Skip to main content
Top
Published in: BMC Medicine 1/2019

Open Access 01-12-2019 | Type 1 Diabetes | Research article

Landmark models to define the age-adjusted risk of developing stage 1 type 1 diabetes across childhood and adolescence

Authors: Verena Sophia Hoffmann, Andreas Weiß, Christiane Winkler, Annette Knopff, Manja Jolink, Ezio Bonifacio, Anette-G. Ziegler

Published in: BMC Medicine | Issue 1/2019

Login to get access

Abstract

Background

Autoimmune diseases are often preceded by an asymptomatic autoantibody-positive phase. In type 1 diabetes, the detection of autoantibodies to pancreatic islet antigens in genetically at-risk children is prognostic for future clinical diabetes. Testing for islet autoantibodies is, therefore, performed in a range of clinical studies. Accurate risk estimates that consider the a priori genetic risk and other risk modifiers are an important component of screening. The age of an individual is an under-appreciated risk modifier. The aim of this study was to provide age-adjusted risk estimates for the development of autoantibodies across childhood in genetically at-risk children.

Methods

The prospective BABYDIAB and BABYDIET studies included 2441 children from birth who had a first-degree relative with type 1 diabetes. Children were born between 1989 and 2006 and were regularly followed from birth for the development of islet autoantibodies and diabetes. A landmark analysis was performed to estimate the risk of islet autoantibodies at birth and at the age 3.5, 6.5 and 12.5 years. Exponential decay curves were fitted for the risk by the age of 20 years.

Results

The risk of islet autoantibodies by the age of 20 years was 8%, 4.6%, 2.6% and 0.9%, at the landmark ages of birth, 3.5, 6.5 and 12.5 years, respectively. The short-term risks (within 6 years of follow-up) at these landmark ages were 5.3%, 2.9%, 1.8% and 1%, respectively. The decline in autoantibody risk with age was modelled using a one-phase exponential decay curve (r = 0.99) with a risk half-life of 3.7 years. This risk decay model was remarkably consistent when the outcome was defined as islet autoantibody-positive or multiple islet autoantibody-positive and when the study cohort was stratified by HLA risk genotype. A similar decay model was observed for coeliac disease-associated transglutaminase antibodies in the same cohort. Unlike the risk of developing islet autoantibodies, the rate of developing clinical diabetes in children who were islet autoantibody-positive did not decline with age.

Conclusion

The risk of developing autoantibodies drops exponentially with age in children with a first-degree relative with type 1 diabetes.
Appendix
Available only for authorised users
Literature
3.
go back to reference Greenbaum CJ, Speake C, Krischer J, Buckner J, Gottlieb PA, Schatz DA, et al. Strength in numbers: opportunities for enhancing the development of effective treatments for type 1 diabetes-the TrialNet experience. Diabetes. 2018;67(7):1216–25 https://doi.org/10.2337/db18-0065.CrossRef Greenbaum CJ, Speake C, Krischer J, Buckner J, Gottlieb PA, Schatz DA, et al. Strength in numbers: opportunities for enhancing the development of effective treatments for type 1 diabetes-the TrialNet experience. Diabetes. 2018;67(7):1216–25 https://​doi.​org/​10.​2337/​db18-0065.CrossRef
4.
go back to reference Nanto-Salonen K, Kupila A, Simell S, Siljander H, Salonsaari T, Hekkala A, et al. Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet. 2008;372(9651):1746–55 https://doi.org/10.1016/s0140-6736(08)61309-4.CrossRef Nanto-Salonen K, Kupila A, Simell S, Siljander H, Salonsaari T, Hekkala A, et al. Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet. 2008;372(9651):1746–55 https://​doi.​org/​10.​1016/​s0140-6736(08)61309-4.CrossRef
5.
go back to reference Rewers M, Bugawan TL, Norris JM, Blair A, Beaty B, Hoffman M, et al. Newborn screening for HLA markers associated with IDDM: diabetes autoimmunity study in the young (DAISY). Diabetologia. 1996;39(7):807–12.CrossRef Rewers M, Bugawan TL, Norris JM, Blair A, Beaty B, Hoffman M, et al. Newborn screening for HLA markers associated with IDDM: diabetes autoimmunity study in the young (DAISY). Diabetologia. 1996;39(7):807–12.CrossRef
7.
go back to reference Ziegler AG, Hillebrand B, Rabl W, Mayrhofer M, Mollenhauer U, Vordemann J, et al. On the appearance of islet associated autoimmunity in offspring of dabetes mothers: a prospective study from birth. Diabetologia. 1993;36(5):402–8.CrossRef Ziegler AG, Hillebrand B, Rabl W, Mayrhofer M, Mollenhauer U, Vordemann J, et al. On the appearance of islet associated autoimmunity in offspring of dabetes mothers: a prospective study from birth. Diabetologia. 1993;36(5):402–8.CrossRef
8.
go back to reference Hummel S, Pfluger M, Hummel M, Bonifacio E, Ziegler AG. Primary dietary intervention study to reduce the risk of islet autoimmunity in children at increased risk for type 1 diabetes: the BABYDIET study. Diabetes Care. 2011;34(6):1301–5 https://doi.org/10.2337/dc10-2456.CrossRef Hummel S, Pfluger M, Hummel M, Bonifacio E, Ziegler AG. Primary dietary intervention study to reduce the risk of islet autoimmunity in children at increased risk for type 1 diabetes: the BABYDIET study. Diabetes Care. 2011;34(6):1301–5 https://​doi.​org/​10.​2337/​dc10-2456.CrossRef
10.
go back to reference Insel RA, Dunne JL, Atkinson MA, Chiang JL, Dabelea D, Gottlieb PA, Greenbaum CJ, Herold KC, Krischer JP, Lernmark Å, Ratner RE, Rewers MJ, Schatz DA, Skyler JS, Sosenko JM, Ziegler AG. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care. 2015;38(10):1964–74.CrossRef Insel RA, Dunne JL, Atkinson MA, Chiang JL, Dabelea D, Gottlieb PA, Greenbaum CJ, Herold KC, Krischer JP, Lernmark Å, Ratner RE, Rewers MJ, Schatz DA, Skyler JS, Sosenko JM, Ziegler AG. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care. 2015;38(10):1964–74.CrossRef
15.
16.
17.
go back to reference Ziegler AG, Hummel M, Schenker M, Bonifacio E. Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB study. Diabetes. 1999;48(3):460–8.CrossRef Ziegler AG, Hummel M, Schenker M, Bonifacio E. Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB study. Diabetes. 1999;48(3):460–8.CrossRef
19.
go back to reference Schenker M, Hummel M, Ferber K, Walter M, Keller E, Albert ED, et al. Early expression and high prevalence of islet autoantibodies for DR3/4 heterozygous and DR4/4 homozygous offspring of parents with type I diabetes: the German BABYDIAB study. Diabetologia. 1999;42(6):671–7 https://doi.org/10.1007/s001250051214.CrossRef Schenker M, Hummel M, Ferber K, Walter M, Keller E, Albert ED, et al. Early expression and high prevalence of islet autoantibodies for DR3/4 heterozygous and DR4/4 homozygous offspring of parents with type I diabetes: the German BABYDIAB study. Diabetologia. 1999;42(6):671–7 https://​doi.​org/​10.​1007/​s001250051214.CrossRef
20.
go back to reference Puavilai G, Chanprasertyotin S, Sriphrapradaeng A. Diagnostic criteria for diabetes mellitus and other categories of glucose intolerance: 1997 criteria by the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (ADA), 1998 WHO consultation criteria, and 1985 WHO criteria. World Health Organization. Diabetes Res Clin Pract. 1999;44(1):21–6. https://doi.org/10.1016/S0168-8227(99)00008-X. Puavilai G, Chanprasertyotin S, Sriphrapradaeng A. Diagnostic criteria for diabetes mellitus and other categories of glucose intolerance: 1997 criteria by the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (ADA), 1998 WHO consultation criteria, and 1985 WHO criteria. World Health Organization. Diabetes Res Clin Pract. 1999;44(1):21–6. https://​doi.​org/​10.​1016/​S0168-8227(99)00008-X.
22.
go back to reference van Houwelingen H, Putter H. Dynamic prediction in clinical survival analysis. Boca Raton: CRC Press, Inc; 2011. van Houwelingen H, Putter H. Dynamic prediction in clinical survival analysis. Boca Raton: CRC Press, Inc; 2011.
24.
go back to reference Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med. 1998;17(8):857–72.CrossRef Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med. 1998;17(8):857–72.CrossRef
25.
28.
go back to reference Bingley PJ, Gale EAM, Group TENDIT. Progression to type 1 diabetes in islet cell antibody-positive relatives in the European Nicotinamide Diabetes Intervention Trial: the role of additional immune, genetic and metabolic markers of risk. Diabetologia. 2006;49(5):881–90 https://doi.org/10.1007/s00125-006-0160-4.CrossRef Bingley PJ, Gale EAM, Group TENDIT. Progression to type 1 diabetes in islet cell antibody-positive relatives in the European Nicotinamide Diabetes Intervention Trial: the role of additional immune, genetic and metabolic markers of risk. Diabetologia. 2006;49(5):881–90 https://​doi.​org/​10.​1007/​s00125-006-0160-4.CrossRef
Metadata
Title
Landmark models to define the age-adjusted risk of developing stage 1 type 1 diabetes across childhood and adolescence
Authors
Verena Sophia Hoffmann
Andreas Weiß
Christiane Winkler
Annette Knopff
Manja Jolink
Ezio Bonifacio
Anette-G. Ziegler
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Type 1 Diabetes
Published in
BMC Medicine / Issue 1/2019
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-019-1360-3

Other articles of this Issue 1/2019

BMC Medicine 1/2019 Go to the issue