Skip to main content
Top
Published in: BMC Medicine 1/2019

Open Access 01-12-2019 | Tuberculosis | Research article

Informing decision-making for universal access to quality tuberculosis diagnosis in India: an economic-epidemiological model

Authors: Hojoon Sohn, Parastu Kasaie, Emily Kendall, Gabriela B. Gomez, Anna Vassall, Madhukar Pai, David Dowdy

Published in: BMC Medicine | Issue 1/2019

Login to get access

Abstract

Background

India and many other high-burden countries have committed to providing universal access to high-quality diagnosis and drug susceptibility testing (DST) for tuberculosis (TB), but the most cost-effective approach to achieve this goal remains uncertain. Centralized testing at district-level hub facilities with a supporting sample transport network can generate economies of scale, but decentralization to the peripheral level may provide faster diagnosis and reduce losses to follow-up (LTFU).

Methods

We generated functions to evaluate the costs of centralized and decentralized molecular testing for tuberculosis with Xpert MTB/RIF (Xpert), a WHO-endorsed test which can be performed at centralized and decentralized levels. We merged the cost estimates with an agent-based simulation of TB transmission in a hypothetical representative region in India to assess the impact and cost-effectiveness of each strategy.

Results

Compared against centralized Xpert testing, decentralization was most favorable when testing volume at decentralized facilities and pre-treatment LTFU were high, and specimen transport network was exclusively established for TB. Assuming equal quality of centralized and decentralized testing, decentralization was cost-saving, saving a median $338,000 (interquartile simulation range [IQR] − $222,000; $889,000) per 20 million people over 10 years, in the most cost-favorable scenario. In the most cost-unfavorable scenario, decentralized testing would cost a median $3161 [IQR $2412; $4731] per disability-adjusted life year averted relative to centralized testing.

Conclusions

Decentralization of Xpert testing is likely to be cost-saving or cost-effective in most settings to which these simulation results might generalize. More decentralized testing is more cost-effective in settings with moderate-to-high peripheral testing volumes, high existing clinical LTFU, inability to share specimen transport costs with other disease entities, and ability to ensure high-quality peripheral Xpert testing. Decision-makers should assess these factors when deciding whether to decentralize molecular testing for tuberculosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Houben RMGJ, Dodd PJ. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med. 2016;13:e1002152.CrossRef Houben RMGJ, Dodd PJ. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med. 2016;13:e1002152.CrossRef
2.
go back to reference World Health Organization. Global tuberculosis report 2018. 2018. World Health Organization. Global tuberculosis report 2018. 2018.
4.
go back to reference World Health Organization. Xpert meeting report. 2016. World Health Organization. Xpert meeting report. 2016.
5.
go back to reference Vassall A, van Kampen S, Sohn H, et al. Rapid diagnosis of tuberculosis with the Xpert MTB/RIF assay in high burden countries: a cost-effectiveness analysis. PLoS Med. 2011;8:e1001120.CrossRef Vassall A, van Kampen S, Sohn H, et al. Rapid diagnosis of tuberculosis with the Xpert MTB/RIF assay in high burden countries: a cost-effectiveness analysis. PLoS Med. 2011;8:e1001120.CrossRef
6.
go back to reference Abimbola TO, Marston BJ, Date AA, Blandford JM, Sangrujee N, Wiktor SZ. Cost-effectiveness of tuberculosis diagnostic strategies to reduce early mortality among persons with advanced HIV infection initiating antiretroviral therapy (provisional abstract). J Acquir Immune Defic Syndr. 2012;60:e1–7.CrossRef Abimbola TO, Marston BJ, Date AA, Blandford JM, Sangrujee N, Wiktor SZ. Cost-effectiveness of tuberculosis diagnostic strategies to reduce early mortality among persons with advanced HIV infection initiating antiretroviral therapy (provisional abstract). J Acquir Immune Defic Syndr. 2012;60:e1–7.CrossRef
8.
go back to reference Huddart S, MacLean E, Pai M. Location, location, location: tuberculosis services in highest burden countries. Lancet Glob Heal. 2016;4:e907–8.CrossRef Huddart S, MacLean E, Pai M. Location, location, location: tuberculosis services in highest burden countries. Lancet Glob Heal. 2016;4:e907–8.CrossRef
9.
go back to reference Raizada N, Sachdeva KS, Sreenivas A, et al. Feasibility of decentralised deployment of Xpert MTB/RIF test at lower level of health system in India. PLoS One. 2014;9:e89301.CrossRef Raizada N, Sachdeva KS, Sreenivas A, et al. Feasibility of decentralised deployment of Xpert MTB/RIF test at lower level of health system in India. PLoS One. 2014;9:e89301.CrossRef
10.
go back to reference Macpherson P, Houben MGJ, Glynn JR, Corbett L, Kranzer K. Systematic reviews pre-treatment loss to follow-up in tuberculosis patients in low- and lower-middle-income countries and high-burden countries : a systematic review and meta-analysis. Bull World Health Organ. 2014:126–38. Macpherson P, Houben MGJ, Glynn JR, Corbett L, Kranzer K. Systematic reviews pre-treatment loss to follow-up in tuberculosis patients in low- and lower-middle-income countries and high-burden countries : a systematic review and meta-analysis. Bull World Health Organ. 2014:126–38.
11.
go back to reference Joloba M, Mwangi C, Alexander H, et al. Strengthening the tuberculosis specimen referral network in Uganda: the role of public-private partnerships. J Infect Dis. 2016;213:S41–6.CrossRef Joloba M, Mwangi C, Alexander H, et al. Strengthening the tuberculosis specimen referral network in Uganda: the role of public-private partnerships. J Infect Dis. 2016;213:S41–6.CrossRef
12.
go back to reference Vassall A, Siapka M, Foster N, Cunnama L, Ramma L, Fielding K, McCarthy K, Churchyard G, Grant A, Sinanovic E. Cost-effectiveness of Xpert MTB/RIF for tuberculosis diagnosis in South Africa: a real-world cost analysis and economic evaluation. Lancet Glob Heal. 2017;5:e710–9.CrossRef Vassall A, Siapka M, Foster N, Cunnama L, Ramma L, Fielding K, McCarthy K, Churchyard G, Grant A, Sinanovic E. Cost-effectiveness of Xpert MTB/RIF for tuberculosis diagnosis in South Africa: a real-world cost analysis and economic evaluation. Lancet Glob Heal. 2017;5:e710–9.CrossRef
13.
go back to reference Dowdy DW. Minding the gap: specimen referral systems for diagnosis of infectious diseases. Clin Infect Dis. 2016;64:ciw820.CrossRef Dowdy DW. Minding the gap: specimen referral systems for diagnosis of infectious diseases. Clin Infect Dis. 2016;64:ciw820.CrossRef
14.
go back to reference RNTCP. National strategic plan for tuberculosis elimination. 2017. RNTCP. National strategic plan for tuberculosis elimination. 2017.
15.
go back to reference Kasaie P, Sohn H, Kendall E, Gomez GB, Vassall A, Pai M, Dowdy DW. Exploring the epidemiological impact of universal access to rapid tuberculosis diagnosis using agent-based simulation. In: 2017 Winter Simulation Conference; 2017. p. 1097–108.CrossRef Kasaie P, Sohn H, Kendall E, Gomez GB, Vassall A, Pai M, Dowdy DW. Exploring the epidemiological impact of universal access to rapid tuberculosis diagnosis using agent-based simulation. In: 2017 Winter Simulation Conference; 2017. p. 1097–108.CrossRef
16.
go back to reference Sarin S, Huddart S, Raizada N, et al. Cost and operational impact of promoting upfront GeneXpert MTB/RIF test referrals for presumptive pediatric tuberculosis patients in India. PLoS One. 2019;14:e0214675.CrossRef Sarin S, Huddart S, Raizada N, et al. Cost and operational impact of promoting upfront GeneXpert MTB/RIF test referrals for presumptive pediatric tuberculosis patients in India. PLoS One. 2019;14:e0214675.CrossRef
18.
go back to reference Cunnama L, Sinanovic E, Ramma L, et al. Using top-down and bottom-up costing approaches in LMICs: the case for using both to assess the incremental costs of new technologies at scale. Health Econ. 2016;19:1300–17. Cunnama L, Sinanovic E, Ramma L, et al. Using top-down and bottom-up costing approaches in LMICs: the case for using both to assess the incremental costs of new technologies at scale. Health Econ. 2016;19:1300–17.
19.
go back to reference Bertram MY, Stenberg K, Brindley C, Li J, Serje J, Watts R, Edejer TT-T. Disease control programme support costs: an update of WHO-CHOICE methodology, price databases and quantity assumptions. Cost Eff Resour Alloc. 2017;15:21.CrossRef Bertram MY, Stenberg K, Brindley C, Li J, Serje J, Watts R, Edejer TT-T. Disease control programme support costs: an update of WHO-CHOICE methodology, price databases and quantity assumptions. Cost Eff Resour Alloc. 2017;15:21.CrossRef
20.
go back to reference Mistry N, Rangan S, Dholakia Y, Lobo E, Shah S. Durations and delays in care seeking, diagnosis and treatment initiation in uncomplicated pulmonary tuberculosis patients in Mumbai, India; 2016. p. 1–17. Mistry N, Rangan S, Dholakia Y, Lobo E, Shah S. Durations and delays in care seeking, diagnosis and treatment initiation in uncomplicated pulmonary tuberculosis patients in Mumbai, India; 2016. p. 1–17.
21.
go back to reference Salje H, Andrews JR, Deo S, Satyanarayana S, Sun AY, Pai M, Dowdy DW. The importance of implementation strategy in scaling up Xpert MTB/RIF for diagnosis of tuberculosis in the Indian health-care system: a transmission model. PLoS Med. 2014;11:e1001674.CrossRef Salje H, Andrews JR, Deo S, Satyanarayana S, Sun AY, Pai M, Dowdy DW. The importance of implementation strategy in scaling up Xpert MTB/RIF for diagnosis of tuberculosis in the Indian health-care system: a transmission model. PLoS Med. 2014;11:e1001674.CrossRef
22.
go back to reference Laurence YV, Griffiths UK, Vassall A. Costs to health services and the patient of treating tuberculosis: a systematic literature review. Pharmacoeconomics. 2015;33:939–55.CrossRef Laurence YV, Griffiths UK, Vassall A. Costs to health services and the patient of treating tuberculosis: a systematic literature review. Pharmacoeconomics. 2015;33:939–55.CrossRef
24.
go back to reference Kapoor SK, Raman AV, Sachdeva KS, Satyanarayana S. How did the TB patients reach DOTS services in Delhi? A study of patient treatment seeking behavior. PLoS One. 2012;7:1–6. Kapoor SK, Raman AV, Sachdeva KS, Satyanarayana S. How did the TB patients reach DOTS services in Delhi? A study of patient treatment seeking behavior. PLoS One. 2012;7:1–6.
26.
go back to reference Bertram MY, Lauer JA, De Joncheere K, Edejer T, Hutubessy R, Kieny P, Hill SR, Bertram MY. Cost – effectiveness thresholds : pros and cons use and misuse of thresholds. Bull World Health Organ. 2016;94:925–30.CrossRef Bertram MY, Lauer JA, De Joncheere K, Edejer T, Hutubessy R, Kieny P, Hill SR, Bertram MY. Cost – effectiveness thresholds : pros and cons use and misuse of thresholds. Bull World Health Organ. 2016;94:925–30.CrossRef
27.
go back to reference Woods B, Revill P, Sculpher M, Claxton K. Country-level cost-effectiveness thresholds: initial estimates and the need for further research. Value Health. 2016;19:929–35.CrossRef Woods B, Revill P, Sculpher M, Claxton K. Country-level cost-effectiveness thresholds: initial estimates and the need for further research. Value Health. 2016;19:929–35.CrossRef
28.
go back to reference Hsiang E, Little KM, Haguma P, Hanrahan CF, Katamba A, Cattamanchi A, Davis JL, Vassall A, Dowdy D. Higher cost of implementing Xpert® MTB/RIF in Ugandan peripheral settings: implications for cost-effectiveness. Int J Tuberc Lung Dis. 2016;20:1212–8.CrossRef Hsiang E, Little KM, Haguma P, Hanrahan CF, Katamba A, Cattamanchi A, Davis JL, Vassall A, Dowdy D. Higher cost of implementing Xpert® MTB/RIF in Ugandan peripheral settings: implications for cost-effectiveness. Int J Tuberc Lung Dis. 2016;20:1212–8.CrossRef
30.
go back to reference Pai M, Schito M. Tuberculosis diagnostics in 2015: landscape, priorities, needs, and prospects. J Infect Dis. 2015;211:S21–8.CrossRef Pai M, Schito M. Tuberculosis diagnostics in 2015: landscape, priorities, needs, and prospects. J Infect Dis. 2015;211:S21–8.CrossRef
31.
go back to reference Subbaraman R, Nathavitharana RR, Satyanarayana S, Pai M, Thomas BE, Chadha VK, Rade K, Swaminathan S, Mayer KH. The tuberculosis cascade of care in India’s public sector: a systematic review and meta-analysis. PLoS Med. 2016;13:1–38.CrossRef Subbaraman R, Nathavitharana RR, Satyanarayana S, Pai M, Thomas BE, Chadha VK, Rade K, Swaminathan S, Mayer KH. The tuberculosis cascade of care in India’s public sector: a systematic review and meta-analysis. PLoS Med. 2016;13:1–38.CrossRef
32.
go back to reference Pai M, Schumacher SG, Abimbola S. Surrogate endpoints in global health research: still searching for killer apps and silver bullets? BMJ Glob Health. 2018;3:e000755.CrossRef Pai M, Schumacher SG, Abimbola S. Surrogate endpoints in global health research: still searching for killer apps and silver bullets? BMJ Glob Health. 2018;3:e000755.CrossRef
33.
go back to reference Dowdy DW, Andrews JR, Dodd PJ, Gilman RH. A user-friendly, open-source tool to project impact and cost of diagnostic tests for tuberculosis. Elife. 2014;2014:1–24. Dowdy DW, Andrews JR, Dodd PJ, Gilman RH. A user-friendly, open-source tool to project impact and cost of diagnostic tests for tuberculosis. Elife. 2014;2014:1–24.
Metadata
Title
Informing decision-making for universal access to quality tuberculosis diagnosis in India: an economic-epidemiological model
Authors
Hojoon Sohn
Parastu Kasaie
Emily Kendall
Gabriela B. Gomez
Anna Vassall
Madhukar Pai
David Dowdy
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2019
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-019-1384-8

Other articles of this Issue 1/2019

BMC Medicine 1/2019 Go to the issue