensembles. Mon Weather Rev. 2005;133(5):1155–74.CrossRef
36.
go back to reference Park J, Goldstein J, Haran M, Ferrari M. An ensemble approach to predicting the impact of vaccination disease in Niger. Vaccine. 2017;35:5835–41.CrossRef Park J, Goldstein J, Haran M, Ferrari M. An ensemble approach to predicting the impact of vaccination disease in Niger. Vaccine. 2017;35:5835–41.CrossRef
Metadata
Title
Guidelines for multi-model comparisons of the impact of infectious disease interventions
Authors
Saskia den Boon
Mark Jit
Marc Brisson
Graham Medley
Philippe Beutels
Richard White
Stefan Flasche
T. Déirdre Hollingsworth
Tini Garske
Virginia E. Pitzer
Martine Hoogendoorn
Oliver Geffen
Andrew Clark
Jane Kim
Raymond Hutubessy
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2019
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-019-1403-9

Other articles of this Issue 1/2019

BMC Medicine 1/2019 Go to the issue